JP3045705B2 - Oxide-based superconducting material, method for producing the same, and apparatus using the same - Google Patents

Oxide-based superconducting material, method for producing the same, and apparatus using the same

Info

Publication number
JP3045705B2
JP3045705B2 JP10257788A JP25778898A JP3045705B2 JP 3045705 B2 JP3045705 B2 JP 3045705B2 JP 10257788 A JP10257788 A JP 10257788A JP 25778898 A JP25778898 A JP 25778898A JP 3045705 B2 JP3045705 B2 JP 3045705B2
Authority
JP
Japan
Prior art keywords
degrees
superconductor
layer
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10257788A
Other languages
Japanese (ja)
Other versions
JP2000086239A (en
Inventor
和寿 東山
吉田  隆
真人 長谷川
要 松本
泉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
International Superconductivity Technology Center
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
International Superconductivity Technology Center
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., International Superconductivity Technology Center, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP10257788A priority Critical patent/JP3045705B2/en
Publication of JP2000086239A publication Critical patent/JP2000086239A/en
Application granted granted Critical
Publication of JP3045705B2 publication Critical patent/JP3045705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体窒素温度77
K以上で超電導状態を示す酸化物系超電導材料と基材
と、さらに結晶配向性を制御した中間層を複合化するこ
とにより、磁場中においても高い臨界電流密度(Jc)
を示す超電導体あるいは超電導体の構成およびそれらの
超電導体の製法に関するものである。これらの発明は、
従来の超電導マグネット、超電導NMR装置、超電導M
RI装置、シンクロトロン装置、磁気分別装置に対しコ
スト面で有幅なメリットがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention
High critical current density (Jc) even in a magnetic field by compounding an oxide-based superconducting material showing a superconducting state at K or higher, a substrate, and an intermediate layer with controlled crystal orientation.
And a method of manufacturing such a superconductor. These inventions
Conventional superconducting magnet, superconducting NMR device, superconducting M
There are a wide range of advantages in terms of cost over RI, synchrotron and magnetic separation devices.

【0002】[0002]

【従来の技術】1986年、高い臨界温度を持つ銅酸化
物系のLa−Ba−Cu−Oペロブスカイト系構造の超
電導体が発見され(例えば、特開63−260853号
公報等)、さらに翌年臨界温度がY−Ba−Cu−O系
(M.K.Wu,J.R.Ashburn,C.J.Torng,
Y.Q.Wand and C.W.Chu:Phys.Rev.Let
t.58(1987)908)が液体窒素を冷媒とする
高温超電導体の応用技術が期待されるような90K級超
電導体であることが発見された。
2. Description of the Related Art In 1986, a copper oxide-based La-Ba-Cu-O perovskite-based superconductor having a high critical temperature was discovered (for example, Japanese Patent Application Laid-Open No. 63-260853). Temperature is Y-Ba-Cu-O system (MK Wu, JR Ashburn, CJ Torng,
Y. Q. Wand and C.I. W. Chu: Phys. Rev. Let
t. No. 58 (1987) 908) was found to be a 90K class superconductor in which application technology of a high temperature superconductor using liquid nitrogen as a refrigerant is expected.

【0003】さらに臨界温度の高いBi−Sr−Ca−
Cu−O系(Tc:110K,H.Maeda,Y.Tanak
a,M.Fukutomi and T.Asano:Jpn.J.Appl.
Phys.27(1988)L209),Tl−Ba−C
a−Cu−O系(Tc:120K Z.Z.Sheng and
A.M.Hermann:Nature322(1988)55)
と新しい超電導体の研究開発はめざましかった。
[0003] Bi-Sr-Ca- having a higher critical temperature
Cu-O system (Tc: 110K, H. Maeda, Y. Tanak)
a, M. Fukutomi and T. Asano: Jpn. J. Appl.
Phys. 27 (1988) L209), Tl-Ba-C
a-Cu-O system (Tc: 120K ZZ Sheng and
A. M. Hermann: Nature 322 (1988) 55).
The research and development of new superconductors was remarkable.

【0004】これらの一般的な製造方法は、その出発組
成における金属の酸化物または炭酸塩などの原料粉末を
混合、粉砕を繰返して、空気中あるいは酸素中または還
元雰囲気中において800〜1100℃の温度において
数分〜数百時間の熱処理を施すことにより得られる。
[0004] In these general production methods, starting powders such as metal oxides or carbonates in the starting composition are mixed and pulverized repeatedly, and the mixture is heated to 800 to 1100 ° C in air, oxygen or a reducing atmosphere. It is obtained by performing a heat treatment at a temperature for several minutes to several hundred hours.

【0005】しかし、Y−Ba−Cu−O、Bi−Sr
−Ca−Cu−O、Tl−Ba−Ca−Cu−O系に代
表される複合層状ペロブスカイト型の超電導体には、そ
れぞれ階層の異なる複数の構造を持ち、さらに異なる特
性を持つ。酸化物系超電導体の特徴として、その結晶構
造に由来する導電性の大きな異方性が挙げられる。この
ため結晶粒方向が乱雑な超電導膜においては、導電面が
つながらことにより零磁場の臨界電流密度が103A/
cm2以下のものになってしまう。
However, Y-Ba-Cu-O, Bi-Sr
The composite layered perovskite-type superconductor represented by —Ca—Cu—O and Tl—Ba—Ca—Cu—O has a plurality of structures having different levels and further has different characteristics. As a feature of the oxide-based superconductor, there is a large anisotropy in conductivity derived from its crystal structure. Therefore, in a superconducting film in which the crystal grain direction is disordered, the critical current density of zero magnetic field is 10 3 A /
cm 2 or less.

【0006】また、結晶粒間に異相が存在するものは、
その異相が弱接合となり臨界電流密度が低くなってしま
い、超電導コイルなどに応用する際には大きな問題点と
なった。
[0006] Further, when there is a different phase between crystal grains,
The different phase becomes a weak junction, and the critical current density becomes low, which is a serious problem when applied to a superconducting coil or the like.

【0007】そこで臨界電流密度を向上するため、基材
の上に中間層の結晶方向を揃えて成長させる配向化など
の方法や、基材の結晶方向を揃えて作製する方法などが
提案された。例えば、中間層の結晶方向を揃えて成長さ
せる配向化の方法としては、Iijimaらによりハス
テロイ基材上に酸化物層として、イットリア安定化ジル
コニア(YSZ)材料の配向を行った材料の上に、超電
導膜を成長させるイオンビームアシストデポジッション
法(IBAD)(Proceeding of 4th International
Symposium Superconducting(Springer,Tokto,
1991))などが開示されている。
In order to improve the critical current density, there have been proposed, for example, a method of orientation in which the crystal orientation of the intermediate layer is grown on the substrate in a uniform direction, and a method of fabricating the substrate in a uniform crystal direction. . For example, as a method of orientation in which the crystal orientation of the intermediate layer is grown in a uniform direction, a material obtained by subjecting an yttria-stabilized zirconia (YSZ) material to an oxide layer on a Hastelloy base material by Iijima et al. Ion beam assisted deposition (IBAD) for growing a superconducting film (Proceeding of 4th International)
Symposium Superconducting (Springer, Tokto,
1991)).

【0008】また、基材の結晶方向を揃えて作製する方
法としては、KawashimaらのYSZ材料(Pro
ceeding of 8th International Symposium Supercon
ducting(Springer,Tokto,1996))や、Ito
らによりSrTiO3材料(Y.Ito,Y.Yoshida,
M.Iwata,Y.Takai,I.Hirabayashi:PhysicaC
288(1997)pp178)のセラミックスの単結
晶線材上に超電導膜を設ける方法や、DoiらによりA
g基材の結晶方向を揃えて作製する方法(特開平8−1
90816号公報)などが開示されている。
[0008] As a method of fabricating the base material with the same crystallographic direction, Kawashima et al.'S YSZ material (Pro
ceeding of 8th International Symposium Supercon
ducting (Springer, Tokto, 1996)) and Ito
SrTiO 3 material (Y.Ito, Y.Yoshida,
M. Iwata, Y. Takai, I. Hirabayashi: Physica C
288 (1997) pp 178), a method of providing a superconducting film on a ceramic single crystal wire,
(g) A method of producing a substrate in which the crystal orientation of the substrate is aligned
No. 90816) and the like.

