JPH02156073A - Production of thin superconductor film - Google Patents

Production of thin superconductor film

Info

Publication number
JPH02156073A
JPH02156073A JP31174488A JP31174488A JPH02156073A JP H02156073 A JPH02156073 A JP H02156073A JP 31174488 A JP31174488 A JP 31174488A JP 31174488 A JP31174488 A JP 31174488A JP H02156073 A JPH02156073 A JP H02156073A
Authority
JP
Japan
Prior art keywords
thin film
clusters
laser beam
cluster
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31174488A
Other languages
Japanese (ja)
Inventor
Hideyuki Kondo
英之 近藤
Sadaaki Hagino
萩野 貞明
Takuo Takeshita
武下 拓夫
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP31174488A priority Critical patent/JPH02156073A/en
Publication of JPH02156073A publication Critical patent/JPH02156073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high quality thin film at a low temp. by decomposing clusters of superconductor ceramics generated from a generating source and transferred toward a body for deposition by irradiation with laser beam. CONSTITUTION:A target 31 is irradiated with laser beam 32 for generating clusters to generate clustery sputtered particles 34a of superconductor ceramics from the target 31 and the transfer the particles 34a toward a body 35 for deposition. The clustery sputtered particles 34a are then irradiated with other laser beam 33 for decomposing clusters to decompose the clusters during transfer and the resulting atomic sputtered particles are deposited on the substrate 35 to form a thin film of the superconductor ceramics. The clusters may be generated by any method.

Description

【発明の詳細な説明】 〈従来の技術〉 スパッタリングによる薄膜製作の技術としてはRFスパ
ッタリングやレーザービームスバッタリングが知られて
いる。
[Detailed Description of the Invention] <Prior Art> RF sputtering and laser beam sputtering are known as techniques for producing thin films by sputtering.

〈発明が解決しようとする課題〉 RFスパッタリングでは、スパッタ粒子のもつエネルギ
ーが大きいため被着体(基板)上での再スパツタが無視
できぬ程生じ、これがために被着体上に形成される薄膜
の組成が一定しないという問題があった。また、薄膜の
成長速度をあまり速くすることができないという問題も
あった。
<Problem to be solved by the invention> In RF sputtering, sputtered particles have large energy, so re-spatter on the adherend (substrate) occurs to a considerable extent, which causes spatter to be formed on the adherend. There was a problem that the composition of the thin film was not constant. There was also the problem that the growth rate of the thin film could not be made very fast.

一方、レーザービームスバッタリングでは、第4図に示
すように、ターゲット21にレーザー光22を照射して
クラスタ状のスパッタ粒子23を発生させ、このスパッ
タ粒子23を基板24上に堆積させて薄膜25を形成す
るが、このクラスタ粒子23を構成する原子1個当りの
運動エネルギーは通常のスパッタ粒子のものより小さい
ため、被着体(基板24)上での再スパツタを生ずるこ
となく被着体上に形成される薄膜25の巨視的な組成を
ターゲット21の組成に近づけることが容易にてきる。
In laser beam sputtering, on the other hand, as shown in FIG. However, since the kinetic energy per atom constituting the cluster particles 23 is smaller than that of normal sputtered particles, the cluster particles 23 can be sputtered on the adherend without causing re-sputtering on the adherend (substrate 24). The macroscopic composition of the thin film 25 formed on the target 21 can be easily brought close to the composition of the target 21.

また、被着体24ヘクラスタ23を供給することにより
薄膜25を形成することから、上記RFスパッタリング
法に較べて薄膜成長速度を大幅に速めることができる。
Furthermore, since the thin film 25 is formed by supplying the clusters 23 to the adherend 24, the thin film growth rate can be significantly increased compared to the RF sputtering method described above.

