JPS6338571A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS6338571A
JPS6338571A JP18199086A JP18199086A JPS6338571A JP S6338571 A JPS6338571 A JP S6338571A JP 18199086 A JP18199086 A JP 18199086A JP 18199086 A JP18199086 A JP 18199086A JP S6338571 A JPS6338571 A JP S6338571A
Authority
JP
Japan
Prior art keywords
laser beam
film
target material
chamber
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18199086A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakada
清和 仲田
Moriaki Ono
守章 小野
Shigechika Kosuge
小菅 茂義
Itaru Watanabe
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18199086A priority Critical patent/JPS6338571A/en
Publication of JPS6338571A publication Critical patent/JPS6338571A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Abstract

PURPOSE:To improve the adhesive powder, density and vapor deposition speed of a film by projecting a laser beam again to an evaporating material at the time of projecting the laser beam to the target material to evaporate the target material and to form the film. CONSTITUTION:A laser beam 7b which is included in an incident laser beam 7 and is transmitted through a partial reflection mirror 9 is reflected by a total reflection mirror 10 to enter the inside of a chamber 1 in which a vacuum state is maintained. The target material 5 is irradiated with said beam. The target material 5 is directly evaporated by the irradiation and the evaporating material 6 is fed to a base material 3. On the other hand, the laser beam 7a reflected by the partial reflection mirror 9 passes the transparent window 8a of the chamber 1 and enters the inside of the chamber 1 where the evaporating material 6 is irradiated by said beam. Since the evaporating material 6 is pulverized at the time of the irradiation, the material absorbs the energy possessed by the laser beam 7a with high efficiency, by which the ionization degree, etc., of the evaporating material 6 are improved and the activity thereof is improved. The evaporating material 6 improved in the activity sticks onto the surface of the base material 3 to form the film 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザビームを利用した被膜形成方法、特に
基材と被膜の密着強匿の同上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of forming a film using a laser beam, and particularly to a method for strengthening the adhesion between a base material and a film.

〔従来の技術〕[Conventional technology]

第6図は、従来のレーザビーム金利用したPVD法によ
る被膜形成方法の説明図であり、図において1は密閉さ
れたチャンバであシ、チャンバ1は内部雰囲気金量図示
の真空ポンプで矢印2万同にに吸引し真空とされている
。3はチャンバ1内に取付けられ、表面に被膜4を形成
する基材、5は基板6と対間して取付けられ被膜4とな
る蒸発物質6を蒸発させるターゲツト材、7は不図示の
レーザ発振器より出射されたレーザビームであり、レー
ザビーム7はチャンバ1の透過窓8を経てターゲツト材
5に照射される。
FIG. 6 is an explanatory diagram of a film forming method by the conventional PVD method using a laser beam. It is said to be suctioned into a vacuum. 3 is a base material that is installed in the chamber 1 and on which the coating 4 is formed; 5 is a target material that is installed in pair with the substrate 6 and evaporates the evaporation substance 6 that becomes the coating 4; 7 is a laser oscillator (not shown) The laser beam 7 is emitted from the chamber 1 and is irradiated onto the target material 5 through the transmission window 8 of the chamber 1.

上記のよう疋構成した従来の被膜形成方法においては、
ターゲツト材5はレーザビーム7の照射によシ直接蒸発
させ、この蒸発した蒸発物質6を基材30表面に付着、
堆積せしめて所定の被膜4を形成している。
In the conventional film forming method configured as above,
The target material 5 is directly evaporated by irradiation with a laser beam 7, and the evaporated material 6 is attached to the surface of the base material 30.
It is deposited to form a predetermined coating 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のレーザビーム全利用した被膜形成方法におい
ては、レーザビーム7の照射にょジターゲット材5から
発生する蒸発物質の励起、ラジカル、イオン化等の活性
化状態が低いため、形成された被膜4と薄材6間の゛密
着力が小さく、加えて被膜40粒子間の密着力も小さい
といつ間一点がめった。
In the above-mentioned conventional film forming method that makes full use of the laser beam, the activation state of the evaporated substances generated from the target material 5 during irradiation with the laser beam 7 is low, such as excitation, radicals, ionization, etc., so that the formed film 4 and One problem occurred when the adhesion between the thin materials 6 was small and the adhesion between the particles of the coating 40 was also small.

ま之、被膜4の密度が小さく、被膜4の緻密性に欠ける
という間1点もあった。
However, there was one point that the density of the coating 4 was low and the coating 4 lacked denseness.

