JPH04147681A - Supedconducting junction - Google Patents

Supedconducting junction

Info

Publication number
JPH04147681A
JPH04147681A JP2272885A JP27288590A JPH04147681A JP H04147681 A JPH04147681 A JP H04147681A JP 2272885 A JP2272885 A JP 2272885A JP 27288590 A JP27288590 A JP 27288590A JP H04147681 A JPH04147681 A JP H04147681A
Authority
JP
Japan
Prior art keywords
protrusion
substrate
thin film
superconducting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2272885A
Other languages
Japanese (ja)
Inventor
Ryuki Nagaishi
竜起 永石
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2272885A priority Critical patent/JPH04147681A/en
Publication of JPH04147681A publication Critical patent/JPH04147681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To manufacture a superconducting junction of stable performance with good reproducibility by constituting the junction from the thin film of an oxide superconductor, which is formed on a substrate having a square pillar-shaped protrusion with the bottom face perpendicular to a film-forming surface and one side face almost perpendicular to the film-forming surface in the manner of crossing the protrusion and of which the part on the side face of the protrusion almost perpendicular to the film-forming surface is thin. CONSTITUTION:In the title superconducting junction, e.g. a substrate surface is first etched by Ar ion milling so that a square pillar-shaped protrusion is formed on a substrate 4. Then, the substrate 4 with the protrusron 40 formed thereon is heated to 590-650 deg.C so that there is formed the thin film 1 of an oxide superconductor in the shape of crossing the protrusion 40 of the substrate 4. When the oxide superconductive thin film 1 is formed at the substrate temperature, there is formed an oxide superconductive thin film 1 composed of c-axis oriented oxide superconductor crystal. The cross section of the protrusion 40 is rectangular and its side face 41 is perpendicular to the film-forming surface of the substrate 4. Also, the protrusion 40 is 150nm in height and 10mum in maximum width. The oxide superconductive thin film 1 is divided into superconductive layers 11 and 12 of about 300nm thickness and a weakly combined part 13 on the side face 41 of the protrusion 40. The thickness of the weakly combined part 13 is about 10nm.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導接合に関する。より詳細には、酸化物
超電導体を用いた新規な超電導接合に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting junctions. More specifically, the present invention relates to a novel superconducting junction using an oxide superconductor.

従来の技術 ジョセフソン接合に代表される超電導接合を実現する構
成は各種あって、最も好ましい構造は、一対の超電導体
で薄い非超電導体をはさんだトンネル型の接合である。
There are various configurations for realizing superconducting junctions, such as conventional Josephson junctions, and the most preferred structure is a tunnel-type junction in which a thin non-superconductor is sandwiched between a pair of superconductors.

しかしながら、点接触型、マイクロブリッジ型等一対の
超電導体を弱く結合した超電導接合も、特性は異なるも
ののジョセフソン効果を発揮する。一般に、このような
超電導接合は非常に微細な構成であり、上記の超電導体
および非超電導体は、いわゆる薄膜で構成されている。
However, superconducting junctions in which a pair of superconductors are weakly coupled, such as a point contact type or a microbridge type, also exhibit the Josephson effect, although the characteristics are different. Generally, such a superconducting junction has a very fine structure, and the above-mentioned superconductors and non-superconductors are composed of so-called thin films.

例えば、超電導体に酸化物超電導体を使用してトンネル
型超電導接合を実現する場合には、基板上に第1の酸化
物超電導薄膜、非超電導体薄膜および第2の酸化物超電
導薄膜を順に積層する。
For example, when realizing a tunnel-type superconducting junction using an oxide superconductor as a superconductor, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film are laminated in order on a substrate. do.

非超電導体には、用途により例えばMgO等の絶縁体、
Si等の半導体、Au等の金属が使用され、それぞれ異
なる特性の超電導接合を構成する。
Depending on the purpose, non-superconductors include insulators such as MgO,
Semiconductors such as Si and metals such as Au are used, and each constitutes a superconducting junction with different characteristics.

トンネル型超電導接合における非超電導体の厘さは、超
電導体のコヒーレンス長によって決まる。
The stiffness of a non-superconductor in a tunnel-type superconducting junction is determined by the coherence length of the superconductor.

酸化物超電導体は、コヒーレンス長が非常に短いため、
酸化物超電導体を使用したトンネル型超電導接台におい
ては、非超電導体の厚さは数nm程度にしなければなら
ない。
Oxide superconductors have very short coherence lengths, so
In a tunnel-type superconducting junction using an oxide superconductor, the thickness of the non-superconductor must be approximately several nm.

また、点接触型超電導接合、マイクロブリッジ型超電導
接合は、いずれも一対の超電導体の弱結合が実現するよ
うな非常に微細な加工を必要とする。
Furthermore, both point-contact type superconducting junctions and microbridge type superconducting junctions require very fine processing to achieve weak coupling between a pair of superconductors.

一方、超電導接合の動作特性を考慮すると、超電導接合
を構成する各層の結晶性がよく、単結晶または単結晶に
ごく近い配向性を有する多結晶でなければならない。
On the other hand, in consideration of the operating characteristics of a superconducting junction, each layer constituting the superconducting junction must have good crystallinity and be a single crystal or a polycrystal with an orientation very close to that of a single crystal.

発明が解決しようとする課題 上記のトンネル型超電導接合では、それぞれ結晶性のよ
い第1の酸化物超電導薄膜、非超電導体の薄膜および第
2の酸化物超電導薄膜を積層しなければならない。酸化
物超電導薄膜上にごく薄く、且つ結晶性のよい非超電導
体の薄膜を積層することは困難であり、この非超電導体
薄膜のさらに上に結晶性のよい酸化物超電導薄膜を形成
するのは酸化物超電導体の特性上非常に困難である。
Problems to be Solved by the Invention In the tunnel type superconducting junction described above, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film each having good crystallinity must be laminated. It is difficult to stack a very thin non-superconducting thin film with good crystallinity on top of an oxide superconducting thin film, and it is difficult to form an oxide superconducting thin film with good crystallinity on top of this non-superconducting thin film. This is extremely difficult due to the characteristics of oxide superconductors.

また、上記の積層構造が実現しても、従来は酸化物超電
導体と非超電導体との界面の状態が良好でなく所望の特
性が得られなかった。
Further, even if the above-mentioned laminated structure was realized, the interface between the oxide superconductor and the non-superconductor was not good and desired characteristics could not be obtained.

一方、点接触型超電導接合、マイクロブリッジ型超電導
接合を実現するような、微細な加工も非常に困難であり
、安定した性能の超電導接合を再現性よく作製すること
ができなかった。
On the other hand, the fine processing required to realize point-contact type superconducting junctions and micro-bridge type superconducting junctions is extremely difficult, and it has not been possible to produce superconducting junctions with stable performance with good reproducibility.

そこで、本発明の目的は、上記従来技術の問題点を解決
した、酸化物超電導体を用いた新規な構成の超電導接合
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting junction with a novel configuration using an oxide superconductor, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、底面が成膜面に垂直であり、一側面が
成膜面に略垂直である四角柱型の突出部を有する基板上
に前記突出部を横切るように形成され、前記四角柱型の
突出部の前記成膜面に略垂直な側面上の部分が薄い酸化
物超電導体の薄膜で構成されていることを特徴とする超
電導接合が提供される。
Means for Solving the Problems According to the present invention, on a substrate having a rectangular prism-shaped protrusion whose bottom surface is perpendicular to the film-forming surface and whose one side is approximately perpendicular to the film-forming surface, there is provided a substrate with a protrusion extending across the protrusion. A superconducting junction is provided, wherein a portion of the quadrangular prism-shaped protrusion on a side surface substantially perpendicular to the film formation surface is formed of a thin oxide superconductor thin film.

作用 本発明の超電導接合は、四角柱型の突出部を有する基板
上に形成された酸化物超電導薄膜で構成されている。即
ち、本発明の超電導接合は、酸化物超電導薄膜で一体に
形成された第1の超電導層および第2の超電導層が、基
板の前記突出部上の部分で弱く結合されている。上記酸
化物超電導薄膜の上記四角柱型の突出部の基板成膜面に
略垂直な側面上に形成された部分は薄くなっており、い
わゆるマイクロブリッジ型に近い構成の弱結合になって
いる。
Function The superconducting junction of the present invention is composed of an oxide superconducting thin film formed on a substrate having a square prism-shaped protrusion. That is, in the superconducting junction of the present invention, a first superconducting layer and a second superconducting layer integrally formed of an oxide superconducting thin film are weakly bonded at a portion above the protrusion of the substrate. The portion of the square prism-shaped protrusion of the oxide superconducting thin film formed on the side surface substantially perpendicular to the substrate film formation surface is thin, resulting in a weak coupling having a structure similar to a so-called microbridge type.