しかしながら、スパッタ粒子23がクラスタ状であるた
め、被着体24上に形成される薄膜25の微視的な組成
が不均一になったり形成された薄膜25の致密性が損な
われたりし、臨界温度Tcが下がり、臨界電流密度Jc
が低下してしまい、更には、薄膜25自体のエピタキシ
ャル成長が阻害されるという問題が生じていた。また、
形成された薄膜25の表面粗さが大きくなってしまうこ
とから、デバイス化に際してパターン形成時のレジスト
膜が厚くならざるをえず、これがために解像度が低くな
フて微細加工が不可能となフてしまうという問題があっ
た。このような問題を回避するには基板24上のクラス
タの拡散を促すためにかなり高温での熱処理が必要とな
り、低温条件での超電導体薄膜製造の大きな障害を引き
起こしていた。
However, since the sputtered particles 23 are cluster-like, the microscopic composition of the thin film 25 formed on the adherend 24 may become non-uniform or the tightness of the formed thin film 25 may be impaired. The temperature Tc decreases and the critical current density Jc
This causes a problem in that the epitaxial growth of the thin film 25 itself is inhibited. Also,
Since the surface roughness of the formed thin film 25 becomes large, the resist film during pattern formation has to be thick when fabricating devices, and this results in low resolution and makes microfabrication impossible. There was a problem that it would disappear. To avoid such problems, heat treatment at a considerably high temperature is required to promote the diffusion of clusters on the substrate 24, which has caused a major obstacle in the production of superconductor thin films under low-temperature conditions.

本発明は上記従来の事情に鑑みなされたもので、低温条
件下で良質な超電導体薄膜を形成することができる方法
を提供することを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method capable of forming a high-quality superconductor thin film under low temperature conditions.

〈課題を解決するための手段〉 上記課題を解決する本願の第1の発明は、クラスタ発生
源から超電導体セラミックスのクラスタを発生させて被
着体側へ移動させ、当該クラスタを移動中に分解させて
該被着体に超電導体セラミックスの薄膜を形成すること
を特徴とする超電導体薄膜の製造方法である。
<Means for Solving the Problems> The first invention of the present application to solve the above problems is to generate clusters of superconducting ceramics from a cluster generation source, move them to the adherend side, and decompose the clusters during the movement. A method for producing a superconductor thin film, characterized in that a superconductor ceramic thin film is formed on the adherend.

また、上記課題を解決する本願の第2の発明は、超電導
体セラミックスのターゲットにレーザー光を照射して超
電導体セラミックスのクラスタを発生させ、該クラスタ
に前記レーザー光と異なる他のレーザー光を照射して当
該クラスタを移動中に分解させて該被着体に超電導体セ
ラミックスの薄膜を形成することを特徴とする超電導体
薄膜の製造方法である。
Further, a second invention of the present application to solve the above problem is to irradiate a target of superconducting ceramics with a laser beam to generate clusters of superconducting ceramics, and irradiate the clusters with another laser beam different from the laser beam. This method of manufacturing a superconductor thin film is characterized in that a thin film of superconductor ceramics is formed on the adherend by decomposing the cluster during movement.

〈作用〉 本願の第1の発明では、クラスタ発生源から発生された
超電導体セラミックスのクラスタに例えばエキシマレー
ザ−光を照射して励起させ、このクラスタを被着体への
移動途中で分解させ、クラスタの分解により得られた原
子を被着体上に供給して超電導体セラミックスの均質な
薄膜を低温条件下で形成する。
<Operation> In the first invention of the present application, the superconducting ceramic clusters generated from the cluster generation source are irradiated with, for example, excimer laser light to excite them, and the clusters are decomposed on the way to the adherend, Atoms obtained by decomposing the clusters are supplied onto an adherend to form a homogeneous thin film of superconducting ceramics under low temperature conditions.

すなわち、従来のスパッタリング法のスパッタ粒子に較
べて原子1単位当りの運動エネルギーが小さくなるクラ
スタ状態を初期の状態とし、このクラスタを被着体に到
達するまでの間にレーザー光でエネルギーを加えて分解
させ、被着体上に均一な薄膜を形成する。尚、このレー
ザー光によるクラスタへのエネルギー付加はクラスタを
2価以上にイオン化させ、電荷の反発により分解が更に
促進されるようにするのが好ましい。
In other words, the initial state is a cluster in which the kinetic energy per atomic unit is smaller than that of sputtered particles in conventional sputtering methods, and energy is applied to this cluster with laser light until it reaches the adherend. Decomposes to form a uniform thin film on the adherend. Incidentally, it is preferable that the addition of energy to the cluster by this laser beam ionizes the cluster to have a valence of two or more, so that the decomposition is further promoted by the repulsion of charges.