【0009】しかし、金属基材の上に酸化物層をイオン
ビームなどでアシストする方法では、短尺線材ではその
効果は示されているが、その選択的成長から成膜速度に
は限界があり、キロメートル級の線材作製には不可能で
ある。また、セラミックス材料の単結晶を用いる方法で
は直線で用いる場合や短尺線材には効果がある。
However, in the method of assisting an oxide layer on a metal substrate with an ion beam or the like, although the effect is shown for a short wire, the film formation rate is limited due to its selective growth. It is impossible to produce kilometer class wire rods. In addition, the method using a single crystal of a ceramic material is effective for a case of using a straight line or a short wire.

【0010】しかしセラミックスであるため、曲げるこ
とにより割れなどの現象が問題として挙げられる。その
ため、超電導マグネットなどに用いる超電導コイルの作
製のためのキロメートル級以上の超電導線材を作製する
ことは極めて容易ではない。
However, since it is a ceramic, a phenomenon such as cracking due to bending is a problem. Therefore, it is not very easy to produce a superconducting wire of kilometer class or more for producing a superconducting coil used for a superconducting magnet or the like.

【0011】[0011]

【発明が解決しようとする課題】上記の従来技術におい
ては、酸化物系超電導体を超電導線材にして、超電導マ
グネットに応用して行く上で、基材や中間層の結晶の配
向性と超電導体の配向性が揃うことが重要であることが
開示された。
In the above prior art, the oxide superconductor is used as a superconducting wire and applied to a superconducting magnet. It is disclosed that it is important that the orientations of these are uniform.

【0012】そのような中、その作製速度などの面から
超電導線材として有望と挙げられるのが、結晶方向が揃
った金属基材と超電導体との複合体、および、それらの
製法である。
Among these, a composite of a metal substrate and a superconductor having a uniform crystal direction and a method for producing them are promising as a superconducting wire in view of the production speed and the like.

【0013】金属基材ではNi基材、Ag基材などの金
属材が超電導体の基材として有望視された。しかし、N
i基材は超電導体との間で成膜時や熱処理時に拡散反応
が進行し、基材から超電導体の方に不純物が拡散してし
まう。これらは超電導体の電流パスを遮断すると共に、
超電導体の組成ずれを引き起こすことが確認されてい
る。そのため臨界温度(Tc)や臨界電流密度(Jc)
の劣下を起こすため、その対策が課題となっている。
[0013] Among metal substrates, metal materials such as a Ni substrate and an Ag substrate have been considered promising as substrates for superconductors. But N
The diffusion reaction of the i-base material with the superconductor proceeds during film formation or heat treatment, and impurities diffuse from the base material toward the superconductor. These cut off the current path of the superconductor and
It has been confirmed that a composition deviation of the superconductor is caused. Therefore, critical temperature (Tc) and critical current density (Jc)
Therefore, countermeasures have become an issue.

【0014】一方、Ag基材の場合はBudaiらによ
り超電導体、特に、YBa2Cu37-yを含むLnBa2
Cu37-y(Lnは希土類元素)に対し、結晶方向が一
方向に揃う場合と二方向しか揃わない場合があることが
報告されている(J.D.Budai,R.T.Young,
B.S.Chao:Appl.Phys.Lett.62 1993
P1836)。
On the other hand, in the case of an Ag base material, a superconductor, especially LnBa 2 containing YBa 2 Cu 3 O 7-y is disclosed by Budai et al.
It has been reported that the crystal direction of Cu 3 O 7-y (Ln is a rare earth element) may be aligned in one direction or may be aligned in only two directions (JD Budai, RT Young). ,
B. S. Chao: Appl. Phys. Lett. 62 1993
P1836).

【0015】超電導体の結晶が二方向しか揃わない場合
は、上記に述べたように導電面が二方向に分断されるた
め、超電導体の結晶が一方向に揃った場合に比べJcが
低い。そのため、磁場中でのJcの低下、さらには超電
導コイルなどの作製には大きな問題点として挙げられ
る。
When the superconductor crystals are aligned in only two directions, Jc is lower than when the superconductor crystals are aligned in one direction because the conductive surface is divided in two directions as described above. Therefore, this is a major problem in reducing Jc in a magnetic field, and further in manufacturing a superconducting coil and the like.

【0016】本発明の目的は、実用化にあたり、臨界電
流密度が低いと云う問題を解決するための新しい材料お
よび製法に係り、臨界温度が高く、特に、磁場中での臨
界電流密度の高い超電導材料、および、それらを用いた
デバイスや機器を提供することにある。
An object of the present invention is to provide a new material and a manufacturing method for solving the problem of a low critical current density for practical use, and to provide a superconducting material having a high critical temperature and particularly a high critical current density in a magnetic field. An object of the present invention is to provide materials and devices and equipment using them.

【0017】[0017]

【課題を解決するための手段】上記目的を達成すべく本
発明者らはさまざまな角度より研究を重ねた結果、以下
に示す超電導材料とその製法およびそれを用いた装置を
発明するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies from various angles. As a result, they have invented the following superconducting material, its manufacturing method and an apparatus using the same. .

【0018】その基材としては超電導体と格子定数が近
い金属基材、例えばAg基材およびAg合金基材を用い
る。ここでのAg合金基材はAgにTi、Au、Pt、
Pd、Cuなどを含んだ材料のことを示す。図1に示す
ように、これらの金属基材3にLn23層2(LnはY
もしくは希土類元素から選ばれた少なくとも1種)と超
電導体1とを複合化させることを特徴とする酸化物系超
電導材料を用いることにより上記の課題を克服すること
ができる。
As the substrate, a metal substrate having a lattice constant close to that of the superconductor, for example, an Ag substrate and an Ag alloy substrate is used. Here, the Ag alloy base material is made of Ti, Au, Pt, or Ag.
Indicates a material containing Pd, Cu, and the like. As shown in FIG. 1, an Ln 2 O 3 layer 2 (Ln is Y
The above-mentioned problem can be overcome by using an oxide-based superconducting material characterized by forming a composite of the superconductor 1 and at least one selected from rare earth elements).

【0019】基材のAg基材およびAg合金基材は60
%以上の{100}面が、該金属と超電導体の界面に対
して20度以内で平行であり、かつ該金属結晶の60%
以上の<100>方向が互いに20度以内で揃っている
と、さらにそのTcやJcなどの超電導特性は向上す
る。
The Ag base and the Ag alloy base are 60
% Or more of the {100} plane is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% of the metal crystal
If the <100> directions are aligned within 20 degrees with each other, the superconducting properties such as Tc and Jc are further improved.

【0020】また、基材のAg基材およびAg合金基材
の{100}面の結晶の比率が70%、80%と向上す
るに従い、そのTcやJcなどの超電導特性も向上す
る。さらに、互いの該金属の<100>方向の角度が2
0度以内、10度以内とその結晶の角度の幅が狭くなる
に従い、そのTcやJcなどの超電導特性は向上する。
Further, as the ratio of the {100} plane crystal of the Ag base material and the Ag alloy base material increases to 70% and 80%, the superconducting properties such as Tc and Jc thereof also improve. Furthermore, the angle of the metal in the <100> direction is 2
As the width of the angle of the crystal becomes narrower, that is, within 0 degrees and within 10 degrees, the superconducting characteristics such as Tc and Jc are improved.