本発明の超電導接合は、酸化物超電導体のC軸配向の薄
膜を使用することが好ましい。これは、酸化物超電導体
のC軸と垂直な方向の臨界電流密度およびコヒーレンス
長が大きいためである。本発明の超電導接合をC軸配向
の酸化物超電導薄膜で作製すると、主電流はC軸と垂直
な方向に流れるのでより優れた特性を有する。
The superconducting junction of the present invention preferably uses a C-axis oriented thin film of an oxide superconductor. This is because the critical current density and coherence length in the direction perpendicular to the C axis of the oxide superconductor are large. When the superconducting junction of the present invention is made of a C-axis oriented oxide superconducting thin film, the main current flows in a direction perpendicular to the C-axis, so it has better characteristics.

上記本発明の超電導接合は、上述の形状の突出部を有す
る基板上に、酸化物超電導薄膜をスパッタリング法、M
BE法、真空蒸着法、レーザアブレーション法で成膜す
ることにより作製することができる。この場合、特に基
板の成膜面に対して直角よりも小さい角度で、突出部の
成膜面に略垂直な側面が影になるよう材料粒子(分子・
気体)を供給、堆積させて形成することが好ましい。材
料粒子をこのように供給すると、酸化物超電導薄膜は突
出部の基板成膜面に略垂直な面上には薄く堆積するから
である。
The above-mentioned superconducting bonding of the present invention is performed by sputtering an oxide superconducting thin film onto a substrate having a protrusion having the above-described shape.
It can be produced by forming a film using a BE method, a vacuum evaporation method, or a laser ablation method. In this case, the material particles (molecules,
It is preferable to supply and deposit a gas). This is because when the material particles are supplied in this manner, the oxide superconducting thin film is deposited thinly on the surface of the protrusion that is substantially perpendicular to the substrate film formation surface.

本発明の超電導接合を作製するには、以下の手順による
。まず、例えば基板表面をArイオンミリングでエツチ
ングして、基板上に四角柱型の突出部を形成する。次に
、突出部を形成した基板を590〜650℃に加熱して
、基板の突出部を横切るような形状の酸化物超電導体の
薄膜を成膜する。この基板温度で酸化物超電導薄膜を成
膜すると、C軸配向の酸化物超電導体結晶で構成された
酸化物超電導薄膜が形成される。必要に応じ、酸化物超
電導薄膜の形状を加工したり、電極を設けたりすること
により本発明の超電導接合を用いた超電導素子が完成す
る。
The following procedure is used to fabricate the superconducting junction of the present invention. First, for example, the surface of the substrate is etched by Ar ion milling to form a square prism-shaped protrusion on the substrate. Next, the substrate on which the protrusion is formed is heated to 590 to 650° C. to form a thin film of oxide superconductor having a shape that crosses the protrusion of the substrate. When an oxide superconducting thin film is formed at this substrate temperature, an oxide superconducting thin film composed of C-axis oriented oxide superconducting crystals is formed. A superconducting element using the superconducting junction of the present invention is completed by processing the shape of the oxide superconducting thin film and providing electrodes as necessary.

本発明の超電導接合では、酸化物超電導体には、任意の
ものが使用できるが、Y−Ba−Cu−0系酸化物超電
導体は安定的に高品質の結晶性のよい薄膜が得られるの
で好ましい。また、Bi −3r−Ca−Cu−0系酸
化物超電導体は、特にその超電導臨界温度Tcが高いの
で好ましい。
In the superconducting junction of the present invention, any oxide superconductor can be used, but Y-Ba-Cu-0-based oxide superconductors can stably yield high-quality thin films with good crystallinity. preferable. Moreover, Bi-3r-Ca-Cu-0 based oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

また、本発明の超電導接合は、MgO,5rTi03、
YSz等の酸化物基板上に作製することも好ましい。こ
れらの基板の特定の面上には、酸化物超電導体のC軸配
向の薄膜を形成し易いからである。
Further, the superconducting junction of the present invention includes MgO, 5rTi03,
It is also preferable to fabricate on an oxide substrate such as YSz. This is because it is easy to form a C-axis oriented thin film of an oxide superconductor on a specific surface of these substrates.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図(a)および(社)に、本発明の超電導接合の一
例の概略図を示す。第1図(a)は平面図、第2図ら)
は第1図(a)のA−Aにおける断面図である。
EXAMPLE FIG. 1(a) and Co., Ltd. show a schematic diagram of an example of the superconducting junction of the present invention. (Figure 1(a) is a plan view, Figure 2, etc.)
is a sectional view taken along line A-A in FIG. 1(a).

第1図の超電導接合は、基板4上に設けられた四角柱型
の突出部40を横切るように形成された酸化物超電導薄
膜1で構成される。突出部40の断面は長方形であり、
側面41は基板4の成膜面に垂直である。また、突出部
40の高さは150nmであり、最大幅は10μmであ
る。
The superconducting junction shown in FIG. 1 is composed of an oxide superconducting thin film 1 formed across a square prism-shaped protrusion 40 provided on a substrate 4. The superconducting junction shown in FIG. The cross section of the protrusion 40 is rectangular,
The side surface 41 is perpendicular to the film-forming surface of the substrate 4. Further, the height of the protrusion 40 is 150 nm, and the maximum width is 10 μm.

酸化物超電導薄膜1は、厚さ約300 nmの超電導層
11および12と、突出部40の側面41上の弱結合部
13とに分かれる。弱結合部13の厚さは約IQnmで
ある。
The oxide superconducting thin film 1 is divided into superconducting layers 11 and 12 with a thickness of about 300 nm and a weak coupling portion 13 on the side surface 41 of the protrusion 40 . The thickness of the weak coupling portion 13 is approximately IQ nm.

実施例1 第1図に示した構成の本発明の超電導接合を作製した。Example 1 A superconducting junction of the present invention having the configuration shown in FIG. 1 was fabricated.

まず、MgO基板の(100)面上に、以下の条件でA
rイオンミリングを行って、突出部40を形成した。
First, on the (100) plane of the MgO substrate, A
The protrusions 40 were formed by r-ion milling.

加速電圧    700V カソード電流   50mA 真空度     3 XIO’TorrArガス流量 
  20 SCCM 次いでレーザアブレーション法により、C軸配向のY1
Ba2Cu3O7−x超電導薄膜を突出部40を横切る
ように形成した。主な成膜条件を以下に示す。
Acceleration voltage 700V Cathode current 50mA Vacuum degree 3 XIO'TorrAr gas flow rate
20 SCCM Next, by laser ablation method, Y1 with C-axis orientation
A Ba2Cu3O7-x superconducting thin film was formed across the protrusion 40. The main film forming conditions are shown below.

レーザ   エキシマレーザ (波長193 nm) レーザ出力 1,5J/cfft。Laser Excimer laser (Wavelength 193 nm) Laser output: 1.5 J/cfft.

パルス周波数 1七 基板温度  675℃ 圧力    400mTorr (02のみ) 膜厚    200nm 上記のように作製した本発明の超電導接合に端子を設け
て特性を測定した。85Kに冷却し、周波数15GHz
、出力0.2mWのマイクロ波を印加したところ、31
μVの倍数の電圧点でシャピロステップが観測され、ジ
ョセフソン結合が実現していることが確認された。
Pulse frequency: 17 Substrate temperature: 675° C. Pressure: 400 mTorr (02 only) Film thickness: 200 nm Terminals were provided to the superconducting junction of the present invention produced as described above, and the characteristics were measured. Cooled to 85K, frequency 15GHz
, when microwaves with an output of 0.2 mW were applied, 31
A Shapiro step was observed at a voltage point that is a multiple of μV, confirming that Josephson coupling was realized.

実施例2 第1図に示した構成の本発明の超電導接合をB1−5r
 −Ca −Cu−0系酸化物超電導体を使用して作製
した。まず、MgO基板の(100)面上に、以下の条
件でArイオンミリングを行って、突出部40を形成し
た。
Example 2 The superconducting junction of the present invention having the configuration shown in FIG.
It was produced using a -Ca-Cu-0 based oxide superconductor. First, Ar ion milling was performed on the (100) plane of an MgO substrate under the following conditions to form protrusions 40.

加速電圧    700V カソード電流   50mA 真空度     3 X 10−’TorrArガス流
量   20 SCCM 次いでレーザアブレーション法により、C軸配向のB1
25r2Ca2CU3 C1+超電導薄膜を突出部40
を横切るように形成した。主な成膜条件を以下に示す。
Accelerating voltage: 700V Cathode current: 50mA Vacuum degree: 3 x 10-'TorrAr gas flow rate: 20SCCM Next, by laser ablation method, B1 with C-axis orientation was removed.
25r2Ca2CU3 C1+ superconducting thin film at protrusion 40
It was formed to cross the. The main film forming conditions are shown below.

レーザ   エキシマレーザ (波長193 nm) レーザ出力 1.5J/crl、 パルス周波数 IHz 基板温度  650℃ 圧力    400mTorr (02のみ) 膜厚    200nm 上記のように作製した本発明の超電導接合に端子を設け
て特性を測定した。90Kに冷却し、周波数11G&、
出力0.1Wのマイクロ波を印加したところ、22.7
μVの倍数の電圧点でシャピロステップが観測され、ジ
ョセフソン結合が実現していることが確認された。
Laser Excimer laser (wavelength: 193 nm) Laser output: 1.5 J/crl, Pulse frequency: IHz Substrate temperature: 650°C Pressure: 400 mTorr (02 only) Film thickness: 200 nm Terminals were provided to the superconducting junction of the present invention prepared as described above to determine its characteristics. It was measured. Cooled to 90K, frequency 11G&,
When a microwave with an output of 0.1W was applied, the result was 22.7
A Shapiro step was observed at a voltage point that is a multiple of μV, confirming that Josephson coupling was realized.

発明の詳細 な説明したように、本発明に従うと、新規な構成の超電
導接合を酸化物超電導体により実現できる。本発明の超
電導接合は、一体に形成された酸化物超電導体で構成さ
れているので作製が容易であり、特性の優れたものが得
やすい。
As described in detail, according to the present invention, a superconducting junction with a novel configuration can be realized using an oxide superconductor. Since the superconducting junction of the present invention is composed of an oxide superconductor formed integrally, it is easy to manufacture, and it is easy to obtain one with excellent characteristics.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導接合の概略図である。 〔主な参照番号〕 ・酸化物超電導薄膜、 ・基板 FIG. 1 is a schematic diagram of a superconducting junction of the present invention. [Main reference number] ・Oxide superconducting thin film, ·substrate

Claims (1)

【特許請求の範囲】[Claims]  底面が成膜面に垂直であり、一側面が成膜面に略垂直
である四角柱型の突出部を有する基板上に前記突出部を
横切るように形成され、前記四角柱型の突出部の前記成
膜面に略垂直な側面上の部分が薄い酸化物超電導体の薄
膜で構成されていることを特徴とする超電導接合。
Formed on a substrate having a square prism-shaped protrusion whose bottom surface is perpendicular to the film-forming surface and whose one side is substantially perpendicular to the film-forming surface so as to cross the said protrusion; A superconducting junction characterized in that a portion on a side surface substantially perpendicular to the film formation surface is composed of a thin film of a thin oxide superconductor.
JP2272885A 1990-10-11 1990-10-11 Supedconducting junction Pending JPH04147681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272885A JPH04147681A (en) 1990-10-11 1990-10-11 Supedconducting junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272885A JPH04147681A (en) 1990-10-11 1990-10-11 Supedconducting junction

Publications (1)

Publication Number Publication Date
JPH04147681A true JPH04147681A (en) 1992-05-21

Family

ID=17520116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272885A Pending JPH04147681A (en) 1990-10-11 1990-10-11 Supedconducting junction

Country Status (1)

Country Link
JP (1) JPH04147681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202533A (en) * 1993-11-16 1995-08-04 Korea Electron Telecommun High-temperature superconducting microwave bandpass filter and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202533A (en) * 1993-11-16 1995-08-04 Korea Electron Telecommun High-temperature superconducting microwave bandpass filter and its manufacture

Similar Documents

Publication Publication Date Title
US5322526A (en) Method for manufacturing a superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JP3568547B2 (en) Josephson junction structure
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
US5854493A (en) Superconduting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH04147681A (en) Supedconducting junction
US5480859A (en) Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer
US5488030A (en) Superconductor junction structure including two oxide superconductor layers separated by a non-superconducting layer
JPH04152684A (en) Superconductive junction
JPH05291632A (en) Superconductive junction structure
JPH04332180A (en) Josephson element
JPH04268774A (en) Josephson junction
JP2761504B2 (en) Oxide superconducting device and manufacturing method thereof
JPH09121064A (en) High temperature superconducting josephson junction device
JPH0563247A (en) Superconducting joint structure and production thereof
JPH04154177A (en) Element having plural superconducting junctions and manufacture thereof
JPH04155875A (en) Superconductive element and manufacture thereof
JPH04127484A (en) Superconducting junction
JPH03234071A (en) Josephson element
JPH04151883A (en) Superconducting device
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JP2691065B2 (en) Superconducting element and fabrication method
JPH04152683A (en) Superconducting element
JPH0432276A (en) Josephson junction element
JPH04318984A (en) Josephson junction element and manufacture thereof