JPH0575171A - Superconducting joint - Google Patents

Superconducting joint

Info

Publication number
JPH0575171A
JPH0575171A JP3265161A JP26516191A JPH0575171A JP H0575171 A JPH0575171 A JP H0575171A JP 3265161 A JP3265161 A JP 3265161A JP 26516191 A JP26516191 A JP 26516191A JP H0575171 A JPH0575171 A JP H0575171A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
superconductor
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3265161A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3265161A priority Critical patent/JPH0575171A/en
Priority to US07/946,086 priority patent/US5430011A/en
Priority to CA002078540A priority patent/CA2078540A1/en
Priority to EP92402547A priority patent/EP0533568A1/en
Publication of JPH0575171A publication Critical patent/JPH0575171A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/642

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make the thickness of a non-superconducting layer a proper value by constituting the non-superconducting layer with the oxide having a crystal structure similar to that of the oxide superconductor of a superconducting layer so as to make the unit grid of the oxide superconductor crystal which contacts the oxide of a thin superconducting layer superconductive, relating to a tunnel type superconducting joint. CONSTITUTION:The first thin oxide superconducting film 1, a thin non- superconductor film 3 and the second thin oxide superconducting film 2 are formed successively on a substrate 4. The thin non-superconducting film 3 is constituted with the oxide having the crystal structure similar to that of the oxide superconductor that constitutes the thin oxide superconducting films 1 and 2. In this superconducting joint, both a unit grid 11 of the top layer crystal of the oxide superconductor that constitutes the thin oxide superconducting film 1 and a unit grid 21 of the bottom layer crystal of the oxide superconductor that constitutes the thin oxide superconducting film 2 are superconductive. So, the thickness of the thin non-superconductor film 3 is just the thickness of the non-superconducting layer in a superconducting joint.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導接合に関する。
より詳細には、酸化物超電導体を用いた新規な超電導接
合に関する。
FIELD OF THE INVENTION The present invention relates to superconducting junctions.
More specifically, it relates to a novel superconducting junction using an oxide superconductor.

【0002】[0002]

【従来の技術】ジョセフソン接合に代表される超電導接
合を実現する構成は各種あるが、最も好ましい構造は、
一対の超電導層で薄い非超電導層をはさんだトンネル型
の接合である。一般に、このような超電導接合は非常に
微細な構成であり、上記の一対の超電導層および非超電
導層は、いわゆる薄膜で構成されている。
2. Description of the Related Art There are various structures for realizing a superconducting junction represented by Josephson junction, but the most preferable structure is
It is a tunnel type junction with a pair of superconducting layers sandwiching a thin non-superconducting layer. Generally, such a superconducting junction has a very fine structure, and the pair of superconducting layers and non-superconducting layers are so-called thin films.

【0003】例えば、超電導体に酸化物超電導体を使用
してトンネル型超電導接合を実現する場合には、基板上
に第1の酸化物超電導薄膜、非超電導体薄膜および第2
の酸化物超電導薄膜を順に積層する。
For example, when an oxide superconductor is used as a superconductor to realize a tunnel superconducting junction, a first oxide superconducting thin film, a non-superconducting thin film and a second superconducting thin film are formed on a substrate.
The oxide superconducting thin film of 1 is sequentially laminated.

【0004】非超電導体には、用途により例えばMgO等
の絶縁体、Si等の半導体、Au等の金属が使用され、それ
ぞれ異なる特性の超電導接合が構成される。
For the non-superconductor, an insulator such as MgO, a semiconductor such as Si, or a metal such as Au is used depending on the application, and superconducting junctions having different characteristics are formed.

【0005】トンネル型超電導接合における非超電導層
の厚さは、使用する超電導体のコヒーレンス長によって
決まる。酸化物超電導体は、コヒーレンス長が非常に短
いため、酸化物超電導体を使用したトンネル型超電導接
合においては、非超電導層の厚さは数nm程度にしなけれ
ばならない。
The thickness of the non-superconducting layer in the tunnel type superconducting junction is determined by the coherence length of the superconductor used. Since the oxide superconductor has a very short coherence length, the thickness of the non-superconducting layer must be about several nm in the tunnel type superconducting junction using the oxide superconductor.