【0021】Ln23層(LnはYもしくは希土類元素
から選ばれた少なくとも1種)の製法はレーザ蒸着法、
スパッタ法などの物理蒸着法、有機金属化学蒸着法(M
OCVD)などの化学蒸着法などが挙げられる。これら
の製法において超電導体の更なる特性向上のために、L
23層(LnはYもしくは希土類元素から選ばれた少
なくとも1種)の成膜温度は500℃以上であることが
好ましい。さらに作製温度が600℃以上となるに従い
超電導体の特性は更に向上する。
The Ln 2 O 3 layer (Ln is at least one selected from the group consisting of Y and a rare earth element) is produced by a laser deposition method,
Physical vapor deposition such as sputtering, metal organic chemical vapor deposition (M
Chemical vapor deposition such as OCVD). In these production methods, in order to further improve the characteristics of the superconductor, L
The film formation temperature of the n 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) is preferably 500 ° C. or higher. Furthermore, the characteristics of the superconductor are further improved as the production temperature becomes 600 ° C. or higher.

【0022】また、作製時の酸素分圧が10Torr以
下であればその特性が向上する。これらの製法で得られ
るLn23層(LnはYもしくは希土類元素から選ばれ
た少なくとも1種)は立方晶型で構成されていることが
望ましい。
If the oxygen partial pressure at the time of fabrication is 10 Torr or less, the characteristics are improved. It is desirable that the Ln 2 O 3 layer (Ln is at least one selected from Y or rare earth elements) obtained by these manufacturing methods is of a cubic type.

【0023】複合化される超電導体は液体窒素温度77
Kまたは液体窒素で冷却可能な64K以上で超電導状態
になっていれば全てに適用できる。特に超電導体の化学
組成が、LnBa2Cu37-y(ここでLnはYもしく
は希土類元素から選ばれた少なくとも1種であり、−
0.5≦y≦0.2)であることを特徴とする酸化物系超
電導材料からなる超電導体においては、その効果が顕著
である。
The superconductor to be composited has a liquid nitrogen temperature of 77.
The present invention can be applied to any superconductor in a superconducting state at 64K or more which can be cooled by K or liquid nitrogen. In particular, the chemical composition of the superconductor is LnBa 2 Cu 3 O 7-y (where Ln is at least one selected from Y or a rare earth element,
The effect is remarkable in a superconductor made of an oxide-based superconducting material, wherein 0.5 ≦ y ≦ 0.2).

【0024】従来の超電導技術で作製された超電導シス
テム、特に超電導マグネットは液体ヘリウムを用いてそ
の運転を行っていた。本発明を用いることにより液体窒
素を用いてその運転を行うことができるため、コスト的
に大幅に低減することができ、経済面でも有利である。
A superconducting system manufactured by a conventional superconducting technique, particularly a superconducting magnet, has been operated using liquid helium. By using the present invention, the operation can be performed using liquid nitrogen, so that the cost can be significantly reduced and the present invention is economically advantageous.

【0025】本発明での超電導材料を用いた超電導線材
により、超電導マグネット、NMR装置、MRI装置、
シンクロトロン放射光装置、磁気分別装置などの超電導
システムの液体窒素を用いた運転が可能となる。
The superconducting wire using the superconducting material according to the present invention provides a superconducting magnet, an NMR apparatus, an MRI apparatus,
Superconducting systems such as synchrotron radiation devices and magnetic separation devices can be operated using liquid nitrogen.

【0026】上記の超電導材料を製法には、圧延法など
の方法で作製した金属基板、特にAg基材またはAg合
金基材を基材として用いる。その圧延方法などの工夫に
よりAg基材またはAg合金基材の結晶が60%以上の
{100}面が、該金属と該超電導体の界面に対して2
0度以内で平行であり、かつ該金属結晶の60%以上の
<100>方向が互いに20度以内で揃っていると本発
明による効果は顕著である。
In the method for producing the above-mentioned superconducting material, a metal substrate produced by a method such as a rolling method, particularly an Ag substrate or an Ag alloy substrate is used as a substrate. The {100} plane in which the crystal of the Ag base material or the Ag alloy base material is 60% or more is 2 deg.
The effect according to the present invention is remarkable when the directions are parallel within 0 degrees and the <100> directions of 60% or more of the metal crystals are aligned within 20 degrees from each other.

【0027】これらの基材にレーザ蒸着法、スパッタ法
などの物理蒸着法、有機金属化学蒸着法(MOCVD)
などの化学蒸着法などの製法で作製温度が500℃以
上、酸素分圧が10Torr以下の雰囲気で金属基材上
にLn23(LnはYもしくは希土類元素から選ばれた
少なくとも1種)を作製する。この際、室温や500℃
以下の温度で作製し、その後500℃以上の温度で熱処
理を施しても同じ効果が得られる。さらに超電導体を上
記のLn23層(LnはYもしくは希土類元素から選ば
れた少なくとも1種)に接して作製し、複合化し、超電
導材料を得る。
On these substrates, physical vapor deposition such as laser vapor deposition and sputtering, metal organic chemical vapor deposition (MOCVD)
Ln 2 O 3 (Ln is at least one selected from Y or rare earth elements) is deposited on a metal substrate in an atmosphere having a production temperature of 500 ° C. or more and an oxygen partial pressure of 10 Torr or less by a production method such as a chemical vapor deposition method. Make it. At this time, room temperature or 500 ° C
The same effect can be obtained by fabricating at the following temperature and then performing heat treatment at a temperature of 500 ° C. or higher. Further, a superconductor is formed in contact with the above-mentioned Ln 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) and composited to obtain a superconductive material.

【0028】超電導体は液体窒素温度77Kまたは液体
窒素で冷却可能な64K以上で超電導状態になっていれ
ば全てに適用できる。特に超電導体の化学組成がLnB
2Cu37-y(ここでLnはYもしくは希土類元素か
ら選ばれた少なくとも1種であり、−0.5≦y≦0.
2)であることを特徴とする酸化物系超電導材料からな
る超電導体においては、その効果が顕著である。
The superconductor can be applied to any condition as long as the superconductor is in a superconducting state at a liquid nitrogen temperature of 77K or 64K or more which can be cooled by liquid nitrogen. In particular, if the chemical composition of the superconductor is LnB
a 2 Cu 3 O 7-y ( wherein Ln is at least one selected from Y or a rare earth element, -0.5 ≦ y ≦ 0.
The effect is remarkable in a superconductor made of an oxide-based superconducting material, which is characterized in 2).

【0029】これらの超電導体の製法は従来から行われ
ている方法の全てに適用される。特にレーザ蒸着法、ス
パッタ法などの物理蒸着法、有機金属化学蒸着法(MO
CVD)などの化学蒸着法による製法や、プラズマ溶射
法、塗布熱分解法、スプレーパイオリシス法、ディップ
コート法などの厚膜法などにおいて特にその効果は顕著
である。
The method for producing these superconductors is applied to all of the conventional methods. In particular, physical vapor deposition such as laser vapor deposition and sputtering, metal organic chemical vapor deposition (MO)
The effect is particularly remarkable in a production method by a chemical vapor deposition method such as CVD), a thick film method such as a plasma spraying method, a coating thermal decomposition method, a spray pyrolysis method, and a dip coating method.

【0030】これらの方法で作製した複合化された超電
導材料を超電導コイル形状に加工し、電源、液体窒素な
どの冷媒タンクなどの機器と組み合わせることにより超
電導マグネット、NMR装置、MRI装置、シンクロト
ロン放射光装置、磁気分別装置などの超電導システムを
作製することが可能となる。
The composite superconducting material produced by these methods is processed into a superconducting coil shape, and combined with equipment such as a power supply, a refrigerant tank for liquid nitrogen, etc., to form a superconducting magnet, NMR apparatus, MRI apparatus, synchrotron radiation. A superconducting system such as an optical device and a magnetic separation device can be manufactured.

【0031】[0031]

【発明の実施の形態】以下に本発明による実施例を記述
するが、これに限定するものではない。
Embodiments of the present invention will be described below, but the present invention is not limited thereto.

【0032】〔実施例 1〕基材として純度99.9%
のAg材料を用いて圧延加工を施した幅7mmのAgテ
ープを作製する。X線回折測定によりAgテープの結晶
の配向性を評価した結果、60%以上の{100}面
が、該金属と該超電導体の界面に対して20度以内で平
行であり、かつ該金属結晶の60%以上の<100>方
向が互いに20度以内で揃っていることが確認される。
Example 1 99.9% purity as a base material
Then, a 7 mm-wide Ag tape which is subjected to a rolling process by using the Ag material is manufactured. As a result of evaluating the crystal orientation of the Ag tape by X-ray diffraction measurement, the {100} plane of 60% or more is parallel to the interface between the metal and the superconductor within 20 degrees, and the metal crystal It is confirmed that 60% or more of <100> directions are aligned within 20 degrees from each other.