さらに、?、Hi並が小すく、被膜4の形成に時間?要
するという問題点もらった。
moreover,? , Hi level is small, and it takes time to form the coating 4? I got the problem that it was necessary.

この発明は、〃・かる問題点をjγを決するためになさ
ノtたものであシ、唇着強度の良好な破膜全高能率で形
成することができる’dB形成方法を提案することケ目
的とするものである。
The purpose of this invention is to solve the above problems in order to determine jγ, and to propose a method for forming a ruptured membrane with high efficiency with good lip adhesion strength. That is.

(l調;4点を解決するための手段〕 この発明VC%る被1d形成方法は、ターゲツト材にレ
ーザビームケ1M射することにより、ターゲツト材から
蒸9′4シた傾発物政に再度レーザビームを照射して基
材表面C・こ蒸発物質の破膜を形成する。
(L style; Means for solving the 4 points) The method for forming a VC% 1d material according to the present invention is to irradiate the target material with a laser beam of 1M, thereby re-applying the laser beam to the material that has evaporated from the target material. A beam is irradiated to form a broken film of the evaporated substance on the surface of the base material C.

〔作 用〕[For production]

この発明にυいては、ターゲツト材から蒸発した蒸発物
質に、再びし:ザビームを照射することにより蒸発物質
の1占I生伏!西を高める。
According to this invention, by irradiating the evaporated substance from the target material with the beam again, the evaporated substance is completely destroyed. Elevate the west.

〔実弛例〕[Actual slack case]

傅1図は、この発明の一実泊例を示す概略形成図でるり
、図において1〜8は上記第6図に示した従来例と全く
同じものである。9は入射したレーザビーム7の一部の
ビーム7aを反射し、残pの部分を透過する部分反射鏡
、10は部分反射鏡9を透過したレーザビームZbを反
射する全反射鏡である。
Figure 1 is a schematic diagram showing an actual example of the present invention. In the figure, numerals 1 to 8 are exactly the same as the conventional example shown in Figure 6 above. Reference numeral 9 denotes a partial reflection mirror that reflects part of the beam 7a of the incident laser beam 7 and transmits the remaining part p, and 10 represents a total reflection mirror that reflects the laser beam Zb that has passed through the partial reflection mirror 9.

上記のように形成した被膜形成方法においては)入射し
たレーザビーム7のうち部分反射)9を透過し次レーザ
ビーム7bft全反射鏡10で反射した後、透過窩(8
) fr:介して真空状態となっているチャンバ1内に
入射し、ターゲツト材5を照射する。
In the method for forming a film formed as described above, part of the incident laser beam 7 is transmitted (partially reflected) 9, the next laser beam 7bft is reflected by the total reflection mirror 10, and then the transmission hole (8
) fr: enters the chamber 1 which is in a vacuum state and irradiates the target material 5.

ターゲツト材5はレーザビーム7bの照射によシ直接蒸
発し、蒸発物質6が基材6に送られる。
The target material 5 is directly evaporated by irradiation with the laser beam 7b, and the evaporated substance 6 is sent to the base material 6.

一方、部分反射鏡9で反射したレーザビーム7aは、チ
ャンバ1に設けた透過g8aよりチャンバ1内に入射し
、ターゲツト材5から蒸発し友蒸発物質6金照射する。
On the other hand, the laser beam 7a reflected by the partial reflecting mirror 9 enters the chamber 1 through a transmission g8a provided in the chamber 1, evaporates from the target material 5, and irradiates the target material 6 with gold.

この照射の際、蒸発物質6は微粒子化しているため、レ
ーザビーム7aの有するエネルギを高能率で吸収し、蒸
発物質6のイオン化率等を高め、蒸発物質6の活性化を
高める。
During this irradiation, since the evaporated substance 6 has become fine particles, it absorbs the energy of the laser beam 7a with high efficiency, increases the ionization rate of the evaporated substance 6, and increases the activation of the evaporated substance 6.

このレーザビーム7aの照射によシ活性化が高められ比
蒸発物質6が基材3表面上に付着し被膜4を形成する。
Irradiation with the laser beam 7a increases activation, and the specific evaporative substance 6 adheres to the surface of the base material 3 to form a coating 4.

以下、この実1例によりステンレスmc 5UB604
)からなる基材6表面に被膜を形成した具体例を説明す
る。
Below, based on this example, stainless steel mc 5UB604
) A specific example in which a film is formed on the surface of the base material 6 will be described.

