JPH03242320A - Oxide superconductor thin film - Google Patents

Oxide superconductor thin film

Info

Publication number
JPH03242320A
JPH03242320A JP2035119A JP3511990A JPH03242320A JP H03242320 A JPH03242320 A JP H03242320A JP 2035119 A JP2035119 A JP 2035119A JP 3511990 A JP3511990 A JP 3511990A JP H03242320 A JPH03242320 A JP H03242320A
Authority
JP
Japan
Prior art keywords
thin film
substrate
plane
oxide superconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035119A
Other languages
Japanese (ja)
Inventor
Yoichi Enomoto
陽一 榎本
Shugo Kubo
衆伍 久保
Tsunekazu Iwata
岩田 恒和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2035119A priority Critical patent/JPH03242320A/en
Publication of JPH03242320A publication Critical patent/JPH03242320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To decrease the anisotropy of electrical conductivity of a superconductor single crystal thin film while maintaining the excellent characteristics of the single crystal thin film by alternately depositing two single crystal thin films of a highTc oxide superconductor having different crystal plane orientations to obtain a multi-layer film having orientation of Cu-O base plane varying with layers. CONSTITUTION:The objective oxide superconductor thin film 2 having a compositional formula of Ba2LnCu3O7-delta (Ln is Y, La, Er, Eu, Gd or Dy) and supported on a substrate 1 has a multi-layer structure composed of a layer 4 having (110) plane parallel to the substrate and a layer 5 having (103) plane parallel to the substrate. The substrate is e.g. the (110) plane of a SrTiO3 single crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超伝導体薄膜、さらに詳細には超伝導素
子を構成するのに用いる酸化物超伝導体薄膜に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxide superconductor thin film, and more particularly to an oxide superconductor thin film used to construct a superconducting element.

(従来の技術) 酸化物超伝導体は低キヤリア濃度であるため、結晶粒界
にポテンシャルバリアが形成され、超伝導電流応用を図
る場合、問題となっている。このなめ、結晶粒界を持た
ない単結晶薄膜の作製が試みられ、高い臨界電流密度の
実現に成功している。
(Prior Art) Since oxide superconductors have low carrier concentrations, potential barriers are formed at grain boundaries, which poses a problem when applying superconducting current. To address this problem, attempts have been made to fabricate single-crystal thin films without grain boundaries, and they have succeeded in achieving high critical current densities.

(発明が解決しようとする問題点) しかし、高い超伝導転移温度を持つ酸化物超伝導体Ba
2LnCu307−δ(Ln :Y、La、Er。
(Problem to be solved by the invention) However, the oxide superconductor Ba has a high superconducting transition temperature.
2LnCu307-δ (Ln: Y, La, Er.

E u、G d、D y )はいずれも層状の結晶構造
を持つため電気伝導特性に異方性が表れ、単結晶膜を用
いる場合にも、方位に注意する必要がある等の問題が生
じることになる。すなわち、超伝導電流はCu−0基底
面内をよく流れるのに対し、面間では低い値に抑えられ
てしまう、したがって、第1図に示すように、SrTi
O3単結晶基板(110)面上にBa2LnCu307
−δをエピタキシャル成長させると、電気伝導特性が基
板面内の角度に強く依存することになってしまう、さら
に、熱膨張係数にも異方性がありC軸方向で値が大きく
、膜厚の厚い試料ではC軸に垂直方向にクラックが発生
し問題であった。
Since E u , G d , D y ) all have layered crystal structures, anisotropy appears in their electrical conduction properties, and even when using a single crystal film, problems arise such as the need to pay attention to orientation. It turns out. In other words, while the superconducting current flows well within the basal plane of Cu-0, it is suppressed to a low value between the planes. Therefore, as shown in Fig. 1,
Ba2LnCu307 on the (110) surface of the O3 single crystal substrate
- When δ is grown epitaxially, the electrical conductivity properties strongly depend on the angle within the substrate plane.Furthermore, the coefficient of thermal expansion has anisotropy, and the value is large in the C-axis direction, resulting in a thick film. In the sample, cracks occurred in a direction perpendicular to the C axis, which was a problem.