【0033】この基材にスパッタ法を用いてY23層を
成膜する。RFスパッタの成膜条件は、ターゲットはY
23組成を用い出力200W、真空度1.5パスカル、
ターゲットとAg基材との距離は4mmで成膜を基板温
度700℃で3時間行った。得られたY23膜は誘導結
合プラズマ発光分析法(ICP法)により膜厚1μmで
あり、さらにX線回折測定法により{111}面が該金
属と該超電導体の界面に対して20度以内で平行である
ことが確認された。
A Y 2 O 3 layer is formed on the substrate by sputtering. RF sputtering is performed under the condition that the target is Y
Output power 200 W, degree of vacuum 1.5 Pascal using 2 O 3 composition,
The film was formed at a substrate temperature of 700 ° C. for 3 hours while the distance between the target and the Ag base material was 4 mm. The obtained Y 2 O 3 film had a thickness of 1 μm by inductively coupled plasma emission spectrometry (ICP method), and the {111} plane was 20 mm away from the interface between the metal and the superconductor by X-ray diffraction measurement. It was confirmed that they were parallel within degrees.

【0034】さらにレーザ蒸着法により、YBa2Cu3
7-yを成膜する。レーザ蒸着法の成膜条件は粉末混合
法で作製したYBa2Cu37-y組成のターゲットを用
い、作製温度730℃、酸素分圧200ミリトール、タ
ーゲットと基材の距離は40mm、レーザエネルギー密
度2J/cm2、発信周波数は100ヘルツ、成膜時間
は5分行った。その結果ICP法から1μmのYBa2
Cu37-y膜が成膜されていることが確認された。
Further, YBa 2 Cu 3
O 7-y is deposited. The deposition conditions of the laser vapor deposition method were as follows: a target having a YBa 2 Cu 3 O 7-y composition produced by a powder mixing method, a production temperature of 730 ° C., an oxygen partial pressure of 200 mTorr, a distance between the target and the base material of 40 mm, and a laser energy of The density was 2 J / cm 2 , the transmission frequency was 100 Hz, and the film formation time was 5 minutes. As a result, 1 μm YBa 2
It was confirmed that the Cu 3 O 7-y film was formed.

【0035】この複合体の結晶の配向性を確認するた
め、X線回折法の極点測定を行った。その結果、超電導
体の結晶方向がa軸およびb軸に沿って成長しているこ
とが確認された。
In order to confirm the crystal orientation of the composite, an extreme point measurement by an X-ray diffraction method was performed. As a result, it was confirmed that the crystal direction of the superconductor grew along the a-axis and the b-axis.

【0036】Tcを測定するため、超電導体表面にAu
およびAgペーストで端子を接続し、4端子法で液体窒
素を冷媒とし直流法により電流−電圧測定を行った。測
定端子間電圧を1μV/cmとしたときの臨界電流(I
c)より液体窒素温度におけるJcを求めた。その結
果、Tcは87K、Jcは77Kの温度でゼロ磁場中で
2×105A/cm2の特性を示した。
In order to measure Tc, Au was added to the superconductor surface.
Then, terminals were connected with Ag paste, and current-voltage measurement was performed by a DC method using liquid nitrogen as a refrigerant by a four-terminal method. The critical current (I) when the voltage between the measurement terminals is 1 μV / cm
Jc at liquid nitrogen temperature was determined from c). As a result, Tc exhibited a characteristic of 2 × 10 5 A / cm 2 in a zero magnetic field at a temperature of 87 K and Jc of 77 K.

【0037】〔実施例 2〕基材としてAg材料とAu
を10%添加した材料を用いて圧延加工を施した幅7m
mのAg−Au合金テープを作製する。X線回折測定に
よりテープの結晶の配向性を評価した結果、70%以上
の{100}面が、該金属と該超電導体の界面に対して
20度以内で平行であり、かつ該金属結晶の70%以上
の<100>方向が互いに20度以内で揃っていること
が確認された。
Example 2 Ag material and Au as base materials
7m width rolled using a material containing 10%
Then, an Ag-Au alloy tape having a thickness of m is prepared. As a result of evaluating the crystal orientation of the tape by X-ray diffraction measurement, 70% or more of the {100} plane was parallel to the interface between the metal and the superconductor within 20 degrees, and the It was confirmed that 70% or more of the <100> directions were aligned within 20 degrees of each other.

【0038】この基材にレーザ蒸着法を用いてNd23
層を成膜する。粉末混合法で作製したNd23組成のタ
ーゲットを用い、作製温度800℃、酸素分圧20ミリ
トール、ターゲットと基材の距離は40mm、レーザエ
ネルギー密度2J/cm2、発信周波数は30ヘルツ、
成膜時間は5分行った。
Nd 2 O 3 was applied to this substrate by using a laser deposition method.
Form a layer. Using a target of Nd 2 O 3 composition produced by a powder mixing method, a production temperature of 800 ° C., an oxygen partial pressure of 20 mTorr, a distance between the target and the substrate of 40 mm, a laser energy density of 2 J / cm 2 , a transmission frequency of 30 Hz,
The film formation time was 5 minutes.

【0039】得られたY23膜は誘導結合プラズマ発光
分析法(ICP法)により膜厚0.5μmであり、さら
にX線回折測定法により{400}面が該金属と該超電
導体の界面に対して20度以内で平行であることが確認
された。
The obtained Y 2 O 3 film had a thickness of 0.5 μm according to inductively coupled plasma emission spectrometry (ICP method), and the {400} plane was determined by X-ray diffraction measurement to be between the metal and the superconductor. It was confirmed that it was parallel to the interface within 20 degrees.

【0040】さらにレーザ蒸着法により、NdBa2
37-yを成膜する。レーザ蒸着法の成膜条件は粉末混
合法で作製したNdBa2Cu37-y組成のターゲット
を用い、作製温度830℃、酸素分圧100ミリトー
ル、ターゲットと基材の距離は40mm、レーザエネル
ギー密度3J/cm2、発信周波数は50ヘルツ、成膜
時間は10分行った。その結果ICP法から1.3μm
のNdBa2Cu37-y膜が成膜されていることが確認
された。
Further, NdBa 2 C
A film of u 3 O 7-y is formed. The deposition conditions of the laser vapor deposition method were as follows: a target having a composition of NdBa 2 Cu 3 O 7-y prepared by a powder mixing method, a forming temperature of 830 ° C., an oxygen partial pressure of 100 mTorr, a distance between the target and the base material of 40 mm, and a laser energy The density was 3 J / cm 2 , the transmission frequency was 50 Hz, and the film formation time was 10 minutes. As a result, it was 1.3 μm from the ICP method.
It was confirmed that the NdBa 2 Cu 3 O 7-y film was formed.

【0041】この複合体の結晶の配向性をX線回折法の
極点測定を行った結果、超電導体の結晶方向がa軸およ
びb軸に沿って成長していることが確認された。
The orientation of the crystal of this composite was measured at the extreme points by the X-ray diffraction method. As a result, it was confirmed that the crystal direction of the superconductor grew along the a-axis and the b-axis.

【0042】Tcを測定するため、超電導体表面にAu
およびAgペーストで端子を接続し、4端子法で液体窒
素を冷媒とし直流法により電流−電圧測定を行った。測
定端子間電圧を1μV/cmとしたときの臨界電流(I
c)より液体窒素温度におけるJcを求めた。その結
果、Tcは92K、Jcは77Kの温度でゼロ磁場中で
7×105A/cm2の特性を示した。
In order to measure Tc, Au was added to the superconductor surface.
Then, terminals were connected with Ag paste, and current-voltage measurement was performed by a DC method using liquid nitrogen as a refrigerant by a four-terminal method. The critical current (I) when the voltage between the measurement terminals is 1 μV / cm
Jc at liquid nitrogen temperature was determined from c). As a result, Tc showed a characteristic of 7 × 10 5 A / cm 2 in a zero magnetic field at a temperature of 92 K and Jc of 77 K.