そして、本願の第2の発明では、超電導体セラミックス
のターゲットにクラスタ分解用レーザーと波長やエネル
ギーの異なる他のレーザー光(例えばYAGレーザ−)
を照射してこのターゲットから当該ターゲットの組成に
極めて近い組成のクラスタを発生させ、このクラスタを
上記と同様に被着体への移動途中でレーザー光照射によ
り分解させ、被着体上に低温条件下で均一な薄膜を形成
する。すなわち−第1図に示すように2種類のレーザー
光を用いてターゲット31からスパッタ粒子34を発生
させて基板35上に超電導体薄膜36を形成するもので
あり、まず第2図(a)に示すようにクラスタ発生用レ
ーザー光32てターゲットを照射することによりターゲ
ット31からクラスタ状のスパッタ粒子34aを発生さ
せるプロセスと、第2図(b)に示すようにクラスタ分
解用レーザー光33で発生したクラスタ状スバッタ粒子
34aを照射して分解させ、原子状のスパッタ粒子が基
板35上に堆積させるプロセスとを含んでいる。
In the second invention of the present application, a cluster decomposition laser and other laser beams having different wavelengths and energies (for example, YAG laser) are used for the target of superconducting ceramics.
is irradiated to generate clusters with a composition very similar to that of the target, and these clusters are decomposed by laser beam irradiation on the way to the adherend in the same manner as above, and are placed on the adherend under low temperature conditions. form a uniform thin film at the bottom. That is, as shown in FIG. 1, two types of laser beams are used to generate sputtered particles 34 from a target 31 to form a superconductor thin film 36 on a substrate 35. First, as shown in FIG. As shown in FIG. 2(b), there is a process in which cluster-shaped sputtered particles 34a are generated from the target 31 by irradiating the target with a laser beam 32 for cluster generation, and a process in which cluster-shaped sputtered particles 34a are generated by a laser beam 33 for cluster decomposition as shown in FIG. 2(b). The method includes a process in which cluster-shaped sputter particles 34a are irradiated and decomposed, and atomic sputter particles are deposited on a substrate 35.

尚、上記した本願の第1の発明はクラスタを発生させる
方法に特に限定はなく、上記したレーザー光照射の他に
、原料元素を高周波電場でプラズマ化してクラスタを形
成する等の種々の方法を用いるこができる。
Incidentally, in the above-described first invention of the present application, there is no particular limitation on the method of generating clusters, and in addition to the above-mentioned laser beam irradiation, various methods such as forming clusters by turning raw material elements into plasma with a high-frequency electric field can be used. It can be used.

また、クラスタ分解用レーザー光はターゲットから被着
体に至る間でクラスタに照射するようにすれば良いが、
ターゲットの近傍で照射するようにすれば発生したクラ
スタが広がる前これらクラスタに効率よくレーザー光を
照射することができて好ましい。
In addition, the laser beam for cluster decomposition can be irradiated onto the clusters between the target and the adherend.
It is preferable to irradiate the laser beam near the target because the generated clusters can be efficiently irradiated with the laser beam before the clusters spread.

〈実施例〉 まず、本発明の製造方法を実施する装置は、第3図に示
すように、酸素供給管1と排気管2とが接続された容器
3内にターゲット4、基板5、加熱用ヒータ6を備え、
容器3に設けられたガラス窓7.8に臨むレーザー発振
器9.10を備えたものである。
<Example> First, as shown in FIG. 3, in an apparatus for carrying out the manufacturing method of the present invention, a target 4, a substrate 5, and a heating material are placed in a container 3 to which an oxygen supply pipe 1 and an exhaust pipe 2 are connected. Equipped with a heater 6,
It is equipped with a laser oscillator 9.10 facing a glass window 7.8 provided in the container 3.

容器3内には図外の酸素供給源から酸素供給管1を介し
て酸素ガスが供給される一方、図外の排気装置に接続さ
れた排気管2を介して容器3内の排気がなされる。また
、ターゲット4は回転機構を有したホルダに支持され、
一定の速度で回転するようになっている。また、ターゲ
ット4に対向した基板5はヒータ6により加熱されるよ
うになっている。また、レーザー発振器9.10はター
ゲット4の回転中心から偏心した位置にレーザー光をそ
れぞれ照射するようになっている。
Oxygen gas is supplied into the container 3 from an oxygen supply source (not shown) through an oxygen supply pipe 1, while the inside of the container 3 is exhausted through an exhaust pipe 2 connected to an exhaust device (not shown). . Further, the target 4 is supported by a holder having a rotation mechanism,
It rotates at a constant speed. Further, a substrate 5 facing the target 4 is heated by a heater 6. Further, the laser oscillators 9 and 10 are configured to irradiate laser beams to positions eccentric from the rotation center of the target 4, respectively.