一方、5rTi○3(IC)O)基板上にエピタキシャ
ル成長させると、第2図に示すように、Cu−0基底面
は基板面と平行となり面内の角度依存性はなくなる。し
かし、この場合には面に垂直方向に異方性が表れ、特に
超伝導のコヒーレンス長ζが面に垂直方向で短くなり、
膜上に堆積したものとの電気的な結合は弱い、実際、第
2図の構造を持つ薄膜を用いて、ジョセフソン接合を形
成しようとしても、短いこのため、超伝導電流を観測す
るのに今のところ成功していない。
On the other hand, when epitaxially grown on a 5rTi○3(IC)O) substrate, the Cu-0 basal plane becomes parallel to the substrate surface, eliminating in-plane angular dependence, as shown in FIG. However, in this case, anisotropy appears in the direction perpendicular to the plane, and in particular, the superconducting coherence length ζ becomes shorter in the direction perpendicular to the plane.
The electrical coupling with the material deposited on the film is weak.In fact, even if you try to form a Josephson junction using a thin film with the structure shown in Figure 2, it will be too short to observe superconducting currents. No success so far.

(発明の目的) 本発明の目的は、高Tc酸化物超伝導体単結晶薄膜に起
きる強い電気伝導特性の異方性を、単結晶薄膜の優れた
特性を保ったまま減少させる薄膜を提供することにある
(Objective of the Invention) An object of the present invention is to provide a thin film that reduces the strong anisotropy of electrical conductivity that occurs in a high Tc oxide superconductor single crystal thin film while maintaining the excellent properties of the single crystal thin film. There is a particular thing.

(課題を解決するための手段) このような目的を達成するために本発明は、高Tc酸化
物超伝導体の(110)面を持つ単結晶薄膜と(103
)面を持つ単結晶薄膜とを交互に堆積し多層化すること
により、各層のCu−0基底面の方位を変えたことをも
つとも主要な特徴とする。従来の技術とはCu−0基底
面の構成が異なる。
(Means for Solving the Problems) In order to achieve such objects, the present invention provides a single crystal thin film having a (110) plane and a (103) high Tc oxide superconductor.
The main feature is that the orientation of the Cu-0 basal plane of each layer is changed by alternately depositing single crystal thin films having ) planes to form a multilayer structure. The configuration of the Cu-0 basal plane is different from the conventional technology.

(作用) 第3図は本発明の詳細な説明する図であって、1は基板
、2は酸化物超伝導体薄膜、3はCu−〇基底面、4は
酸化物超伝導体薄膜2のうち(1] 0)配向した層(
(110)配向面層)で、5は酸化物超伝導体薄膜2の
うち(103)配向した層((103)配向面層)であ
る。
(Function) FIG. 3 is a diagram explaining the present invention in detail, in which 1 is a substrate, 2 is an oxide superconductor thin film, 3 is a Cu-〇 basal plane, and 4 is a diagram of the oxide superconductor thin film 2. Among them (1) 0) oriented layer (
(110) oriented surface layer), and 5 is a (103) oriented layer of the oxide superconductor thin film 2 ((103) oriented surface layer).

各層で、Cu−0基底面3の方向が異なり、電気伝導度
のよい方向が直交することになる。
In each layer, the direction of the Cu-0 basal plane 3 is different, and the directions with good electrical conductivity are orthogonal to each other.

またCu−0基底面3が基板1に立っているため、堆積
方向のコヒーレンス長は長く、したがって、(110)
配向面層4と(103)配向面層5の結合はよい。この
ような構成になっているから、基板1の[100]方向
に電流を流す場合には、(110)配向面層4のCu−
0面に沿って、また基板1の[110]方向に電流を流
す場合には(103)配向面層5のCu−0面に沿って
超伝導電流が流れることになる。この結果から明らかな
ように、従来の技術に比べ(110)基板上のエピタキ
シャル成長にもかかわらず面内の異方性が減少する。
Also, since the Cu-0 basal plane 3 stands on the substrate 1, the coherence length in the deposition direction is long, and therefore (110)
The bond between the oriented surface layer 4 and the (103) oriented surface layer 5 is good. With this configuration, when a current is passed in the [100] direction of the substrate 1, the Cu-
When a current flows along the 0 plane or in the [110] direction of the substrate 1, a superconducting current flows along the Cu-0 plane of the (103) orientation plane layer 5. As is clear from this result, in-plane anisotropy is reduced compared to the conventional technique despite epitaxial growth on a (110) substrate.

