JPH02156075A - Production of thin superconductor film - Google Patents

Production of thin superconductor film

Info

Publication number
JPH02156075A
JPH02156075A JP31174688A JP31174688A JPH02156075A JP H02156075 A JPH02156075 A JP H02156075A JP 31174688 A JP31174688 A JP 31174688A JP 31174688 A JP31174688 A JP 31174688A JP H02156075 A JPH02156075 A JP H02156075A
Authority
JP
Japan
Prior art keywords
laser beam
target
ionized
adherend
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31174688A
Other languages
Japanese (ja)
Inventor
Hideyuki Kondo
英之 近藤
Sadaaki Hagino
萩野 貞明
Takuo Takeshita
武下 拓夫
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP31174688A priority Critical patent/JPH02156075A/en
Publication of JPH02156075A publication Critical patent/JPH02156075A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the efficiency of capture of vapor phase superconductor ceramics on a body for deposition by irradiating the ceramics with laser beam to ionize the atoms of the ceramics and by impressing voltage whose polarity is reverse to that of the ionized atoms on the body. CONSTITUTION:A target 31 is irradiated with laser beam 32 for generating clusters to generate clustery sputtered particles 34a from the target 31. The particles 34a are ionized by irradiation with laser beam 33 for ionization and the ionized particles are decomposed to generate positively ionized atoms 34. Negative voltage is impressed on a body 35 for deposition and the ionized atoms 34 are attracted to the body 34 and deposited. By this method, a high quality thin superconductor film can be formed at a high rate in a high yield of the starting material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気相超電導体セラミックスと被着体との間に電
界を生じさせ、これによって気相超電導体セラミックス
を積極的に被着体上に堆積させる超電導体薄膜の製造方
法に間する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention generates an electric field between a vapor phase superconductor ceramic and an adherend, thereby actively moving the vapor phase superconductor ceramic onto the adherend. A method for producing superconductor thin films deposited on

〈従来の技術〉 従来よりRFスパッタリング法やレーザービームスバッ
タリング法を用いて超電導体薄膜を形成する技術は知ら
れている。  レーザービームスバッタリング法によれ
ば、第4図に示すように、超電導体セラミックスのター
ゲット21にレーザー光22を照射してクラスタ状の気
相超電導体セラミックス23を発生させ、このクラスタ
状のスパッタ粒子23を基板24上に堆積させて薄膜2
5を形成する。このレーザービームスバッタリング法で
はターゲットより発生したスパッタ粒子がクラスタ状で
あることから、原子単位のスパッタ粒子が発生するR−
Fスパッタ法に較べて成膜速度が速いという利点を有す
る。
<Prior Art> Techniques for forming superconductor thin films using RF sputtering and laser beam sputtering have been known. According to the laser beam sputtering method, as shown in FIG. 4, a superconducting ceramic target 21 is irradiated with a laser beam 22 to generate cluster-shaped vapor phase superconducting ceramics 23, and the cluster-shaped sputtered particles are 23 is deposited on the substrate 24 to form the thin film 2.
form 5. In this laser beam sputtering method, since the sputter particles generated from the target are in the form of clusters, sputter particles of atomic units are generated.
This method has the advantage that the film formation rate is faster than the F sputtering method.

〈発明が解決しようとする課題〉 しかしながら、上記の方法にあってはターゲットから飛
散されたスパッタ粒子すなわち気相の超電導体セラミッ
クスをターゲットに対向して配した被着体く基板)上に
堆積させるものであるため、飛散角度の大きいスパッタ
粒子は基板から外れてしまい、ターゲットから発生した
スパッタ粒子の基板上への捕捉効率が悪いという問題が
あった。
<Problems to be Solved by the Invention> However, in the above method, sputtered particles scattered from the target, that is, vapor-phase superconducting ceramics, are deposited on an adherend (substrate) placed opposite the target. As a result, sputtered particles with a large scattering angle tend to come off the substrate, resulting in a problem that the sputtered particles generated from the target are captured on the substrate with poor efficiency.

尚、気相粒子をその自由な移動動作に任せて被着体上に
堆積させようとする場合には、上記事情はスパッタリン
グ法以外の方法にあっても同様である。
Incidentally, when the vapor phase particles are allowed to move freely and deposited on the adherend, the above-mentioned situation is the same even in methods other than the sputtering method.