【0006】一方、超電導接合の動作特性を考慮する
と、超電導接合を構成する各層の結晶性がよく、単結晶
または単結晶にごく近い配向性を有する多結晶でなけれ
ばならない。
On the other hand, in consideration of the operating characteristics of the superconducting junction, each layer constituting the superconducting junction must have good crystallinity and be a single crystal or a polycrystal having an orientation very close to that of a single crystal.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
酸化物超電導体を使用した超電導接合において、非超電
導層を、酸化物超電導体のコヒーレンス長程度に薄く形
成しても超電導接合が動作しないことがあった。
However, in the conventional superconducting junction using the oxide superconductor, even if the non-superconducting layer is formed as thin as the coherence length of the oxide superconductor, the superconducting junction does not operate. there were.

【0008】これは、非超電導層の実質的な厚さが、形
成した非超電導体の層の厚さよりも大きくなっているこ
とに起因するものであり、酸化物超電導体に特有の現象
である。図2に、酸化物超電導体を使用した従来の超電
導接合の断面図を示す。図2は、基板4上に形成された
第1の酸化物超電導薄膜1と、酸化物超電導薄膜1上に
形成された非超電導体薄膜3と、非超電導体薄膜3上に
形成された第2の酸化物超電導薄膜2とを具備する。酸
化物超電導薄膜1および2には、一般にY1Ba2Cu37-X
酸化物超電導薄膜等が使用され、超電導接合がトンネル
型ジョセフソン接合の場合には、非超電導体薄膜3には
MgO、SrTiO3 、YSZ等の絶縁体が使用される。
This is because the substantial thickness of the non-superconducting layer is larger than the thickness of the formed non-superconducting layer, which is a phenomenon peculiar to the oxide superconductor. .. FIG. 2 shows a cross-sectional view of a conventional superconducting junction using an oxide superconductor. FIG. 2 shows a first oxide superconducting thin film 1 formed on a substrate 4, a non-superconductor thin film 3 formed on the oxide superconducting thin film 1, and a second superconducting thin film formed on the non-superconductor thin film 3. And the oxide superconducting thin film 2. Generally, Y 1 Ba 2 Cu 3 O 7-X is used for the oxide superconducting thin films 1 and 2.
When an oxide superconducting thin film or the like is used and the superconducting junction is a tunnel type Josephson junction, the non-superconductor thin film 3 is
Insulators such as MgO, SrTiO 3 , YSZ are used.

【0009】図2に示した従来の超電導接合では、酸化
物超電導薄膜1を構成する酸化物超電導体結晶の最上層
で非超電導薄膜3に接している単位格子11および酸化物
超電導薄膜2を構成する酸化物超電導体結晶の最下層で
非超電導薄膜3に接している単位格子21が、超電導性を
示さない。従って、非超電導層の実質的な厚さが、非超
電導体薄膜3の厚さに単位格子11および21の厚さを加え
たものになる。
In the conventional superconducting junction shown in FIG. 2, the unit cell 11 in contact with the non-superconducting thin film 3 and the oxide superconducting thin film 2 are formed in the uppermost layer of the oxide superconducting crystal forming the oxide superconducting thin film 1. The unit cell 21 which is in contact with the non-superconducting thin film 3 in the lowermost layer of the oxide superconductor crystal does not exhibit superconductivity. Therefore, the substantial thickness of the non-superconducting layer is the thickness of the non-superconductor thin film 3 plus the thickness of the unit cells 11 and 21.

【0010】上述のように酸化物超電導体のコヒーレン
ス長は非常に短く、酸化物超電導体結晶の単位格子の厚
さに相当する長さも無視し得ない。従って、上記従来の
超電導接合で、酸化物超電導薄膜1および2の間の非超
電導体薄膜3を超電導接合に適していると考えられる厚
さに形成すると、実際の非超電導層の厚さが大きくなり
過ぎて超電導接合が動作しないことがある。しかしなが
ら、非超電導体薄膜3を、結晶性を維持したまま、上記
の超電導接合に適していると考えられる厚さよりさらに
薄く形成することは非常に難しい。
As described above, the coherence length of the oxide superconductor is very short, and the length corresponding to the thickness of the unit cell of the oxide superconductor crystal cannot be ignored. Therefore, in the conventional superconducting junction, when the non-superconducting thin film 3 between the oxide superconducting thin films 1 and 2 is formed to have a thickness considered to be suitable for superconducting joining, the actual thickness of the non-superconducting layer becomes large. It may happen that the superconducting junction does not work. However, it is very difficult to form the non-superconductor thin film 3 while maintaining its crystallinity to a thickness thinner than the thickness considered to be suitable for the above superconducting bonding.