このような構造はBa2LnCu307−δの層状結晶
構造から可能となるものである。すなわち、Ba2Ln
Cu307−δは3つの単純ペロブスカイト(2個のB
 a Cu 3−sと1個のLnCu3−δ)の積み重
ねより構成され、A−サイトの原子の種類に注目せずに
その基本単位のみ注目すると、(110)配向層も(1
03)配向層も同じ結晶構造になり、異なる配向層でも
基本的には相互にエピタキシャル成長が可能になる。(
110)配向と(103)配向との差は、BaとLnの
配置の違いにより生じる結果であり、(110)配向は
Baの上にはBaがLnの上にはLnが選択成長したも
のであり、(103)配向はLnの上にBaが成長した
ものである。
Such a structure is possible from the layered crystal structure of Ba2LnCu307-δ. That is, Ba2Ln
Cu307-δ consists of three simple perovskites (two B
It is composed of a stack of a Cu 3-s and one LnCu3-δ), and if we focus on its basic unit without paying attention to the type of atoms at the A-site, the (110) orientation layer also becomes (1
03) The orientation layers also have the same crystal structure, and basically mutual epitaxial growth is possible even with different orientation layers. (
The difference between the 110) orientation and the (103) orientation is a result of the difference in the arrangement of Ba and Ln, and the (110) orientation is due to the selective growth of Ba on Ba and Ln on Ln. The (103) orientation is the result of Ba grown on Ln.

S r T i○3(110)基板上にエピタキシャル
成長させた薄膜では実際に両配向の共存がしばしば見ら
れる。
In fact, the coexistence of both orientations is often observed in thin films epitaxially grown on S r T i○3 (110) substrates.

ところでBa2LnCu307−δの結晶成長速度はa
−b面で大きい、この点に注目し、薄膜作製条件を制御
することにより、(110)配向と(103)配向を選
択することができ、この多層構造を実現することができ
た。
By the way, the crystal growth rate of Ba2LnCu307-δ is a
By paying attention to this point, which is larger in the -b plane, and controlling the thin film production conditions, it was possible to select the (110) orientation and the (103) orientation, and this multilayer structure could be realized.

以下に実施例によって本発明の詳細な説明する。The present invention will be explained in detail below by way of examples.

(実施例1)(スパッタ方による作製)第4図に、5r
Ti○3(110)面上に、Ba2YCu307−δを
エピタキシャル成長させた場合の、RFマグネトロンス
パッタの作製条件と堆積膜の配向方位の関係を示す、こ
の関係をもとに、初めに基板温度を600℃とし、RF
印加電圧1.8kVで(103)配向膜を作製し、その
後第2段階として基板温度を550”C1RF印加電圧
1.2kVで(110)配向膜を堆積することにより多
層膜を形成することができる。ただし、この条件はスパ
ッタ装置により変わる。したがって、初めに第4図の関
係を個々のスパッタ装置で求め、その条件に従い薄膜を
作製すればよい。
(Example 1) (Production by sputtering method) In Fig. 4, 5r
This shows the relationship between the RF magnetron sputtering conditions and the orientation of the deposited film when Ba2YCu307-δ is epitaxially grown on the Ti○3 (110) surface. ℃, RF
A multilayer film can be formed by producing a (103) oriented film at an applied voltage of 1.8 kV, and then depositing a (110) oriented film at a substrate temperature of 550" C1 at a RF applied voltage of 1.2 kV in the second step. However, these conditions vary depending on the sputtering apparatus. Therefore, the relationship shown in FIG. 4 may be determined for each sputtering apparatus first, and a thin film may be produced according to the conditions.

第5図(a)、(b)は各層の厚みを150nmとし、
2層に積層した場合の薄膜の特性を示す。
In FIGS. 5(a) and 5(b), the thickness of each layer is 150 nm,
The characteristics of the thin film when laminated in two layers are shown.

体積固有抵抗および超伝導臨界電流の温度依存性は[1
10]および[100]でほとんど変わらず、また単結
晶薄膜に近い特性が実現していることがわかる。
The temperature dependence of volume resistivity and superconducting critical current is [1
10] and [100], there is almost no difference, and it can be seen that characteristics close to those of a single crystal thin film are realized.