【0043】〔実施例 3〕基材としてAg−Cu合金
材料を用いて圧延加工を施した幅10mmのAg−Cu
合金テープを作製する。X線回折測定によりテープの結
晶の配向性を評価した結果、70%以上の{100}面
が、該金属と該超電導体の界面に対して20度以内で平
行であり、かつ該金属結晶の70%以上の<100>方
向が互いに20度以内で揃っていることが確認された。
Example 3 A 10 mm-wide Ag-Cu roll-processed using an Ag-Cu alloy material as a base material
Make an alloy tape. As a result of evaluating the crystal orientation of the tape by X-ray diffraction measurement, 70% or more of the {100} plane was parallel to the interface between the metal and the superconductor within 20 degrees, and the It was confirmed that 70% or more of the <100> directions were aligned within 20 degrees of each other.

【0044】この基材にレーザ蒸着法を用いてSm23
層を成膜する。粉末混合法で作製したSm23組成のタ
ーゲットを用い、作製温度700℃、酸素分圧20ミリ
トール、ターゲットと基材の距離は40mm、レーザエ
ネルギー密度1J/cm2、発信周波数は30ヘルツ、
成膜時間は5分行った。
The substrate was coated with Sm 2 O 3 using a laser deposition method.
Form a layer. Using a target having an Sm 2 O 3 composition prepared by a powder mixing method, a preparation temperature of 700 ° C., an oxygen partial pressure of 20 mTorr, a distance between the target and the base material of 40 mm, a laser energy density of 1 J / cm 2 , a transmission frequency of 30 Hz,
The film formation time was 5 minutes.

【0045】得られたSm23膜は誘導結合プラズマ発
光分析法(ICP法)により膜厚0.3μmであり、さ
らにX線回折測定法により{111}{400}面が該
金属と該超電導体の界面に対して20度以内で平行であ
ることが確認された。
The obtained Sm 2 O 3 film had a thickness of 0.3 μm according to inductively coupled plasma emission spectrometry (ICP method). It was confirmed that it was parallel to the interface of the superconductor within 20 degrees.

【0046】さらにレーザ蒸着法により、SmBa2
37-yを成膜する。レーザ蒸着法の成膜条件は粉末混
合法で作製したSmBa2Cu37-y組成のターゲット
を用い、作製温度830℃、酸素分圧100ミリトー
ル、ターゲットと基材の距離は40mm、レーザエネル
ギー密度1J/cm2、発信周波数は10ヘルツ、成膜
時間は30分行った。その結果ICP法から0.8μm
のNdBa2Cu37-y膜が成膜されていることが確認
された。
Further, SmBa 2 C
A film of u 3 O 7-y is formed. The film forming conditions of the laser vapor deposition method are as follows: a target having an SmBa 2 Cu 3 O 7-y composition prepared by a powder mixing method, a forming temperature of 830 ° C., an oxygen partial pressure of 100 mTorr, a distance between the target and the base material of 40 mm, laser energy The density was 1 J / cm 2 , the transmission frequency was 10 Hz, and the film formation time was 30 minutes. As a result, 0.8 μm was obtained from the ICP method.
It was confirmed that the NdBa 2 Cu 3 O 7-y film was formed.

【0047】この複合体の結晶の配向性をX線回折法の
極点測定を行った結果、超電導体の結晶方向がa軸およ
びb軸に沿って成長していることが確認された。Tcを
測定するため、超電導体表面にAuおよびAgペースト
で端子を接続し、4端子法で液体窒素を冷媒とし直流法
により電流−電圧測定を行った。測定端子間電圧を1μ
V/cmとしたときの臨界電流(Ic)より液体窒素温
度におけるJcを求めた。その結果、Tcは90K、J
cは77Kの温度でゼロ磁場中で5×105A/cm2
特性を示した。
The crystal orientation of the composite was measured at the extreme points by the X-ray diffraction method. As a result, it was confirmed that the crystal direction of the superconductor was growing along the a-axis and the b-axis. In order to measure Tc, terminals were connected to the surface of the superconductor with Au and Ag paste, and current-voltage measurement was performed by a DC method using liquid nitrogen as a refrigerant by a four-terminal method. 1μ voltage between measuring terminals
Jc at the liquid nitrogen temperature was determined from the critical current (Ic) at V / cm. As a result, Tc is 90K, J
c exhibited a characteristic of 5 × 10 5 A / cm 2 in a zero magnetic field at a temperature of 77K.

【0048】〔実施例 4〕基材としてAg−Au合金
材料を用いて圧延加工を施した幅3mmのAg−Au合
金テープを作製する。X線回折測定によりテープの結晶
の配向性を評価した結果、80%以上の{100}面
が、該金属と該超電導体の界面に対して20度以内で平
行であり、かつ該金属結晶の80%以上の<100>方
向が互いに20度以内で揃っていることが確認された。
Example 4 An Ag-Au alloy tape having a width of 3 mm, which was rolled using an Ag-Au alloy material as a base material, was prepared. As a result of evaluating the crystal orientation of the tape by X-ray diffraction measurement, 80% or more of the {100} plane is parallel to the interface between the metal and the superconductor within 20 degrees, and It was confirmed that 80% or more of the <100> directions were aligned within 20 degrees of each other.

【0049】この基材にMOCVD法を用いてY23
よびYBa2Cu37-yを作製する。用いたMO原料は
Y(DPM)3、Ba(DPM)2およびCu(DPM)2であ
る。
On this substrate, Y 2 O 3 and YBa 2 Cu 3 O 7-y are produced by using the MOCVD method. The MO raw materials used were Y (DPM) 3 , Ba (DPM) 2 and Cu (DPM) 2 .

【0050】それぞれのMO原料の保持温度は125
℃、240℃および120℃で行う。また反応管圧力は
10トールで行った。始めにY23を作製温度700℃
で作製時間10分、さらにYBa2Cu37-yを作製温
度800℃で作製時間1時間行った。
The holding temperature of each MO raw material is 125
C., 240.degree. C. and 120.degree. The reaction tube pressure was set at 10 Torr. First, Y 2 O 3 is prepared at a temperature of 700 ° C.
Was performed for 10 minutes, and YBa 2 Cu 3 O 7-y was prepared at a temperature of 800 ° C. for 1 hour.

【0051】この複合体の結晶の配向性をX線回折法の
極点測定を行った結果を図2に示す。この測定において
はYBCO(103)面を測定面として行った。超電導
体の結晶方向がa軸およびb軸に沿って成長しているこ
とが確認された。
FIG. 2 shows the result of a pole measurement of the crystal orientation of the composite by the X-ray diffraction method. In this measurement, the YBCO (103) plane was used as the measurement plane. It was confirmed that the crystal direction of the superconductor grew along the a-axis and the b-axis.

【0052】Tcを測定するため、超電導体表面にAu
およびAgペーストで端子を接続し、4端子法で液体窒
素を冷媒とし直流法により電流−電圧測定を行った。測
定端子間電圧を1μV/cmとしたときの臨界電流(I
c)より液体窒素温度におけるJcを求めた。その結
果、Tcは85K、Jcは77Kの温度でゼロ磁場中で
1×105A/cm2の特性を示した。
In order to measure Tc, Au was added to the surface of the superconductor.
Then, terminals were connected with Ag paste, and current-voltage measurement was performed by a DC method using liquid nitrogen as a refrigerant by a four-terminal method. The critical current (I) when the voltage between the measurement terminals is 1 μV / cm
Jc at liquid nitrogen temperature was determined from c). As a result, Tc exhibited characteristics of 1 × 10 5 A / cm 2 in a zero magnetic field at a temperature of 85 K and Jc of 77 K.

【0053】さらに複合体の膜面に垂直に磁場を1テス
ラまで印加した時の77KにおけるJcの変化を図3に
示す。
FIG. 3 shows the change in Jc at 77 K when a magnetic field was applied up to 1 Tesla perpendicular to the film surface of the composite.