本発明は上記従来の事情に鑑みなされたもので、被着体
上への気相超電導体セラミックスの捕捉効率を高め原料
収率良く超電導体薄膜を形成することができる方法を提
供することを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method capable of forming a superconducting thin film with high raw material yield by increasing the trapping efficiency of vapor phase superconducting ceramics on an adherend. shall be.

〈課題を解決するための手段〉 上記課題を解決する本願の発明は、気相超電導体セラミ
ックスにレーザー光を照射して当該超電導体セラミック
スの構成原子をイオン化する一方、被着体に前記イオン
と逆極性の電圧を印加し、気相超電導体セラミックスを
被着体上に堆積させることを特徴とする超電導体薄膜の
製造方法である。
<Means for Solving the Problems> The invention of the present application to solve the above problems irradiates vapor phase superconducting ceramics with a laser beam to ionize the constituent atoms of the superconducting ceramics, and at the same time ionizes the constituent atoms of the superconducting ceramics into an adherend. This is a method for producing a superconductor thin film characterized by applying a voltage of opposite polarity and depositing a vapor phase superconductor ceramic on an adherend.

〈作用〉 本願の発明では、レーザービームスバッタリング法等に
より発生した気相超電導体セラミックスに構成原子のイ
オン化電圧より大きいエネルギーを有したレーザー光を
照射して当該気相超電導体セラミックスをイオン化する
一方、被着体に該気相超電導体セラミックスと逆極性の
電圧を印加し、気相超電導体セラミックスを積極的に引
き付けて被着体上に堆積させて薄膜を形成する。すなわ
ち、気相超電導体セラミックスの被着体へσ捕捉効率を
高めて、収率良く且つ高速度にて超電導体薄膜を形成す
る。
<Operation> In the present invention, the vapor phase superconducting ceramics generated by a laser beam scattering method or the like is ionized by irradiating the vapor phase superconducting ceramics with a laser beam having an energy greater than the ionization voltage of the constituent atoms. A voltage of opposite polarity to the vapor phase superconductor ceramic is applied to the adherend, and the vapor phase superconductor ceramic is positively attracted and deposited on the adherend to form a thin film. That is, by increasing the σ trapping efficiency on the adherend of vapor-phase superconductor ceramics, a superconductor thin film is formed in good yield and at high speed.

例えば、レーザービームスバッタリング法に本発明を適
用したものにおいては、第1図に示すように2種類のレ
ーザー光を用いてターゲット31からイオン化粒子34
を発生させて電源37により逆極性の電圧を印加された
基板35上に超電導体薄膜36を形成するものであり、
まず第2図(a)に示すようにクラスタ発生用レーザー
光32でターゲット31を照射することによりターゲッ
ト31からクラスタ状のスパッタ粒子34aを発生させ
るプロセスと、第2ffi(b)に示すようにイオン化
用レーザー光33で発生したクラスタ状スパッタ粒子3
4aを照射してイオン化させると共に分解させて正極の
イオン化原子34とし、この正極のイオン化原子34を
負極の電圧が印加された基板35上に引き付けて堆積さ
せるプロセスとを含んでいる。そして、特に、上記のよ
うに原子1単位当りの運動エネルギーが小さくなるクラ
スタ状態を初期の状態とし、このクラスタを被着体に到
達するまでの間にレーザー光でイオン化すると共に分解
させ、逆極性の電圧が印加された被着体上に薄膜を形成
する方法によれば、被着体での再スパツタを生ずること
なく且つターゲット組成に極めて近い組成の薄膜をかな
りの高速で効率良く形成することができる。
For example, in a method to which the present invention is applied to a laser beam scattering method, as shown in FIG.
A superconductor thin film 36 is formed on a substrate 35 to which a voltage of opposite polarity is applied by a power source 37.
First, as shown in FIG. 2(a), a process of generating cluster-shaped sputtered particles 34a from the target 31 by irradiating the target 31 with a laser beam 32 for cluster generation, and an ionization process as shown in second ffi(b). Clustered sputtered particles 3 generated by laser beam 33
4a is irradiated to ionize and decompose it into positive electrode ionized atoms 34, and the positive electrode ionized atoms 34 are attracted and deposited on a substrate 35 to which a negative electrode voltage is applied. In particular, as mentioned above, the initial state is a cluster state in which the kinetic energy per unit of atom is small, and this cluster is ionized and decomposed by a laser beam before reaching the adherend, and the polarity is reversed. According to the method of forming a thin film on an adherend to which a voltage of Can be done.