(実施例2)(スパッタ法と真空蒸着法の組み合わせに
よる方法) 真空蒸着法の場合、スパッタ法に比べ薄膜の堆積速度を
速くすることができる。このため、5rTio3(11
0)基板上には(103)配向膜が作製できる。したが
って、第1段階として基板温度600℃で真空蒸着法に
より(103)配向膜を作製し、その後第2段階として
マグネトロンスパッタ法で基板温度550℃、RF印加
電圧1.2kVで(110)配向膜を堆積すると、本発
明の多層膜を形成することができる。なお2層以上の多
層膜はこの操作を繰り返せばよい、第6図にこの方法で
作製した薄膜の体積固有抵抗の温度依存を示す。この結
果からも抵抗の異方性が小さくなっていることがわかる
(Example 2) (Method using a combination of sputtering method and vacuum evaporation method) In the case of the vacuum evaporation method, the deposition rate of a thin film can be made faster than that of the sputtering method. Therefore, 5rTio3(11
0) A (103) alignment film can be formed on the substrate. Therefore, in the first step, a (103) oriented film was prepared by vacuum evaporation at a substrate temperature of 600°C, and then in the second step, a (110) oriented film was formed by magnetron sputtering at a substrate temperature of 550°C and an RF applied voltage of 1.2 kV. When deposited, the multilayer film of the present invention can be formed. Note that for a multilayer film of two or more layers, this operation may be repeated. FIG. 6 shows the temperature dependence of the volume resistivity of a thin film produced by this method. This result also shows that the anisotropy of resistance is reduced.

(発明の効果) 以上説明したように本発明は、異方性の小さいしかも単
結晶に近い酸化物超伝導体薄膜Ba2LnCu3C)7
−δ (L n : Y、L a、E r、E u、G d、
D y )が5rTi03基板(110)面上に形成で
きる。
(Effects of the Invention) As explained above, the present invention provides an oxide superconductor thin film Ba2LnCu3C)7 with small anisotropy and close to a single crystal.
-δ (Ln: Y, La, Er, Eu, Gd,
D y ) can be formed on the (110) surface of the 5rTi03 substrate.

したがって、超伝導電流応用あるいは電極にこの酸化物
超伝導薄膜を用いる場合、面内は等方の特性をもち、し
かもCu−0基底面が基板に垂直方向に格子状に組み上
げられるため磁束量子の運動も小さくなるという利点が
ある。また基板にコヒーレンス長が長く、接合作製等の
薄膜上に上部電極を形成する場合に10両者の結合が強
くなるという利点がある。
Therefore, when this oxide superconducting thin film is used for superconducting current applications or electrodes, it has in-plane isotropic properties, and the Cu-0 basal plane is assembled in a lattice shape perpendicular to the substrate, so the magnetic flux quantum It also has the advantage of requiring less movement. Further, since the substrate has a long coherence length, there is an advantage that when an upper electrode is formed on a thin film for bonding, etc., the bond between the two becomes stronger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSrTiO3単結晶基板(110)面上にBa
2YCu307−δをエピタキシャル成長させた場合の
Cu−0基底面の構成を示す図、第2図は5rTi03
(100)基板上にエピタキシャル成長させた場合のC
u−0基底面に示す図、第3図は本発明の詳細な説明す
る図であって、基板に平行に(110)面を持つ層と(
103)面を持つ層とを交互にエピタキシャル成長させ
た多層構造の場合のCu−0基底面に示す図、第4図は
5rTi03基板(110)面上に、Ba2YCu30
7−δをエピタキシャル成長させた場合の、RFマグネ
トロンスパッタの作製条件と堆積膜の配向方位の関係を
示す図、□第5図はRFマグネトロンスパッタの作製条
件を各層で変えて作製した場合の薄膜の特性を示す図、
第6図は真空蒸着法とスパッタ法を交互に使用し堆積し
た薄膜の体積固有抵抗の温度依存性を示す図である。 1・・・基板、2・・・酸化物超伝導体薄膜、3・・・
Cu−0基底面、4・・−(110)配向面層、5・・
・ (103)配向面層。
Figure 1 shows Ba deposited on the (110) surface of a SrTiO3 single crystal substrate.
A diagram showing the structure of the Cu-0 basal plane when 2YCu307-δ is epitaxially grown. Figure 2 is 5rTi03.
(100) C when epitaxially grown on a substrate
FIG. 3, which is a diagram showing the u-0 base plane, is a diagram explaining the present invention in detail, and shows a layer having a (110) plane parallel to the substrate and
Figure 4 shows a Cu-0 basal plane in the case of a multilayer structure in which layers with a 103) plane are epitaxially grown alternately.
Figure 5 shows the relationship between the RF magnetron sputtering conditions and the orientation of the deposited film when epitaxially growing 7-δ. A diagram showing the characteristics,
FIG. 6 is a diagram showing the temperature dependence of the volume resistivity of thin films deposited by alternately using the vacuum evaporation method and the sputtering method. 1... Substrate, 2... Oxide superconductor thin film, 3...
Cu-0 basal plane, 4...-(110) oriented plane layer, 5...
- (103) Oriented surface layer.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に設けられた、組成式: Ba_2LnCu_3O_7_−_δ (Ln:Y、La、Er、Eu、Gd、Dy)の酸化物
超伝導体薄膜において、前記薄膜は前記基板に平行に(
110)面を持つ層と(103)面を持つ層との多層構
造であることを特徴とする酸化物超伝導体薄膜。
(1) In an oxide superconductor thin film with the composition formula: Ba_2LnCu_3O_7_-_δ (Ln: Y, La, Er, Eu, Gd, Dy) provided on the substrate, the thin film is parallel to the substrate (
An oxide superconductor thin film characterized by having a multilayer structure including a layer having a 110) plane and a layer having a (103) plane.
(2)前記基板はSrTiO_3単結晶の(110)面
であることを特徴とする特許請求の範囲第1項記載の酸
化物超伝導体薄膜。
(2) The oxide superconductor thin film according to claim 1, wherein the substrate is a (110) plane of SrTiO_3 single crystal.
JP2035119A 1990-02-16 1990-02-16 Oxide superconductor thin film Pending JPH03242320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035119A JPH03242320A (en) 1990-02-16 1990-02-16 Oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035119A JPH03242320A (en) 1990-02-16 1990-02-16 Oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH03242320A true JPH03242320A (en) 1991-10-29