【0054】〔比較例 1〕実施例4と同様の配向性を
持つAg−Au合金材料を用いて、MOCVD法を用い
てYBa2Cu37-yを作製する。用いたMO原料はY
(DMP)3、Ba(DMP)2およびCu(DMP)2であ
る。それぞれのMO原料の保持温度は125℃、240
℃および120℃で行う。また反応管圧力は10トール
で行った。YBa2Cu37-yを作製温度800℃で作
製時間1時間行った。
[Comparative Example 1] YBa 2 Cu 3 O 7-y is manufactured by MOCVD using an Ag-Au alloy material having the same orientation as in Example 4. The MO raw material used was Y
(DMP) 3 , Ba (DMP) 2 and Cu (DMP) 2 . The holding temperature of each MO raw material is 125 ° C, 240
C. and 120.degree. The reaction tube pressure was set at 10 Torr. YBa 2 Cu 3 O 7-y was produced at a production temperature of 800 ° C. for 1 hour.

【0055】この複合体の結晶の配向性をX線回折法の
極点測定を行った結果を図4に示す。超電導体の結晶方
向がa軸およびb軸とともに膜面において45度回転し
た結晶が成長していることが確認された。
FIG. 4 shows the results of pole measurement of the crystal orientation of this composite by X-ray diffraction. It was confirmed that a crystal in which the crystal direction of the superconductor was rotated by 45 degrees on the film surface together with the a-axis and the b-axis was growing.

【0056】Tcを測定するため、超電導体表面にAu
およびAgペーストで端子を接続し、4端子法で液体窒
素を冷媒とし直流法により電流−電圧測定を行った。測
定端子間電圧を1μV/cmとしたときの臨界電流(I
c)より液体窒素温度におけるJcを求めた。その結
果、Tcは84K、Jcは77Kの温度でゼロ磁場中で
1×104A/cm2の特性を示した。
In order to measure Tc, Au was added to the surface of the superconductor.
Then, terminals were connected with Ag paste, and current-voltage measurement was performed by a DC method using liquid nitrogen as a refrigerant by a four-terminal method. The critical current (I) when the voltage between the measurement terminals is 1 μV / cm
Jc at liquid nitrogen temperature was determined from c). As a result, Tc exhibited characteristics of 1 × 10 4 A / cm 2 in a zero magnetic field at a temperature of 84 K and Jc of 77 K.

【0057】さらに複合体の膜面に垂直に磁場を1テス
ラまで印加した時の77KにおけるJcの変化を図3に
示す。
FIG. 3 shows the change in Jc at 77 K when a magnetic field was applied up to 1 Tesla perpendicular to the film surface of the composite.

【0058】実施例4と比較例1のゼロ磁場および磁場
中でのJcの変化などから本発明による効果が顕著であ
ることが確認された。
The effect of the present invention was confirmed to be remarkable from the change of Jc in the zero magnetic field and the magnetic field of Example 4 and Comparative Example 1.

【0059】[0059]

【発明の効果】本発明によれば、酸化物系超電導体の結
晶粒間における超電導特性の低下を改善することができ
る。さらに本発明によれば大面積の成膜ができるので、
磁気シールド、超電導コイルなどのエネルギー分野に有
効に応用することができる。
According to the present invention, it is possible to improve the deterioration of superconductivity between crystal grains of the oxide superconductor. Furthermore, according to the present invention, a large area film can be formed.
It can be effectively applied to energy fields such as magnetic shields and superconducting coils.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られた酸化物系超電導材料の模式構
成図である。
FIG. 1 is a schematic structural view of an oxide-based superconducting material obtained by the present invention.

【図2】実施例4で得られた酸化物系超電導材料の極点
測定結果を示す図である。
FIG. 2 is a diagram showing the results of pole measurement of the oxide superconducting material obtained in Example 4.

【図3】実施例4および比較例1で得られた酸化物系超
電導材料の磁場中Jc測定結果を示す図である。
FIG. 3 is a diagram showing the results of Jc measurement in a magnetic field of the oxide superconducting materials obtained in Example 4 and Comparative Example 1.

【図4】比較例1で得られた酸化物系超電導材料の極点
測定結果を示す図である。
FIG. 4 is a graph showing the results of pole measurement of the oxide superconducting material obtained in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…超電導体、2…Ln23層、3…金属基材、4…実
施例4、5…比較例1。
1 ... superconductor, 2 ... Ln 2 O 3 layer, 3 ... metal substrate 4 ... Examples 4 and 5 ... Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内 (72)発明者 吉田 隆 愛知県名古屋市熱田区六野二丁目4番1 号 財団法人国際超電導産業技術研究セ ンター 超電導工学研究所 名古屋研究 所内 (72)発明者 長谷川 真人 愛知県名古屋市熱田区六野二丁目4番1 号 財団法人国際超電導産業技術研究セ ンター 超電導工学研究所 名古屋研究 所内 (72)発明者 松本 要 愛知県名古屋市熱田区六野二丁目4番1 号 財団法人国際超電導産業技術研究セ ンター 超電導工学研究所 名古屋研究 所内 (72)発明者 平林 泉 愛知県名古屋市熱田区六野二丁目4番1 号 財団法人国際超電導産業技術研究セ ンター 超電導工学研究所 名古屋研究 所内 (56)参考文献 Akihiro K.et a l.,”Synthesis of B iaxially Aligned Y 2O3 Buffer Layer D irectly on Ni Tape s through the Elec tron Beam Depositi on,”Advances in su per conductivity X (Proceedings of th e 10th Iternational Symposium on Supr conductivity(ISS’ 97),October 27−30,1997, Gifu),Vol.2,15 July 1998,pp.615−618 Ichinose A.et a l.,”Deposition of Y2O3 buffer layers on biaxially−text ured metal substra tes,”Physica C,Vo l.302,No.1,10 June 1998,pp.51−56 田中昭二他編,「超電導とは何か」, 第1版,日本経済新聞社,昭和62年6月 15日,pp.61−93 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuing from the front page (73) Patent holder 000005290 Furukawa Electric Co., Ltd. 2-6-1 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Kazuhisa Higashiyama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Shares (72) Inventor Takashi Yoshida 2-4-1 Rokuno, Atsuta-ku, Nagoya-shi, Aichi Pref. International Research Institute for Superconducting Technology Nagoya Research Laboratory, Superconductivity Engineering Laboratory (72) Inventor Masato Hasegawa 2-4-1 Rokuno, Atsuta-ku, Nagoya-shi, Aichi Pref. International Superconducting Industrial Technology Research Center Nagoya Laboratory, Superconductivity Research Institute (72) Inventor Kaname Matsumoto 2-4-1, Rokuno, Atsuta-ku, Nagoya-shi, Aichi No. International Superconducting Technology Research Center Nagoya Research Institute for Superconducting Engineering In-house (72) Inventor Izumi Hirabayashi 2-4-1 Rokuno, Atsuta-ku, Nagoya-shi, Aichi Pref. International Superconducting Technology Research Center Nagoya Laboratory, Superconducting Engineering Laboratory (56) References Akihiro K. et al. , "Synthesis of B iaxially Aligned Y 2O3 Buffer Layer D irectly on Ni Tape s through the Elec tron Beam Depositi on," Advances in su per conductivity X (Proceedings of th e 10th Iternational Symposium on Supr conductivity (ISS '97), October 27-30, 1997, Gifu), Vol. 2,15 July 1998, pp. 139-157. 615-618 Ichinose A. et al. , "Deposition of Y2O3 buffer layers on biaxially-text ured metal substrates," Physica C, Vol. 302, no. 1, 10 June 1998, pp. 51-56 Shoji Tanaka et al., “What is Superconductivity?”, 1st edition, Nikkei Inc., June 15, 1987, pp. 61-93 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA (STN) REGISTRY (STN)