【0011】そこで本発明の目的は、上記従来技術の問
題点を解決した超電導接合を提供することにある。
Therefore, an object of the present invention is to provide a superconducting junction that solves the above-mentioned problems of the prior art.

【0012】[0012]

【課題を解決するための手段】本発明に従うと、酸化物
超電導体で構成された第1の超電導層と、該超電導層上
に形成された前記酸化物超電導体と類似の結晶構造を有
する酸化物で構成された非超電導層と、該非超電導層上
に形成された前記第1の超電導層と等しい構成の第2の
超電導層とを具備することを特徴とする超電導接合が提
供される。
According to the present invention, a first superconducting layer made of an oxide superconductor and an oxide having a crystal structure similar to that of the oxide superconductor formed on the superconducting layer. There is provided a superconducting junction comprising a non-superconducting layer made of a material and a second superconducting layer formed on the non-superconducting layer and having the same structure as the first superconducting layer.

【0013】[0013]

【作 用】本発明の超電導接合は、超電導層が酸化物超
電導体で構成され、非超電導層が超電導層の酸化物超電
導体と類似の結晶構造を有する酸化物で構成されている
ところにその主要な特徴がある。本発明の超電導接合で
は、酸化物超電導体に類似の結晶構造を有する酸化物が
非超電導層に使用されているので、非超電導層の酸化物
に接している酸化物超電導体結晶の単位格子も超電導性
を示す。従って、非超電導層の厚さを適正な値にするこ
とができる。
[Operation] In the superconducting junction of the present invention, the superconducting layer is made of an oxide superconductor, and the non-superconducting layer is made of an oxide having a crystal structure similar to that of the oxide superconductor of the superconducting layer. It has major characteristics. In the superconducting junction of the present invention, since an oxide having a crystal structure similar to that of the oxide superconductor is used for the non-superconducting layer, the unit cell of the oxide superconductor crystal in contact with the oxide of the non-superconducting layer is also included. It exhibits superconductivity. Therefore, the thickness of the non-superconducting layer can be set to an appropriate value.

【0014】図3に代表的な酸化物超電導体であるY1B
a2Cu37-X酸化物超電導体結晶の構造図を示す。本発明
者等の低速イオン散乱分析(ISS)法による分析によ
れば、酸化物超電導薄膜の表面には、図3のAで示すCu
−O面が露出している。酸化物超電導体では、酸化物超
電導体結晶中のCu−O面に超電導電流が流れる。従っ
て、酸化物超電導体を使用した超電導接合では、酸化物
超電導体の最上層の結晶の単位格子のCu−O面は、酸化
物超電導体と非超電導体の界面にあって、酸化物超電導
体結晶中ではないので、このCu−O面には超電導電流が
流れない。
FIG. 3 shows a typical oxide superconductor, Y 1 B.
shows a structural diagram of a 2 Cu 3 O 7-X oxide superconductor crystals. According to the analysis by the slow ion scattering analysis (ISS) method by the present inventors, the surface of the oxide superconducting thin film has a Cu content shown by A in FIG.
-O surface is exposed. In the oxide superconductor, the superconducting current flows on the Cu-O plane in the oxide superconductor crystal. Therefore, in the superconducting junction using the oxide superconductor, the Cu-O plane of the unit cell of the crystal of the uppermost layer of the oxide superconductor is at the interface between the oxide superconductor and the non-superconductor, Since it is not in the crystal, no superconducting current flows on this Cu-O surface.

【0015】本発明の超電導接合では、非超電導層が酸
化物超電導体と類似の結晶構造を有するので、酸化物超
電導体の最上層の結晶のCu−O面も酸化物超電導体結晶
中にあるのと同じ状態になる。従って、酸化物超電導体
の最上層の結晶のCu−O面にも超電導電流が流れる。本
発明の超電導接合の非超電導層に使用する酸化物として
は、Pr1Ba2Cu37-y等が好ましい。非超電導層は、Pr1B
a2Cu37-y等の酸化物を3〜5単位格子分MBE法等で
積層して形成することが好ましい。
In the superconducting junction of the present invention, since the non-superconducting layer has a crystal structure similar to that of the oxide superconductor, the Cu-O plane of the uppermost crystal of the oxide superconductor is also present in the oxide superconductor crystal. It will be in the same state as. Therefore, the superconducting current also flows on the Cu-O plane of the uppermost crystal of the oxide superconductor. The oxide used for the non-superconducting layer of the superconducting junction of the present invention is preferably Pr 1 Ba 2 Cu 3 O 7-y . The non-superconducting layer is Pr 1 B
It is preferable to form an oxide such as a 2 Cu 3 O 7-y by stacking 3 to 5 unit lattices by the MBE method or the like.

【0016】以下、本発明を実施例により、さらに詳し
く説明するが、以下の開示は本発明の単なる実施例に過
ぎず本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0017】[0017]

【実施例】図1に、本発明の超電導接合の一例の断面図
を示す。図1の超電導接合は、基板4上に形成された第
1の酸化物超電導薄膜1と、酸化物超電導薄膜1上に形
成された非超電導体薄膜3と、非超電導体薄膜3上に形
成された第2の酸化物超電導薄膜2とを具備する。酸化
物超電導薄膜1および2は、同一の酸化物超電導体で構
成された厚さ約200 〜300 nmの薄膜である。非超電導体
薄膜3は、酸化物超電導薄膜1および2を構成している
酸化物超電導体と類似の結晶構造を有する酸化物で構成
された厚さ約5nmの薄膜である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing an example of the superconducting junction of the present invention. The superconducting junction of FIG. 1 is formed on the first oxide superconducting thin film 1 formed on the substrate 4, the non-superconductor thin film 3 formed on the oxide superconducting thin film 1, and the non-superconductor thin film 3. And a second oxide superconducting thin film 2. The oxide superconducting thin films 1 and 2 are thin films composed of the same oxide superconductor and having a thickness of about 200 to 300 nm. The non-superconductor thin film 3 is a thin film having a thickness of about 5 nm made of an oxide having a crystal structure similar to that of the oxide superconductor forming the oxide superconducting thin films 1 and 2.

【0018】本発明の超電導接合では、酸化物超電導薄
膜1を構成する酸化物超電導体の最上層の結晶の単位格
子11および酸化物超電導薄膜2を構成する酸化物超電導
体の最下層の結晶の単位格子21も超電導性を示す。従っ
て、非超電導体薄膜3の厚さがそのまま超電導接合にお
ける非超電導層の厚さとなっている。
In the superconducting junction of the present invention, the unit cell 11 of the crystal of the uppermost layer of the oxide superconductor constituting the oxide superconducting thin film 1 and the crystal of the lowermost layer of the oxide superconductor constituting the oxide superconducting thin film 2 are formed. The unit cell 21 also exhibits superconductivity. Therefore, the thickness of the non-superconducting thin film 3 is the same as the thickness of the non-superconducting layer in the superconducting junction.

【0019】図1に示した構成の本発明の超電導接合を
作製した。まず、MgO基板の(100)面上に、MBE
法により、第1の酸化物超電導薄膜1となるY1Ba2Cu3
7-X超電導薄膜を形成した。主な成膜条件を以下に示
す。 基板温度 700℃ 圧力 5×10-5Torr 膜厚 300nm 次に、Y蒸発源をPr蒸発源に切り換え、この酸化物超電
導薄膜1上に連続して非超電導体薄膜3となるPr1Ba2Cu
37-y薄膜をMBE法で形成した。主な成膜条件を以下
に示す。 基板温度 650℃ 圧力 5×10-5Torr 膜厚 5nm(4単位格子) Pr蒸発源をY蒸発源に切り換え、上記の如く形成された
非超電導体薄膜3上に第2の酸化物超電導薄膜2となる
1Ba2Cu37-X超電導薄膜をやはりMBE法で形成し
た。成膜条件は、第1の超電導層1を形成した条件と等
しくした。上記のように作製した本発明の超電導接合に
端子を取付けて特性を測定した。85Kに冷却し、周波数
15GHzのマイクロ波を印加したところ、シャピロステッ
プが観測され、ジョセフソン結合が実現していることが
確認された。
A superconducting junction of the present invention having the structure shown in FIG. 1 was produced. First, on the (100) surface of the MgO substrate, MBE
Method to form the first oxide superconducting thin film 1 Y 1 Ba 2 Cu 3
An O 7-X superconducting thin film was formed. The main film forming conditions are shown below. Substrate temperature 700 ° C Pressure 5 × 10 -5 Torr Film thickness 300 nm Next, the Y evaporation source is switched to the Pr evaporation source, and the non-superconductor thin film 3 is continuously formed on this oxide superconducting thin film 1 Pr 1 Ba 2 Cu
A 3 O 7-y thin film was formed by the MBE method. The main film forming conditions are shown below. Substrate temperature 650 ° C. Pressure 5 × 10 −5 Torr Film thickness 5 nm (4 unit lattice) The Pr evaporation source is switched to the Y evaporation source, and the second oxide superconducting thin film 2 is formed on the non-superconductor thin film 3 formed as described above. A Y 1 Ba 2 Cu 3 O 7-X superconducting thin film, which will be described below, was also formed by the MBE method. The film forming conditions were the same as the conditions under which the first superconducting layer 1 was formed. The terminal was attached to the superconducting junction of the present invention produced as described above, and the characteristics were measured. Cooled to 85K, frequency
When a 15 GHz microwave was applied, a Shapiro step was observed, confirming that Josephson coupling was realized.

【0020】[0020]

【発明の効果】以上説明したように、本発明に従うと、
新規な構成のトンネル型の超電導接合を酸化物超電導体
により実現できる。本発明の超電導接合は、超電導層、
非超電導層が互いに類似した結晶構造の酸化物で構成さ
れているので、超電導層、非超電導層間の界面の酸化物
超電導体が超電導性を失うことがなく、特性が優れてい
る。本発明により、超電導技術の電子デバイスへの応用
がさらに促進される。
As described above, according to the present invention,
A tunnel-type superconducting junction with a new structure can be realized by using an oxide superconductor. The superconducting junction of the present invention is a superconducting layer,
Since the non-superconducting layer is composed of oxides having crystal structures similar to each other, the oxide superconductor at the interface between the superconducting layer and the non-superconducting layer does not lose the superconducting property and has excellent characteristics. The present invention further facilitates the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導接合の断面図である。FIG. 1 is a sectional view of a superconducting junction of the present invention.

【図2】従来の超電導接合の断面図である。FIG. 2 is a cross-sectional view of a conventional superconducting junction.

【図3】Y1Ba2Cu37-X酸化物超電導体結晶の構造図で
ある。
FIG. 3 is a structural diagram of a Y 1 Ba 2 Cu 3 O 7-X oxide superconductor crystal.

【符号の説明】[Explanation of symbols]

1、2 酸化物超電導薄膜 3 非超電導体薄膜 4 基板 1, 2 Oxide superconducting thin film 3 Non-superconducting thin film 4 Substrate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月7日[Submission date] July 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】 図3に代表的な酸化物超電導体であるY
1Ba2Cu37-X酸化物超電導体結晶の構造図を示す。本発
明者らの低速イオン散乱分析(ISS)法による分析に
よれば、酸化物超電導薄膜の表面には、図3のAで示す
Cu−Oチェーンが露出している。酸化物超電導体では、
酸化物超電導体結晶中のCu−O面に超電導電流が流れ
る。従って、酸化物超電導体を使用した超電導接合で
は、酸化物超電導体の最上層の結晶の単位格子のCu−O
面は、酸化物超電導体と非超電導体の界面にあって、酸
化物超電導体結晶中ではないので、このCu−O面には超
電導電流が流れない。
FIG. 3 shows a typical oxide superconductor, Y
1 shows a structural diagram of a 1 Ba 2 Cu 3 O 7-X oxide superconductor crystal. According to the analysis by the slow ion scattering analysis (ISS) method of the present inventors, the surface of the oxide superconducting thin film is shown by A in FIG.
The Cu-O chain is exposed. In oxide superconductors,
A superconducting current flows on the Cu-O plane in the oxide superconductor crystal. Therefore, in the superconducting junction using the oxide superconductor, Cu--O of the unit cell of the crystal of the uppermost layer of the oxide superconductor is used.
Since the surface is located at the interface between the oxide superconductor and the non-superconductor and not in the oxide superconductor crystal, the superconducting current does not flow in this Cu-O surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体で構成された第1の超電
導層と、該超電導層上に形成された前記酸化物超電導体
と類似の結晶構造を有する酸化物で構成された非超電導
層と、該非超電導層上に形成された前記第1の超電導層
と等しい構成の第2の超電導層とを具備することを特徴
とする超電導接合。
1. A first superconducting layer made of an oxide superconductor, and a non-superconducting layer made of an oxide having a crystal structure similar to that of the oxide superconductor formed on the superconducting layer. And a second superconducting layer having the same structure as the first superconducting layer formed on the non-superconducting layer.
JP3265161A 1991-09-17 1991-09-17 Superconducting joint Pending JPH0575171A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3265161A JPH0575171A (en) 1991-09-17 1991-09-17 Superconducting joint
US07/946,086 US5430011A (en) 1991-09-17 1992-09-17 Crystal compensated superconducting thin film formed of oxide superconductor material
CA002078540A CA2078540A1 (en) 1991-09-17 1992-09-17 Superconducting thin film formed of oxide superconductor material, superconducting device utilizing the superconducting thin film
EP92402547A EP0533568A1 (en) 1991-09-17 1992-09-17 Superconducting thin film formed of oxide superconductor material, superconducting device utilizing the superconducting thin film and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265161A JPH0575171A (en) 1991-09-17 1991-09-17 Superconducting joint