〔具体例1〕 ターゲツト材5としてM2O3ヲ使用し、チャンバ1内
の雰囲気圧を坐臥10−’ Torrまで真空引きし、
この状態に保持し之ままで、入射レーザ出力4 KVV
のCO2レーザ(波畏10.6pm)のレーザビーム7
を入射して基材1上に被膜4の形成全行なった。
[Specific Example 1] Using M2O3 as the target material 5, the atmospheric pressure in the chamber 1 was evacuated to 10-' Torr,
While maintaining this state, the incident laser output is 4 KVV.
Laser beam 7 of CO2 laser (wave height 10.6pm)
The coating 4 was completely formed on the base material 1 by injecting the same.

入射したレーザビーム7はZn5eからなる部分反射ぞ
9で活性化用の反射ビーム7aは30%、蒸発用の透過
ビーム7bは・70%の分割比で分割し、ターゲット5
と蒸発物質乙に照射した。なお、基材温度は600℃で
ちる。
The incident laser beam 7 is split by a partial reflection groove 9 made of Zn5e at a splitting ratio of 30% for the reflected beam 7a for activation and 70% for the transmitted beam 7b for evaporation, and is directed to the target 5.
and irradiated the vaporized substance B. Note that the substrate temperature was set at 600°C.

この状態で基材6表面にM2O3の被膜4をJvさ5μ
nL蒸着し、その密Z力等を請べた結果を第1表に示す
。なお、第1表には、比較のために活性化用のレーザビ
ーム7a’に照射しない従来法の場合について調べ次結
果も示す。
In this state, a coating 4 of M2O3 is applied to the surface of the base material 6 to a thickness of 5 μm.
Table 1 shows the results of evaporating nL and measuring the density Z force, etc. For comparison, Table 1 also shows the results of a conventional method in which irradiation with the activation laser beam 7a' was not performed.

第1表 第1表に示すように蒸発物質6の活性化を図ったこの実
旭例の方法で被膜4の形成を行なうと、従来法と比較し
て蒸着能率および被膜性fL k著しく向上できること
が明らかである。
Table 1 If the coating 4 is formed by the method of this example in which the evaporated substance 6 is activated as shown in Table 1, the vapor deposition efficiency and coating properties fLk can be significantly improved compared to the conventional method. is clear.

また、この実権例による被膜形成時に、蒸発物質6の中
で活性化用のレーザビーム7aの照射部は一段と輝度が
高く高活性状頷にあることが観察された。
Further, during the film formation according to this practical example, it was observed that the part of the evaporated material 6 irradiated with the activation laser beam 7a had higher brightness and was in a highly activated state.

〔具体例2〕 上記具体例1と同一条件でターゲツト材5として純チタ
ンを使用し、ステンレス漬(SUS 3LJ4 )の基
材温度300℃で基材6表面に厚さ60μ7rLのチタ
ン被膜4を蒸着し、従来法と比較し几結果を第2表に示
す。
[Specific Example 2] Using pure titanium as the target material 5 under the same conditions as in the above specific example 1, a titanium coating 4 with a thickness of 60 μ7 rL was vapor-deposited on the surface of the base material 6 at a temperature of 300° C. for the base material soaked in stainless steel (SUS 3LJ4). The results are shown in Table 2 in comparison with the conventional method.

第  2  表 この場合も、この実施例による被膜形成は従来法と比べ
能率、被膜性質の向上を図ることができた。
Table 2 Also in this case, the film formation according to this example was able to improve efficiency and film properties compared to the conventional method.

なお、上記実施例では蒸発物質6に活性化用のレーザビ
ーム7at照射する位置を1個所の場合について説明し
たが部分反射鏡9の数を増して、復数個所で蒸発物質6
の活性化全図ることもできる。
In the above embodiment, the evaporated material 6 is irradiated with the activation laser beam 7at at one location.
It is also possible to fully activate the system.

さらに、上記実施例は蒸発物質6に活性化用のレーザビ
ーム7at照射し、ターゲツト材5と同一物質の被膜4
を基材6の表面に形成する場合について説明したが、第
2図に示すようにチャンバ1にガス供給管11を設け、
ターゲツト材5のレーザビーム7b照射部及び蒸発物質
6中のレーザビーム7a照射邪近傍に反応性ガス12を
供給することにより、蒸発物質6を酸化、窒化あるいは
炭化することができ、これらの被膜を形成することがで
きる。
Further, in the above embodiment, the evaporated material 6 is irradiated with an activation laser beam 7at, and a coating 4 made of the same material as the target material 5 is formed.
Although the case where the gas supply pipe 11 is formed on the surface of the base material 6 has been described, as shown in FIG.
By supplying the reactive gas 12 to the laser beam 7b irradiated part of the target material 5 and the vicinity of the laser beam 7a irradiation area in the evaporated material 6, the evaporated material 6 can be oxidized, nitrided, or carbonized, and these films can be can be formed.

また、ガス供給管11からプラズマ化され易いガス12
例えばアルゴンガスのように電離電圧の小さいガスを供
給すれば、ガス12自体がレーザビームによシプラズマ
化し、このプラズマエネルギ全蒸発物質6に付与でき、
蒸発物質6の活性化I!:図ることができる。
In addition, a gas 12 that is easily turned into plasma is supplied from the gas supply pipe 11.
For example, if a gas with a low ionization voltage, such as argon gas, is supplied, the gas 12 itself will be turned into plasma by the laser beam, and this plasma energy can be imparted to the total evaporated substance 6.
Activation of evaporative substance 6 I! : Can be planned.

〔具体例6〕 基材6としてステンレスm(SUS 304) 、ター
ゲツト材5として純チタンを使用し、入射レーザ出力4
 KWのCO2レーザのレーザビームを入射し、2段の
部分反射g!ヲ使用し1段目の部分反射鏡の反射率25
%、透過率75%、2段目の部分反射鏡の反射率30%
、透過率70cl)すなわち1段目の活性化用のレーザ
ビーム7aの出力IKW。
[Specific Example 6] Stainless steel (SUS 304) is used as the base material 6, pure titanium is used as the target material 5, and the incident laser output is 4.
The laser beam of KW's CO2 laser is incident, and there are two stages of partial reflection g! The reflectance of the first stage partial reflector using 25
%, transmittance 75%, second stage partial reflector reflectance 30%
, transmittance 70cl), that is, the output IKW of the first stage activation laser beam 7a.

2段目の活性化用のレーザビームの出力0.9 KW。The output of the laser beam for second stage activation is 0.9 KW.

蒸発用のレーザビーム7bの出力2. I KWテL、
 −ザビームを照射し、反応性ガス12としてNH3を
供給し、基材温度600℃、チャンバ1内雰囲気圧10
 Torrの条件のもとで、金属チタンを窒化すること
により基材6の表面に厚さ5μmの被膜4を形厄した。
Output of laser beam 7b for evaporation 2. I KW Te L,
- The beam is irradiated, NH3 is supplied as the reactive gas 12, the substrate temperature is 600°C, and the atmospheric pressure inside the chamber 1 is 10°C.
A film 4 having a thickness of 5 μm was formed on the surface of the base material 6 by nitriding metallic titanium under Torr conditions.

この被膜4はX線構造解析からTiNから成ることが明
らかになった。またこのTiNの被膜4の性状をマクロ
、ミクロ的に調べた結果、緻密な均一被膜が形成されて
いた。また、このときの蒸着速度は2μTL/、mであ
り、基板6と被膜4間の密着力は7 Kgf/rtrm
2以上であった。
X-ray structural analysis revealed that this coating 4 was made of TiN. Furthermore, macroscopic and microscopic examination of the properties of this TiN film 4 revealed that a dense and uniform film was formed. Further, the deposition rate at this time was 2 μTL/m, and the adhesion force between the substrate 6 and the coating 4 was 7 Kgf/rtrm.
It was 2 or more.

なお、上記各実姉例に示すように蒸発物質6の活性化k
[Wるためレーザビーム7aを照射すると共に、ターゲ
ツト材5と基材4間に電界を付与することにより、イオ
ン・粒子を加速して基材6に衝突させ、被膜4の密着力
を高めることもできる。
In addition, as shown in each of the above-mentioned examples, the activation k of the evaporated substance 6
[To increase the adhesion of the coating 4, by irradiating the laser beam 7a and applying an electric field between the target material 5 and the base material 4, the ions and particles are accelerated and collided with the base material 6. You can also do it.

また、上記各実ξ伍例においては被膜形成について説明
したが、基材6を除くことにより蒸発物質6の粉末?形
成することもできる0 〔発明の効果〕 この発明は以上説明したようにターゲツト材から蒸発し
た蒸発物質に再びレーザビーム金照射することによシ、
蒸発物質の活性状態を高めることができるから、密着力
の高い微密な被膜を高能率で形成することができる効果
を有する。
Further, in each of the above examples, film formation has been explained, but by removing the base material 6, powder of the evaporated substance 6 can be formed. [Effects of the Invention] As explained above, the present invention is able to irradiate the evaporated substance evaporated from the target material with a laser beam again.
Since the active state of the evaporated substance can be increased, it has the effect of forming a fine film with high adhesion and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図はこの発明の実施例を示す概略購成図、第2図は
他の実権例を示す概略構gj、図、第6図は従来の被膜
形成法を示す説明図でちる。 1・・・チャンバ、6・・・基材、4・・・被膜、5・
・・ターゲツト材、6・・・蒸発物質、7,7a、7b
・・・レーザビーム、8.8a・・・透過窓、9・・・
部分反射鏡、10・・・全反射鏡、11・・・ガス供給
管、12・・・ガス。
Figure 1 is a schematic diagram showing an embodiment of the present invention, Figure 2 is a schematic diagram showing another practical example, and Figure 6 is an explanatory diagram showing a conventional film forming method. DESCRIPTION OF SYMBOLS 1... Chamber, 6... Base material, 4... Coating, 5...
...Target material, 6... Evaporated substance, 7, 7a, 7b
...Laser beam, 8.8a...Transmission window, 9...
Partially reflecting mirror, 10... Totally reflecting mirror, 11... Gas supply pipe, 12... Gas.

Claims (1)

【特許請求の範囲】  ターゲット材にレーザビームを照射してターゲット材
を蒸発させて基材表面に蒸発物質の被膜を形成する被膜
形成方法において、 上記レーザビームにより蒸発した蒸発物質にレーザビー
ムを照射して基材表面に被膜を形成することを特徴とす
る被膜形成方法。
[Claims] A film forming method in which a target material is irradiated with a laser beam to evaporate the target material and a film of evaporated material is formed on the surface of the base material, wherein the evaporated material evaporated by the laser beam is irradiated with a laser beam. A method for forming a film, comprising: forming a film on the surface of a base material.
JP18199086A 1986-08-04 1986-08-04 Formation of film Pending JPS6338571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18199086A JPS6338571A (en) 1986-08-04 1986-08-04 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18199086A JPS6338571A (en) 1986-08-04 1986-08-04 Formation of film

Publications (1)

Publication Number Publication Date
JPS6338571A true JPS6338571A (en) 1988-02-19

Family

ID=16110393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18199086A Pending JPS6338571A (en) 1986-08-04 1986-08-04 Formation of film

Country Status (1)

Country Link
JP (1) JPS6338571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156074A (en) * 1988-12-09 1990-06-15 Mitsubishi Metal Corp Production of thin superconductor film
JPH02156073A (en) * 1988-12-09 1990-06-15 Mitsubishi Metal Corp Production of thin superconductor film
US6013130A (en) * 1995-03-22 2000-01-11 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Process and device for the production of epitaxial layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156074A (en) * 1988-12-09 1990-06-15 Mitsubishi Metal Corp Production of thin superconductor film
JPH02156073A (en) * 1988-12-09 1990-06-15 Mitsubishi Metal Corp Production of thin superconductor film
US6013130A (en) * 1995-03-22 2000-01-11 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Process and device for the production of epitaxial layers

Similar Documents

Publication Publication Date Title
US5965629A (en) Process for modifying surfaces of materials, and materials having surfaces modified thereby
US20240026524A1 (en) Processing method and apparatus for ultrafast laser deposition of multilayer film including diamond-like carbon film, anti-reflection film and anti-fingerprint film
JP3342201B2 (en) Titanium oxide-containing film-coated substrate for photocatalyst and method for producing the same
JPS6338571A (en) Formation of film
US6162512A (en) Process for modifying surfaces of nitride, and nitride having surfaces modified thereby
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JPS6196721A (en) Film forming method
Kreutz et al. Large area pulsed laser deposition of ceramic films
JPS6241291A (en) Preparation of solid lubricating film
JPS5622616A (en) Manufacture of diamondlike carbon film
JPH04350156A (en) Thin film forming device
JPS63238270A (en) Production of thin compound film
JP2000087238A (en) Formation of multicolor film and wear resistant and corrosion resistant multicolor member
JPH02156066A (en) Method for cleaning base material
JPH01168857A (en) Formation of titanium nitride film
JPS6320445A (en) Ion plating
JPS62224669A (en) Ceramic coating method with laser
JPH04246167A (en) Laser beam vapor-deposition method
JPS6338572A (en) Pvd method
JPS6314859A (en) Method for evaporating metal
JPS61221360A (en) Flexible film having hard surface and production thereof
RU2145362C1 (en) Process of vacuum-plasma deposition of coats
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPH01172564A (en) Formation of film at high speed
JPS6353258A (en) Method and apparatus for physical vapor deposition