Claims (22)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多結晶AgまたはAg合金材料からなる
基材と、該基材と超電導体との間に基材面結晶が揃っ
たLn23層(LnはYもしくは希土類元素から選ばれ
た少なくとも1種)を中間層として構成したことを特徴
とする酸化物系超電導材料。
1. A substrate made of a polycrystalline Ag or Ag alloy material, and an Ln 2 O 3 layer (Ln is selected from Y or a rare earth element) having crystals aligned on the surface of the substrate between the substrate and the superconductor. An oxide-based superconducting material characterized in that at least one selected from the group consisting of at least one of the above is used as an intermediate layer.
【請求項2】 基材面結晶が揃った多結晶Agまたは
Ag合金材料からなる基材と、該基材と超電導体との間
に基材面結晶が揃ったLn23層(LnはYもしくは
希土類元素から選ばれた少なくとも1種)を中間層とし
て構成したことを特徴とする酸化物系超電導材料。
2. A polycrystalline made of Ag or an Ag alloy substrate crystal substrate surface is uniform, Ln 2 O 3 layer crystals are aligned on the substrate surface between the substrate and the superconductor ( Ln is at least one selected from the group consisting of Y and rare earth elements) as the intermediate layer.
【請求項3】 多結晶AgまたはAg合金の金属結晶の
少なくとも60%の{100}面が、該金属と超電導体
の界面に対して20度以内で平行であり、かつ、該金属
結晶の60%以上の<100>方向が互いに20度以内
で揃っている基材と、該基材と超電導体との間にLn2
3層(LnはYもしくは希土類元素から選ばれた少な
くとも1種)を中間層として構成したことを特徴とする
酸化物系超電導材料。
3. The {100} plane of at least 60% of the polycrystalline Ag or Ag alloy metal crystal is parallel to the interface between the metal and the superconductor within 20 degrees, and the metal crystal has a thickness of 60%. % Or more of <100> directions are aligned within 20 degrees from each other, and Ln 2
O 3 layers (Ln is at least one selected from Y or a rare earth element) oxide based superconducting material characterized by being configured as an intermediate layer.
【請求項4】 多結晶AgまたはAg合金の金属結晶の
少なくとも70%の{100}面が、該金属と超電導体
の界面に対して20度以内で平行であり、かつ、該金属
結晶の60%以上の<100>方向が互いに20度以内
で揃っている基材と、該基材と超電導体との間にLn2
3層(LnはYもしくは希土類元素から選ばれた少な
くとも1種)を中間層として構成したことを特徴とする
酸化物系超電導材料。
4. A polycrystalline Ag or Ag alloy metal crystal having at least 70% of its {100} planes parallel to the interface between the metal and the superconductor within 20 degrees and 60% of the metal crystal. % Or more of <100> directions are aligned within 20 degrees from each other, and Ln 2
O 3 layers (Ln is at least one selected from Y or a rare earth element) oxide based superconducting material characterized by being configured as an intermediate layer.
【請求項5】 多結晶AgまたはAg合金の金属結晶の
少なくとも70%の{100}面が、該金属と超電導体
の界面に対して20度以内で平行であり、かつ、該金属
結晶の60%以上の<100>方向が互いに10度以内
で揃っている基材と、該基材と超電導体との間に金属結
晶の少なくとも60%の{100}面が、該金属とY2
3層の界面に対して10度以内で平行であるLn23
層(LnはYもしくは希土類元素から選ばれた少なくと
も1種)を中間層として構成したことを特徴とする酸化
物系超電導材料。
5. A polycrystalline Ag or Ag alloy metal crystal, wherein at least 70% of the {100} plane is parallel to the interface between the metal and the superconductor within 20 degrees and 60% of the metal crystal. % Or more of the <100> directions are aligned within 10 degrees with each other, and at least 60% of the {100} plane of the metal crystal between the base material and the superconductor is formed by the metal and Y 2.
Ln 2 O 3 parallel to the interface of the O 3 layer within 10 degrees
An oxide-based superconducting material comprising a layer (Ln is at least one selected from Y or a rare earth element) as an intermediate layer.
【請求項6】 多結晶AgまたはAg合金の金属結晶の
少なくとも70%の{100}面が、該金属と超電導体
の界面に対して20度以内で平行であり、かつ、該金属
結晶の60%以上の<100>方向が互いに10度以内
で揃っている基材と、該基材と超電導体との間に金属結
晶の少なくとも70%の{100}面が、該金属とLn
23層(LnはYもしくは希土類元素から選ばれた少な
くとも1種)の界面に対して10度以内で平行であるL
23層(LnはYもしくは希土類元素から選ばれた少
なくとも1種)を中間層として構成したことを特徴とす
る酸化物系超電導材料。
6. A {100} plane of at least 70% of the polycrystalline Ag or Ag alloy metal crystal is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% of the metal crystal. % Or more of the <100> directions are aligned within 10 degrees with each other, and at least 70% of the {100} plane of the metal crystal is between the substrate and the superconductor.
L which is parallel to the interface of the 2 O 3 layer (Ln is at least one selected from Y or rare earth elements) within 10 degrees
n 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) oxide based superconducting material characterized by being configured as an intermediate layer.
【請求項7】 多結晶AgまたはAg合金の金属結晶の
少なくとも80%の{100}面が、該金属と超電導体
の界面に対して20度以内で平行であり、かつ、該金属
結晶の60%以上の<100>方向が互いに10度以内
で揃っている基材と、該基材と超電導体との間に金属結
晶の少なくとも60%の{100}面が、該金属とLn
23層(LnはYもしくは希土類元素から選ばれた少な
くとも1種)の界面に対して10度以内で平行であるL
23層(LnはYもしくは希土類元素から選ばれた少
なくとも1種)を中間層として構成したことを特徴とす
る酸化物系超電導材料。
7. A {100} plane of at least 80% of the metal crystal of the polycrystalline Ag or Ag alloy is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% of the metal crystal. % Or more of the <100> directions are aligned within 10 degrees with each other, and between the substrate and the superconductor, at least 60% of the {100} plane of the metal crystal is formed by the metal and Ln.
L which is parallel to the interface of the 2 O 3 layer (Ln is at least one selected from Y or rare earth elements) within 10 degrees
n 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) oxide based superconducting material characterized by being configured as an intermediate layer.
【請求項8】 請求項1〜7のいずれかに記載の酸化物
系超電導材料において、Ln23層(LnはYもしくは
希土類元素から選ばれた少なくとも1種)が立方晶型の
結晶構造である酸化物系超電導材料。
8. The oxide superconducting material according to claim 1, wherein the Ln 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) has a cubic crystal structure. An oxide-based superconducting material.
【請求項9】 請求項1〜7のいずれかに記載の酸化物
系超電導材料において、超電導体の化学組成がLnBa
2Cu37-y(LnはYもしくは希土類元素から選ばれ
た少なくとも1種であり、−0.5≦y≦0.2)である
酸化物系超電導材料。
9. The oxide superconducting material according to claim 1, wherein the chemical composition of the superconductor is LnBa.
2 An oxide superconducting material in which Cu 3 O 7-y (Ln is at least one selected from Y or a rare earth element, and −0.5 ≦ y ≦ 0.2).
【請求項10】 多結晶AgまたはAg合金の金属結晶
の少なくとも80%の{100}面が、該金属と超電導
体の界面に対して20度以内で平行であり、かつ、該金
属結晶の60%以上の<100>方向が互いに10度以
内で揃っている基材と、該基材と超電導体との間に金属
結晶の少なくとも60%の{100}面が、該金属とL
23層(LnはYもしくは希土類元素から選ばれた少
なくとも1種)の界面に対して20度以内で平行である
Ln23層(LnはYもしくは希土類元素から選ばれた
少なくとも1種)を基板温度が500℃以上の雰囲気中
で中間層として成膜することを特徴とする酸化物系超電
導材料の製法。
10. A {100} plane of at least 80% of the metal crystal of the polycrystalline Ag or Ag alloy is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% of the metal crystal. % Or more of the <100> directions are aligned within 10 degrees with each other, and at least 60% of the {100} plane of the metal crystal is between the base and the superconductor.
n 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) of at least 1 Ln 2 O 3 layer (Ln parallel within 20 degrees to the interface selected from Y or a rare earth element A method for producing an oxide-based superconducting material, comprising: forming a seed layer as an intermediate layer in an atmosphere at a substrate temperature of 500 ° C. or higher.
【請求項11】 多結晶AgまたはAg合金の金属結晶
の少なくとも80%の{100}面が、該金属と該超電
導体の界面に対して20度以内で平行であり、かつ、該
金属結晶の60%以上の<100>方向が互いに10度
以内で揃っている基材と、該基材と超電導体との間に少
なくとも金属結晶の60%以上の{100}面が、該金
属とLn23層(LnはYもしくは希土類元素から選ば
れた少なくとも1種)の界面に対して20度以内で平行
であるLn23層(LnはYもしくは希土類元素から選
ばれた少なくとも1種)を基板温度が600℃以上の雰
囲気中で中間層として成膜することを特徴とする酸化物
系超電導材料の製法。
11. A {100} plane of at least 80% of a polycrystalline Ag or Ag alloy metal crystal is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% or more of the <100> directions are aligned within 10 degrees with each other, and at least 60% or more of the {100} plane of the metal crystal is formed between the substrate and the superconductor by the metal and Ln 2. Ln 2 O 3 layer (Ln is at least one selected from Y or rare earth element) parallel to the interface of the O 3 layer (Ln is at least one selected from Y or rare earth element) within 20 degrees Forming an oxide layer as an intermediate layer in an atmosphere at a substrate temperature of 600 ° C. or higher.
【請求項12】 多結晶AgまたはAg合金の金属結晶
の少なくとも80%の{100}面が、該金属と超電導
体の界面に対して20度以内で平行であり、かつ、該金
属結晶の60%以上の<100>方向が互いに10度以
内で揃っている基材と、該基材と超電導体との間に金属
結晶の少なくとも60%の{100}面が、該金属とL
23層(LnはYもしくは希土類元素から選ばれた少
なくとも1種)の界面に対して20度以内で平行である
Ln23層(LnはYもしくは希土類元素から選ばれた
少なくとも1種)を基板温度が600℃以上、酸素分圧
が10Torr以下の雰囲気中で中間層として成膜する
ことを特徴とする酸化物系超電導材料の製法。
12. The {100} plane of at least 80% of the polycrystalline Ag or Ag alloy metal crystal is parallel to the interface between the metal and the superconductor within 20 degrees, and 60% of the metal crystal. % Or more of the <100> directions are aligned within 10 degrees with each other, and at least 60% of the {100} plane of the metal crystal is between the base and the superconductor.
n 2 O 3 layer (Ln is at least one selected from Y or a rare earth element) of at least 1 Ln 2 O 3 layer (Ln parallel within 20 degrees to the interface selected from Y or a rare earth element A method for producing an oxide-based superconducting material, comprising: forming a seed as an intermediate layer in an atmosphere having a substrate temperature of 600 ° C. or higher and an oxygen partial pressure of 10 Torr or lower.
【請求項13】 請求項11または12において、基板
温度が600℃以上、酸素分圧が10Torr以下の雰
囲気中で形成するLn23層は、物理気相蒸着法,化学
気相蒸着法,レーザ蒸着法,スパッタ法,有機金属化学
気相蒸着法のいずれかで成膜する酸化物系超電導材料の
製法。
13. The Ln 2 O 3 layer formed in an atmosphere in which the substrate temperature is 600 ° C. or more and the oxygen partial pressure is 10 Torr or less according to claim 11 or 12, wherein the Ln 2 O 3 layer is formed by physical vapor deposition, chemical vapor deposition, A method for producing oxide-based superconducting materials formed by laser vapor deposition, sputtering, or metal organic chemical vapor deposition.
【請求項14】 請求項1〜9のいずれかに記載の酸化
物系超電導材料を用いたことを特徴とする超電導マグネ
ット。
14. A superconducting magnet using the oxide superconducting material according to claim 1.
【請求項15】 請求項10〜13のいずれかに記載の
酸化物系超電導材料の製法により作製した酸化物系超電
導材料を用いたことを特徴とする超電導マグネット。
15. A superconducting magnet using an oxide superconducting material produced by the method for producing an oxide superconducting material according to claim 10.
【請求項16】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とするNMR装置。
16. An NMR apparatus using the superconducting magnet according to claim 14 or 15.
【請求項17】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とするシンクロトロン放
射光発生装置。
17. A synchrotron radiation light generator using the superconducting magnet according to claim 14.
【請求項18】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とする磁気分別装置。
18. A magnetic separation device using the superconducting magnet according to claim 14 or 15.
【請求項19】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とするNMR装置。
19. NMR apparatus characterized by using a superconducting magnet according to claim 1 4 or 15.
【請求項20】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とするMRI装置。
20. An MRI apparatus using the superconducting magnet according to claim 14 or 15.
【請求項21】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とするシンクロトロン装
置。
21. synchrotron apparatus characterized by using a superconducting magnet according to claim 1 4 or 15.
【請求項22】 請求項14または15に記載の超電導
マグネットを用いたことを特徴とする磁気分別装置。
22. A magnetic separation device using the superconducting magnet according to claim 14 or 15.
JP10257788A 1998-09-11 1998-09-11 Oxide-based superconducting material, method for producing the same, and apparatus using the same Expired - Fee Related JP3045705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257788A JP3045705B2 (en) 1998-09-11 1998-09-11 Oxide-based superconducting material, method for producing the same, and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257788A JP3045705B2 (en) 1998-09-11 1998-09-11 Oxide-based superconducting material, method for producing the same, and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2000086239A JP2000086239A (en) 2000-03-28
JP3045705B2 true JP3045705B2 (en) 2000-05-29