Publications (1)

Publication Number Publication Date
JPH0575171A true JPH0575171A (en) 1993-03-26

Family

ID=17413466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265161A Pending JPH0575171A (en) 1991-09-17 1991-09-17 Superconducting joint

Country Status (1)

Country Link
JP (1) JPH0575171A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413777A (en) * 1987-07-07 1989-01-18 Sharp Kk Josephson element
JPH01272171A (en) * 1988-02-02 1989-10-31 Thomson Csf Element having thin layer made of superconducting material
JPH0221676A (en) * 1988-07-08 1990-01-24 Semiconductor Energy Lab Co Ltd Tunnel junction between superconductors
JPH0278282A (en) * 1988-09-14 1990-03-19 Nippon Telegr & Teleph Corp <Ntt> Josephson element
JPH02125672A (en) * 1988-11-04 1990-05-14 Sanyo Electric Co Ltd Josephson junction element and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413777A (en) * 1987-07-07 1989-01-18 Sharp Kk Josephson element
JPH01272171A (en) * 1988-02-02 1989-10-31 Thomson Csf Element having thin layer made of superconducting material
JPH0221676A (en) * 1988-07-08 1990-01-24 Semiconductor Energy Lab Co Ltd Tunnel junction between superconductors
JPH0278282A (en) * 1988-09-14 1990-03-19 Nippon Telegr & Teleph Corp <Ntt> Josephson element
JPH02125672A (en) * 1988-11-04 1990-05-14 Sanyo Electric Co Ltd Josephson junction element and manufacture thereof

Similar Documents

Publication Publication Date Title
US5430011A (en) Crystal compensated superconducting thin film formed of oxide superconductor material
EP0390704A2 (en) Tunnel junction type Josephson device and method for fabricating the same
US5468973A (en) Stacked Josephson junction device composed of oxide superconductor material
JPH05335638A (en) Josephson junction structure body and manufacture thereof
US5422337A (en) Step-edged grain boundary Josephson junction with 5 to 30 degrees inclined angle
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
US5430013A (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
US5612290A (en) Josephson junction device formed of oxide superconductor
EP0476687B1 (en) Superconductor junction structure and process for fabricating the same
JPH0575171A (en) Superconducting joint
US5247189A (en) Superconducting device composed of oxide superconductor material
EP0476617B1 (en) Superconductor junction structure and process for fabricating the same
EP0494830A2 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP2679610B2 (en) Superconducting element manufacturing method
JP3155641B2 (en) Superconducting tunnel junction device
JPH05291632A (en) Superconductive junction structure
JPH0555648A (en) Superconducting element
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
JP2708673B2 (en) Method of manufacturing superconducting thin film vertical junction device
JP2691065B2 (en) Superconducting element and fabrication method
JPH04127484A (en) Superconducting junction
JPH0289380A (en) Josephson junction element
JPH1126822A (en) High temperature superconduction josephson element and its manufacture
JPH05160448A (en) Abrupt josephson device
JPH04368185A (en) Tunnel junction element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971209