次いで、上記の装置において超電導体薄膜を製造した結
果を以下に説明する。
Next, the results of manufacturing a superconductor thin film using the above-mentioned apparatus will be explained below.

まず、基板5とターゲット4との間隔を40mm、ター
ゲット4の組成をBi: Sr: Ca: Cu:0=
2: 2: 2: 3: X、基板5をMgO単結晶と
し、レーザー発振器9からNd  YAGレーザー光(
波長1.064μm、パルス幅15ns、出力0゜8 
J/am2)をターゲット4に照射して容器3内圧力3
、  OX 10−’Torr、基板温度600℃で基
板5上に薄膜を形成した。この結果得られた薄膜は77
Kまでの範囲では超電導性を示さなかった。
First, the distance between the substrate 5 and the target 4 is 40 mm, and the composition of the target 4 is Bi: Sr: Ca: Cu: 0=
2: 2: 2: 3: X, the substrate 5 is made of MgO single crystal, and the Nd YAG laser beam (
Wavelength 1.064μm, pulse width 15ns, output 0°8
J/am2) to the target 4 to lower the internal pressure 3 of the container 3.
A thin film was formed on the substrate 5 at OX 10-'Torr and a substrate temperature of 600°C. The resulting thin film was 77
It did not exhibit superconductivity in the range up to K.

次いで、上記条件の下にレーザー発振器10からArF
エキシマレーザ−光(波長0.193μm、パルス幅I
ons、出力I X 10−3J/am2)を更にター
ゲット4に照射した。この結果、成膜速度0.06人/
パルスで基板5上に臨界温度TC=87にのB i−S
 r−Ca−Cu−0系超電導体薄膜が得られた。
Next, under the above conditions, ArF is emitted from the laser oscillator 10.
Excimer laser light (wavelength 0.193 μm, pulse width I
ons, output I x 10-3 J/am2) was further irradiated onto the target 4. As a result, the deposition rate was 0.06 people/
B i-S at a critical temperature TC=87 on the substrate 5 with a pulse.
An r-Ca-Cu-0 based superconductor thin film was obtained.

また更に、酸素ガス45CCMを基板δ付近に導入して
酸素の組成比の増大を図ったところ、臨界温度Tc=9
8にのB1−5r−Ca−Cu−0系超電導体薄膜が得
られた。
Furthermore, when 45 CCM of oxygen gas was introduced near the substrate δ to increase the oxygen composition ratio, the critical temperature Tc=9
A B1-5r-Ca-Cu-0 based superconductor thin film was obtained.

〈効果〉 以上説明したように本願の発明によれば、原子1個当り
の運動エネルギーが比較的小さいクラスタ状の粒子を移
動途中でレーザー光により原子状に分解して被着体上に
堆積させるようにしたため、被着体上で再スパツタを生
ずることなく致密且つ均質な超電導体薄膜を低温条件下
で効率良く形成することができる。また、クラスタ発生
用レーザー光によりターゲットからクラスタ状のスパッ
タ粒子を発生させ、これをクラスタ分解用レーザー光に
より分解して被着体上に堆積させるようにしたため、上
記効果に加え、ターゲットの組成に近い組成の超電導体
薄膜を容易に得ることができる。
<Effects> As explained above, according to the invention of the present application, cluster-like particles with relatively small kinetic energy per atom are decomposed into atoms by a laser beam during movement and deposited on an adherend. As a result, a dense and homogeneous superconductor thin film can be efficiently formed under low temperature conditions without causing re-spatter on the adherend. In addition, cluster-shaped sputtered particles are generated from the target using a laser beam for cluster generation, and these are decomposed by a laser beam for cluster decomposition and deposited on the adherend, so in addition to the above effects, the composition of the target Superconductor thin films with similar compositions can be easily obtained.

更に、レーザー光の種類によりクラスタの励起状態を容
易に制御することができ、超電導体組成等に応じた細か
な制御を達成することができる。
Furthermore, the excited state of the cluster can be easily controlled by the type of laser light, and fine control can be achieved depending on the superconductor composition, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る超電導体薄膜の製造方
法の概念図、第2図(a)、(b)はそれぞれ超電導体
薄膜の製造過程の概念図、第3図は本発明に用いる製造
装置の一例の構成図、第4図は従来の超電導体薄膜の製
造方法の概念図である。 4.21,31はターゲット、 5. 24. 35は被着体(基板)、 9. 10はレーザー発振器、 22. 32. 33はレーザー光である。
FIG. 1 is a conceptual diagram of a method for manufacturing a superconducting thin film according to an embodiment of the present invention, FIGS. 2(a) and (b) are conceptual diagrams of the manufacturing process of a superconducting thin film, and FIG. 3 is a conceptual diagram of the manufacturing process of a superconducting thin film according to an embodiment of the present invention. FIG. 4 is a conceptual diagram of a conventional superconductor thin film manufacturing method. 4. 21 and 31 are targets, 5. 24. 9. 35 is an adherend (substrate); 10 is a laser oscillator, 22. 32. 33 is a laser beam.

Claims (2)

【特許請求の範囲】[Claims] (1)クラスタ発生源から超電導体セラミックスのクラ
スタを発生させて被着体側へ移動させ、レーザー光を照
射して当該クラスタを移動中に分解させて該被着体に超
電導体セラミックスの薄膜を形成することを特徴とする
超電導体薄膜の製造方法。
(1) Clusters of superconducting ceramics are generated from a cluster generation source, moved to the adherend, and irradiated with laser light to decompose the clusters during movement to form a thin film of superconducting ceramics on the adherend. A method for producing a superconductor thin film, characterized by:
(2)超電導体セラミックスのターゲットにレーザー光
を照射して超電導体セラミックスのクラスタを発生させ
、該クラスタに前記レーザー光と異なる他のレーザー光
を照射して当該クラスタを移動中に分解させて該被着体
に超電導体セラミックスの薄膜を形成することを特徴と
する超電導体薄膜の製造方法。
(2) A superconducting ceramic target is irradiated with a laser beam to generate a superconducting ceramic cluster, and the cluster is irradiated with another laser beam different from the laser beam to decompose the cluster while it is moving. A method for producing a superconductor thin film, comprising forming a superconductor ceramic thin film on an adherend.
JP31174488A 1988-12-09 1988-12-09 Production of thin superconductor film Pending JPH02156073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31174488A JPH02156073A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31174488A JPH02156073A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Publications (1)

Publication Number Publication Date
JPH02156073A true JPH02156073A (en) 1990-06-15

Family

ID=18020957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31174488A Pending JPH02156073A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Country Status (1)

Country Link
JP (1) JPH02156073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174129A (en) * 2010-02-24 2011-09-08 Fujikura Ltd Method for producing oxide superconductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264819A (en) * 1986-05-09 1987-11-17 Inoue Japax Res Inc Electric discharge machine
JPS6338571A (en) * 1986-08-04 1988-02-19 Nippon Kokan Kk <Nkk> Formation of film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264819A (en) * 1986-05-09 1987-11-17 Inoue Japax Res Inc Electric discharge machine
JPS6338571A (en) * 1986-08-04 1988-02-19 Nippon Kokan Kk <Nkk> Formation of film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174129A (en) * 2010-02-24 2011-09-08 Fujikura Ltd Method for producing oxide superconductive film

Similar Documents

Publication Publication Date Title
JPH02307808A (en) Method and device for producing oxide superconducting wire
JPH02310363A (en) Vapor deposition device by laser
KR100384892B1 (en) Fabrication method of erbium-doped silicon nano-dots
JPH05804A (en) Film forming device for large area multiple oxide superconducting thin film
JPH02156073A (en) Production of thin superconductor film
RU2205893C2 (en) Method and apparatus for plasma chemical deposition of coatings
JPH03174306A (en) Production of oxide superconductor
JPH03122283A (en) Apparatus for coating surface of base sheet
JP3080096B2 (en) Fabrication method of large area thin film
JPH04182317A (en) Formation of oxide superconducting thin film
JPH04311561A (en) Method and device for forming thin film
JP2525910B2 (en) Laser excited thin film formation method
GB2300426A (en) Thin film forming apparatus using laser and secoindary sputtering means
JPH02156074A (en) Production of thin superconductor film
JPS62128528A (en) Laser surface treating device
JPH02156075A (en) Production of thin superconductor film
JPH03174305A (en) Production of oxide superconductor
JPS63262457A (en) Preparation of boron nitride film
JPH0324259A (en) Direct plotting device by laser
JPH0598429A (en) Method for manufacturing transparent electrically conductive film and apparatus for manufacturing transparent electrically conductive film
JPS63282199A (en) Formation of thin diamond film
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH03287760A (en) Production of thin film with large area
JPH0441665A (en) Production of thin film by vapor deposition with laser
JPH04214858A (en) Manufacture of thin film