Family

ID=17311123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257788A Expired - Fee Related JP3045705B2 (en) 1998-09-11 1998-09-11 Oxide-based superconducting material, method for producing the same, and apparatus using the same

Country Status (1)

Country Link
JP (1) JP3045705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521693B2 (en) * 2002-12-04 2010-08-11 住友電気工業株式会社 High temperature superconducting thick film member and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Akihiro K.et al.,"Synthesis of Biaxially Aligned Y2O3 Buffer Layer Directly on Ni Tapes through the Electron Beam Deposition,"Advances in super conductivity X(Proceedings of the 10th Iternational Symposium on Suprconductivity(ISS’97),October 27−30,1997,Gifu),Vol.2,15 July 1998,pp.615−618
Ichinose A.et al.,"Deposition of Y2O3 buffer layers on biaxially−textured metal substrates,"Physica C,Vol.302,No.1,10 June 1998,pp.51−56
田中昭二他編,「超電導とは何か」,第1版,日本経済新聞社,昭和62年6月15日,pp.61−93

Also Published As

Publication number Publication date
JP2000086239A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
KR100683186B1 (en) Multi-layer articles and methods of making same
US8653005B2 (en) Fluorinated precursors of superconducting ceramics, and methods of making the same
US6673387B1 (en) Control of oxide layer reaction rates
WO2001026165A2 (en) Method and apparatus for forming buffer layers
EP1388899A2 (en) Oxide superconducting wire
Norton Science and technology of high-temperature superconducting films
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
Izumi et al. High-Ic YBCO coated conductors by metal organic deposition method using trifluoroacetates
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
Ichino et al. Potential of Nd: YAG pulsed laser deposition method for coated conductor production
JP3045705B2 (en) Oxide-based superconducting material, method for producing the same, and apparatus using the same
KR100721901B1 (en) Superconducting article and its manufacturing method
JP2813287B2 (en) Superconducting wire
Jia et al. Growth and characterization of SrRuO/sub 3/buffer layer on MgO template for coated conductors
US7618923B2 (en) Method for making a superconductor with improved microstructure
US5362709A (en) Superconducting device
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2000322951A (en) Manufacture of oxide-based superconductive structure
Vergnieres et al. MOCVD and spray pyrolysis for coated conductor synthesis
Norton Epitaxial growth of superconducting cuprate thin films
Beauquis et al. Scaling-up of High-T C tapes by MOCVD, spray pyrolysis and MOD processes
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees