JPH01241874A - Josephson junction element - Google Patents
Josephson junction elementInfo
- Publication number
- JPH01241874A JPH01241874A JP63070518A JP7051888A JPH01241874A JP H01241874 A JPH01241874 A JP H01241874A JP 63070518 A JP63070518 A JP 63070518A JP 7051888 A JP7051888 A JP 7051888A JP H01241874 A JPH01241874 A JP H01241874A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- substrate
- oxide superconductor
- josephson junction
- perovskite structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 16
- 230000002950 deficient Effects 0.000 claims abstract description 15
- 239000002887 superconductor Substances 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims description 21
- 230000010354 integration Effects 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 titanium tristrontium Chemical compound 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ジョゼフソン接合素子に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a Josephson junction element.
第2図は例えば電子情報通信学会技術研究報告(SCE
87−26−39) 73〜78頁に記載された従来の
酸素欠損3重ペロブスカイト構造を有する酸化物超伝導
体からなるジョゼフソン接合素子の構造を示す図であり
、図において、1は酸素欠損3重ペロブスカイト構造を
有するYBaCuO膜、3はイツトリウム安定化ジルコ
ニア(YSZ)からなる基板である。Figure 2 shows, for example, the Institute of Electronics, Information and Communication Engineers Technical Research Report (SCE)
87-26-39) It is a diagram showing the structure of a Josephson junction element made of an oxide superconductor having a conventional oxygen-deficient triple perovskite structure described on pages 73 to 78, and in the figure, 1 is an oxygen-deficient A YBaCuO film having a triple perovskite structure, 3 is a substrate made of yttrium stabilized zirconia (YSZ).
次に本従来例のジョゼフソン接合素子の作製方法につい
て説明する。Next, a method for manufacturing the Josephson junction element of this conventional example will be explained.
まずYBaCuO膜1をrf(高周波)ダイオードスパ
ッタ法により、アルゴンをスパッタガスとして用い、r
f電力100W、アルゴンガス圧4.0パスカルという
条件のもとで成膜速度5 nm/minでYSZ基板3
上に堆積する。成膜後、酸素雰囲気中890℃で8時間
のアニールを行ない、77に以上の転移温度を持つ超伝
導膜を得る。膜厚は約4μmである。次にこのYBaC
uO膜1上にフォトリソグラフィー技術により第2図に
示すようなパターンを形成し、フォトレジストAZB5
0Jをマスクとしてリン酸によるウェットエツチングに
より第2図に示したYBaCuO膜1からなるパターン
を得る。この時、くびれだ部分の幅は4μm。First, a YBaCuO film 1 was formed by rf (high frequency) diode sputtering using argon as a sputtering gas.
YSZ substrate 3 was deposited at a deposition rate of 5 nm/min under the conditions of f power of 100 W and argon gas pressure of 4.0 Pascal.
deposit on top. After film formation, annealing is performed at 890° C. for 8 hours in an oxygen atmosphere to obtain a superconducting film having a transition temperature of 77° C. or higher. The film thickness is approximately 4 μm. Next, this YBaC
A pattern as shown in FIG. 2 is formed on the uO film 1 by photolithography, and a photoresist AZB5 is formed.
By wet etching with phosphoric acid using 0J as a mask, a pattern made of the YBaCuO film 1 shown in FIG. 2 is obtained. At this time, the width of the constricted part is 4 μm.
長さは20μmであり、YBaCuO膜1の粒径が2〜
4μmであるため、この部分に粒界ジョゼフソン接合素
子が形成される。The length is 20 μm, and the grain size of the YBaCuO film 1 is 2~
Since the thickness is 4 μm, a grain boundary Josephson junction element is formed in this portion.
従来の酸素欠損3重ペロブスカイト構造を有する酸化物
超伝導体からなるジョゼフソン接合素子は以上のように
構成されており、粒径が大きいことを利用して粒界部分
で弱結合を形成しているため、素子を微細化して高集積
化を図ることが困難であるという問題点があった。A conventional Josephson junction element made of an oxide superconductor with an oxygen-deficient triple perovskite structure is constructed as described above, and uses the large grain size to form weak bonds at the grain boundaries. Therefore, there was a problem in that it was difficult to miniaturize the elements and achieve high integration.
この発明は上記のような問題点を解消するためになされ
たもので、微細化し、高集積化を図れるような酸素欠損
3重ペロブスカイト構造を有する酸化物超伝導体からな
るジョゼフソン接合素子を得ることを目的とする。This invention was made to solve the above-mentioned problems, and provides a Josephson junction element made of an oxide superconductor having an oxygen-deficient triple perovskite structure that can be miniaturized and highly integrated. The purpose is to
この発明に係るジョゼフソン接合素子は、酸素欠損3重
ペロブスカイト構造を有する酸化物超伝導体を、一部に
他の部分とは面方位の異なる面を現出させた単結晶基板
上にエピタキシャル成長させ、上記面方位の異なる部分
で超伝導弱結合を形成したものである。The Josephson junction device according to the present invention is produced by epitaxially growing an oxide superconductor having an oxygen-deficient triple perovskite structure on a single crystal substrate in which a part of the oxide superconductor has a plane with a different orientation from the other part. , superconducting weak coupling is formed at the portions with different plane orientations.
この発明においては、一部に他の部分とは面方位の異な
る面を現出させた単結晶基板上に酸素欠損3重ペロブス
カイト構造を有する酸化物超伝導体をエピタキシャル成
長させ、上記面方位の異なる部分で生起する成長面の不
整合あるいは該部分において良質の結晶が成長しないこ
とにより、該部分に超伝導弱結合を形成した構成とした
から、素子を微細化し高集積化を実現できる。In this invention, an oxide superconductor having an oxygen-deficient triple perovskite structure is grown epitaxially on a single crystal substrate in which a part of the substrate has a plane with a different plane orientation from that of the other part, and Since the configuration is such that a superconducting weak bond is formed in the region due to mismatching of the growth planes occurring in the region or failure of high-quality crystals to grow in the region, it is possible to miniaturize the device and achieve high integration.
以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
”第1図は本発明の一実施例によるジョゼフソン接合素
子を示す図であり、図において、2はその一部に他の部
分とは面方位の異なる面を現出させたチタン3ストロン
チウム(S r T 103)からなる単結晶基板であ
り、本実施例では(100)面の5rTi03基板上の
一部に(110)面を現出させている。1は5rTjO
:+基板2上にエピタキシャル成長させた酸素欠損3重
ペロブスカイト構造を持つ酸化物超伝導体であり、本実
施例ではYBaCuOを考える。"Figure 1 is a diagram showing a Josephson junction element according to an embodiment of the present invention. In the figure, 2 is titanium tristrontium (2), which has a surface with a different orientation from the other parts. In this example, the (110) plane is exposed in a part of the (100) plane of the 5rTi03 substrate.1 is 5rTjO.
:+ An oxide superconductor having an oxygen-deficient triple perovskite structure epitaxially grown on the substrate 2, and in this example, YBaCuO is considered.
次に本実施例の作製方法について説明する。Next, the manufacturing method of this example will be explained.
まず(100)面5rTiC1+単結晶基板2上にウェ
ットエツチングまたはドライエツチング技術を用いて段
差を形成し、該段差部分に(110)面を現出させる。First, a step is formed on the (100) plane 5rTiC1+single crystal substrate 2 using wet etching or dry etching technology, and the (110) plane is exposed in the step portion.
そしてこの3rTiO:+単結晶基板2上にrfスパッ
タリング等の成膜方法により、酸素欠損3重ペロブスカ
イト構造を持つ酸化物超伝導体YBaCu’O膜1をエ
ピタキシャル成長させる。その後、S r T i O
3単結晶基板2面内テ、YBaCuO[1をエツチング
してパターニングすることにより所望のジョゼフソン接
合素子を実現する。Then, an oxide superconductor YBaCu'O film 1 having an oxygen-deficient triple perovskite structure is epitaxially grown on this 3rTiO:+ single crystal substrate 2 by a film forming method such as RF sputtering. After that, S r T i O
3. A desired Josephson junction element is realized by etching and patterning YBaCuO[1 in two planes of a single crystal substrate.
このような本実施例においては、S r T i On
単結晶基板2の(100)面上にはYBaCuO膜の(
001)面が、5rTi03単結晶基板2の(110)
面上には、YBaCuO膜1の(110)面がそれぞれ
エピタキシャル成長する。この時、5rTiO,、単結
晶基板2の(100)面上のYBaCuO膜1はC軸が
5rTiO:+単結晶基板2に対して垂直に立っていて
、ここでは電流はC面内を流れることになる。一方、S
r T i03単結晶基板2の(110)面上のYB
aCuO膜1はC軸がSrTiO3単結晶基板2の面内
に横たわっている。この結果5rTiO,単結晶基板2
上の段差部分で格子の不整合が生ずる。そして、YBa
CuOのコヒーレンス長さが4.4〜37人と短いため
に、その不整合部分で超伝導性が弱められ弱結合が形成
される。In this embodiment, S r T i On
On the (100) plane of the single crystal substrate 2, a YBaCuO film (
001) plane is (110) of 5rTi03 single crystal substrate 2
The (110) plane of the YBaCuO film 1 is epitaxially grown on each surface. At this time, the C-axis of the YBaCuO film 1 on the (100) plane of the 5rTiO, single-crystal substrate 2 stands perpendicular to the 5rTiO:+ single-crystal substrate 2, and here the current flows in the C-plane. become. On the other hand, S
r Ti03 YB on (110) plane of single crystal substrate 2
The C-axis of the aCuO film 1 lies within the plane of the SrTiO3 single crystal substrate 2. As a result, 5rTiO, single crystal substrate 2
Grid mismatch occurs at the upper step. And YBa
Since the coherence length of CuO is short, ranging from 4.4 to 37 degrees, the superconductivity is weakened at the mismatched portion, and a weak bond is formed.
なお、上記実施例では酸素欠損3重ペロブスカイト構造
を有する酸化物超伝導体としてYBaCUOを用いたも
のを示したが、同様の構造を持ち、かつ単結晶基板上に
エピタキシャル成長できるものであれば他の物質、例え
ばErBaCu、H。In the above example, YBaCUO was used as the oxide superconductor having an oxygen-deficient triple perovskite structure, but other materials may be used as long as they have a similar structure and can be epitaxially grown on a single crystal substrate. Substances such as ErBaCu, H.
BaCuO等でもよい。It may also be BaCuO or the like.
また、上記実施例では単結晶基板として5rTi03を
用いたものを示したが、これはその上に酸素欠損3重ペ
ロブスカイト構造を有する酸化物超伝導体がエピタキシ
ャル成長できるものならば他の単結晶基板、例えばMg
O等でもよい。In addition, in the above embodiment, 5rTi03 was used as the single crystal substrate, but other single crystal substrates may be used as long as an oxide superconductor having an oxygen-deficient triple perovskite structure can be epitaxially grown thereon. For example, Mg
O etc. may also be used.
また、上記実施例では、成長面方位として(100)面
、 (110)面を用いたが、面方位の変わり目で格
子不整合を生起する、あるいは一部他の部分と異なる面
方位を持つ部分においては良質結晶が成長しないために
超伝導弱結合が形成されるのであれば他の面方位であっ
てもよい。Furthermore, in the above example, the (100) plane and the (110) plane were used as the growth plane orientations, but some parts may cause lattice mismatch at the change in plane orientation, or some parts may have a plane orientation different from other parts. In this case, other plane orientations may be used as long as a superconducting weak bond is formed because good quality crystals do not grow.
以上のように、この発明によれば、一部に他の部分とは
面方位の異なる面を現出させた単結晶基板上に酸素欠損
3重ペロブスカイト構造を有する酸化物超伝導体をエピ
タキシャル成長させ、上記面方位の異なる部分で生起す
る成長面の不整合あるいは該部分において良質の結晶が
成長しないことにより、該部分に超伝導弱結合を形成し
た構成としたから、素子を微細化し高集積化を実現でき
る効果がある。As described above, according to the present invention, an oxide superconductor having an oxygen-deficient triple perovskite structure is epitaxially grown on a single-crystal substrate in which a plane with a different plane orientation from the other part is exposed. , due to mismatching of the growth planes occurring in the areas with different plane orientations or failure of high-quality crystals to grow in the areas, a structure was created in which superconducting weak bonds were formed in the areas, making it possible to miniaturize the device and achieve high integration. It has the effect of realizing
第1図はこの発明の一実施例によるジョゼフソン接合素
子を示す図、第2図は従来のジョゼフソン接合素子を示
す図である。
■は酸素欠損3重ペロブスカイト構造を持つ酸化物超伝
導体、2は単結晶基板。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a diagram showing a Josephson junction device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional Josephson junction device. ■ is an oxide superconductor with an oxygen-deficient triple perovskite structure, and 2 is a single crystal substrate. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
させた単結晶基板上に、酸素欠損3重ペロブスカイト構
造を有する酸化物超伝導体をエピタキシャル成長させ、
上記面方位の異なる部分で超伝導弱結合を形成したこと
を特徴とするジョゼフソン接合素子。(1) Epitaxially growing an oxide superconductor having an oxygen-deficient triple perovskite structure on a single crystal substrate in which a part of the substrate has a plane with a different orientation from the other part,
A Josephson junction element characterized in that a superconducting weak bond is formed in the portions having different plane orientations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63070518A JPH01241874A (en) | 1988-03-23 | 1988-03-23 | Josephson junction element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63070518A JPH01241874A (en) | 1988-03-23 | 1988-03-23 | Josephson junction element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01241874A true JPH01241874A (en) | 1989-09-26 |
Family
ID=13433828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63070518A Pending JPH01241874A (en) | 1988-03-23 | 1988-03-23 | Josephson junction element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01241874A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03149885A (en) * | 1989-11-07 | 1991-06-26 | Nippon Telegr & Teleph Corp <Ntt> | Oxide semiconductor device and manufacture thereof |
JPH06500669A (en) * | 1991-03-19 | 1994-01-20 | コンダクタス インコーポレイテッド | Grain boundary bonding in high-temperature superconductor films |
US5382566A (en) * | 1992-05-29 | 1995-01-17 | Sumitomo Electric Industries, Ltd. | Josephson junction device formed of oxide superconductor and process for preparing the same |
JPH0794794A (en) * | 1993-09-24 | 1995-04-07 | Yuseisho Tsushin Sogo Kenkyusho | Manufacture of superconducting josephson device |
US5422337A (en) * | 1992-05-29 | 1995-06-06 | Sumitomo Electric Industries | Step-edged grain boundary Josephson junction with 5 to 30 degrees inclined angle |
US5434126A (en) * | 1992-09-29 | 1995-07-18 | Matsushita Electric Industrial Co., Ltd. | Thin-film high Tc superconductor comprising a ferroelectric buffer layer |
US5446016A (en) * | 1993-02-15 | 1995-08-29 | Sumitomo Electric Industries, Ltd. | Method for forming a patterned oxide superconductor thin film |
US5498881A (en) * | 1993-09-21 | 1996-03-12 | International Superconductivity Technology Ctr. | Superconducting device having a single junction structure appropriate for integration |
US5593950A (en) * | 1992-07-28 | 1997-01-14 | Nippon Telegraph & Telephone Corporation | Lattice matching super conducting device with a- and c- axes |
US5595959A (en) * | 1991-01-22 | 1997-01-21 | Biomagnetic Technologies, Inc. | Method of forming a high-TC microbridge superconductor device |
US5612290A (en) * | 1992-05-29 | 1997-03-18 | Sumitomo Electric Industries, Ltd. | Josephson junction device formed of oxide superconductor |
US5776863A (en) * | 1996-07-08 | 1998-07-07 | Trw Inc. | In-situ fabrication of a superconductor hetero-epitaxial Josephson junction |
US5863868A (en) * | 1996-04-08 | 1999-01-26 | Trw Inc. | Superconductive quantum interference device for digital logic circuits |
US5962866A (en) * | 1991-01-22 | 1999-10-05 | Biomagnetic Technologies, Inc. | Microbridge superconductor device utilizing stepped junctions |
US6016433A (en) * | 1996-09-02 | 2000-01-18 | International Superconductivity Technology Center | Oxide superconductor Josephson junction element and process for producing same |
-
1988
- 1988-03-23 JP JP63070518A patent/JPH01241874A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03149885A (en) * | 1989-11-07 | 1991-06-26 | Nippon Telegr & Teleph Corp <Ntt> | Oxide semiconductor device and manufacture thereof |
US5962866A (en) * | 1991-01-22 | 1999-10-05 | Biomagnetic Technologies, Inc. | Microbridge superconductor device utilizing stepped junctions |
US5595959A (en) * | 1991-01-22 | 1997-01-21 | Biomagnetic Technologies, Inc. | Method of forming a high-TC microbridge superconductor device |
JPH06500669A (en) * | 1991-03-19 | 1994-01-20 | コンダクタス インコーポレイテッド | Grain boundary bonding in high-temperature superconductor films |
US5525582A (en) * | 1992-05-29 | 1996-06-11 | Sumitomo Electric Industries, Ltd. | Josephson junction device formed of oxide superconductor and process for preparing the same |
US5612290A (en) * | 1992-05-29 | 1997-03-18 | Sumitomo Electric Industries, Ltd. | Josephson junction device formed of oxide superconductor |
US5382566A (en) * | 1992-05-29 | 1995-01-17 | Sumitomo Electric Industries, Ltd. | Josephson junction device formed of oxide superconductor and process for preparing the same |
US5422337A (en) * | 1992-05-29 | 1995-06-06 | Sumitomo Electric Industries | Step-edged grain boundary Josephson junction with 5 to 30 degrees inclined angle |
US5593950A (en) * | 1992-07-28 | 1997-01-14 | Nippon Telegraph & Telephone Corporation | Lattice matching super conducting device with a- and c- axes |
US5821200A (en) * | 1992-07-28 | 1998-10-13 | Nippon Telegraph And Telephone Corporation | Lattice matching device and method for fabricating the same |
US5434126A (en) * | 1992-09-29 | 1995-07-18 | Matsushita Electric Industrial Co., Ltd. | Thin-film high Tc superconductor comprising a ferroelectric buffer layer |
US5446016A (en) * | 1993-02-15 | 1995-08-29 | Sumitomo Electric Industries, Ltd. | Method for forming a patterned oxide superconductor thin film |
US5498881A (en) * | 1993-09-21 | 1996-03-12 | International Superconductivity Technology Ctr. | Superconducting device having a single junction structure appropriate for integration |
JPH0794794A (en) * | 1993-09-24 | 1995-04-07 | Yuseisho Tsushin Sogo Kenkyusho | Manufacture of superconducting josephson device |
US5863868A (en) * | 1996-04-08 | 1999-01-26 | Trw Inc. | Superconductive quantum interference device for digital logic circuits |
US5776863A (en) * | 1996-07-08 | 1998-07-07 | Trw Inc. | In-situ fabrication of a superconductor hetero-epitaxial Josephson junction |
US6023072A (en) * | 1996-07-08 | 2000-02-08 | Trw Inc. | Superconductor hetero-epitaxial josephson junction |
US6016433A (en) * | 1996-09-02 | 2000-01-18 | International Superconductivity Technology Center | Oxide superconductor Josephson junction element and process for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01241874A (en) | Josephson junction element | |
EP0446146B1 (en) | Stacked Josephson junction device composed of oxide superconductor material | |
JP3189403B2 (en) | Element having superconducting junction and method of manufacturing the same | |
US5354734A (en) | Method for manufacturing an artificial grain boundary type Josephson junction device | |
US5962866A (en) | Microbridge superconductor device utilizing stepped junctions | |
JPH05335637A (en) | Josephson junction structure body | |
EP0524862B1 (en) | Josephson junction device of oxide superconductor and process for preparing the same | |
US5480859A (en) | Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer | |
US5612290A (en) | Josephson junction device formed of oxide superconductor | |
JPH01117376A (en) | Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof | |
EP0557207B1 (en) | Josephson junction device of oxide superconductor and process for preparing the same | |
JPH04332180A (en) | Josephson element | |
JPH02107597A (en) | Method for bonding oxide superconductor to substrate | |
JP3167768B2 (en) | Grain boundary Josephson device and method of manufacturing the same | |
JPH05267736A (en) | Element having superconductive junction and manufacturing method thereof | |
JPH05267735A (en) | Superconductive junction and element and manufacturing method thereof | |
JPH04151883A (en) | Superconducting device | |
EP0790655B1 (en) | Superconducting field effect device having a superconducting channel and method for manufacturing the same | |
JPH0563247A (en) | Superconducting joint structure and production thereof | |
JPH0195576A (en) | Manufacture of thin-film superconducting device | |
JPH04152683A (en) | Superconducting element | |
JPH05243631A (en) | Manufacture of artificial grain boundary type josephson junction element | |
JPH05291632A (en) | Superconductive junction structure | |
JPH03296283A (en) | Josephson junction | |
JPS63306678A (en) | Josephson element |