Family

ID=12433043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035119A Pending JPH03242320A (en) 1990-02-16 1990-02-16 Oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH03242320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023896A2 (en) * 1995-12-22 1997-07-03 Forschungszentrum Jülich GmbH Layer sequence with at least one epitaxial, non-c-axis oriented htsc thin film or with a layer of a structure crystallographically comparable to htsc
US6966697B2 (en) 2002-02-22 2005-11-22 Pactiv Corporation Trash bags with narrowing seals to facilitate gripping
CN110265191A (en) * 2019-06-14 2019-09-20 清华大学 SrTiO3Polycrystalline circle substrate and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023896A2 (en) * 1995-12-22 1997-07-03 Forschungszentrum Jülich GmbH Layer sequence with at least one epitaxial, non-c-axis oriented htsc thin film or with a layer of a structure crystallographically comparable to htsc
WO1997023896A3 (en) * 1995-12-22 1997-08-28 Forschungszentrum Juelich Gmbh Layer sequence with at least one epitaxial, non-c-axis oriented htsc thin film or with a layer of a structure crystallographically comparable to htsc
US6156706A (en) * 1995-12-22 2000-12-05 Forschungszentrum Julich Gmbh Layer structure with an epitaxial, non-c-axis oriented HTSC thin film
US6966697B2 (en) 2002-02-22 2005-11-22 Pactiv Corporation Trash bags with narrowing seals to facilitate gripping
US7344309B2 (en) 2002-02-22 2008-03-18 Pactiv Corporation Trash bags with narrowing seals to facilitate gripping
CN110265191A (en) * 2019-06-14 2019-09-20 清华大学 SrTiO3Polycrystalline circle substrate and preparation method thereof
CN110265191B (en) * 2019-06-14 2021-09-14 清华大学 SrTiO with atomically flat surface3Multi-crystal-boundary substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
KR910002311B1 (en) A superconductor device
JPH05894A (en) Compound oxide superconducting thin film
JPH03259576A (en) Josephson junction
JPH03242320A (en) Oxide superconductor thin film
JPH03218686A (en) Josephson element
JP2002009353A (en) Bicrystal oxide superconducting film and high temperature superconducting josephson junction element and superconducting quantum inteference element using it
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
JPH07309700A (en) Oxide thin film, its production and superconducting element using the same
JPH02391A (en) Superconductive field-effect transistor
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH01166419A (en) Manufacture of superconductive membrane
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01101677A (en) Electronic device
JP2883493B2 (en) Superconducting element
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2698858B2 (en) Method for forming oxide superconductor
JP2931779B2 (en) Superconducting element
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2809557B2 (en) Copper oxide material
JPH01280379A (en) Semiconductor substrate having superconductor layer
JP2544760B2 (en) Preparation method of superconducting thin film
JPH01280375A (en) Semiconductor substrate having superconductor layer
JPH02199056A (en) Bi-sr-ca-cu multiple oxide superconductor
JPH01280377A (en) Semiconductor substrate having superconductor layer