尚、上記した本願の発明は気相超電導体セラミックスを
発生させる方法に特に限定はなく、上記したレーザー光
照射の他に、原料元素を高周波電場でプラズマ化してク
ラスタ状の気相超電導体セラミックスを形成する等の種
々の方法を用いるこができる。
Incidentally, the above-mentioned invention of the present application is not particularly limited in the method of generating vapor phase superconducting ceramics, and in addition to the above-mentioned laser beam irradiation, raw material elements can be turned into plasma with a high frequency electric field to produce cluster-shaped vapor phase superconducting ceramics. Various methods can be used, such as forming.

また、イオン化用レーザー光はターゲットから被着体に
至る間でスパッタ粒子に照射するようにすれば良いが、
ターゲットの近傍で照射するようにすれば発生したスパ
ッタ粒子が飛散して広がる箭に効率よくレーザー光を照
射することができて好ましい。
In addition, the ionizing laser beam may be applied to the sputtered particles from the target to the adherend.
It is preferable to irradiate near the target because the generated sputtered particles can be scattered and spread to efficiently irradiate the bamboo shoots with the laser light.

〈実施例〉 まず、本発明の製造方法を実施する装置は、第3図に示
すように、酸素供給管1と排気管2とが接続された容器
3内にターゲット4、基板5、加熱用ヒータ6を備え、
容器3に設けられたガラス窓7.8に臨むレーザー発振
器9.10を備え、更に基板5に接続された電源11を
備えたものである。
<Example> First, as shown in FIG. 3, in an apparatus for carrying out the manufacturing method of the present invention, a target 4, a substrate 5, and a heating material are placed in a container 3 to which an oxygen supply pipe 1 and an exhaust pipe 2 are connected. Equipped with a heater 6,
It is equipped with a laser oscillator 9.10 facing a glass window 7.8 provided in the container 3, and further equipped with a power source 11 connected to the substrate 5.

容器3内には図外の酸素供給源に接続された酸素供給管
1を介して酸素が供給されると共に図外の排気装置に接
続された排気管2を介して容器3内の排気がなされる。
Oxygen is supplied into the container 3 through an oxygen supply pipe 1 connected to an oxygen supply source (not shown), and the inside of the container 3 is exhausted through an exhaust pipe 2 connected to an exhaust device (not shown). Ru.

また、ターゲット4は回転機構を有したホルダに支持さ
れ、一定の速度で回転するようになっている。また、タ
ーゲット4に対向した基板5はヒータ6により加熱され
るようになっている。また、レーザー発振器9はクラス
タ発生用、レーザー発振器10はイオン化用のものであ
り、レーザー発振器9.10はターゲット4の回転中心
から偏心した位置にレーザー光をそれぞれ照射するよう
になっている。また、基板5は電源11により電圧が印
加されるようになっている。
Further, the target 4 is supported by a holder having a rotation mechanism, and is configured to rotate at a constant speed. Further, a substrate 5 facing the target 4 is heated by a heater 6. Further, the laser oscillator 9 is for cluster generation, the laser oscillator 10 is for ionization, and the laser oscillators 9 and 10 are configured to irradiate laser beams to positions eccentric from the rotation center of the target 4, respectively. Further, a voltage is applied to the substrate 5 by a power source 11.

次いで、上記の装置において超電導体薄膜を製造した結
果を以下に説明する。
Next, the results of manufacturing a superconductor thin film using the above-mentioned apparatus will be explained below.

まず、基板5とターゲット4との間隔を40市、ターゲ
ット4の組成をBi: Sr: Ca: Cu:0=2
: 2: 2: 3: X、 基板5をMgO単結晶、
基板5の温度を650℃とし、レーザー発振器9からク
ラスタ発生用のNd  YAGレーザー光(波長1.0
64μm、パルス幅15ns、出力0. 8J/cm2
)をターゲット4に照射すると共に、レーザー発振器1
0からイオン化用のArFエキシマレーザ−光(波長0
.193μm、パルス幅10ns、出力2X10づJ/
cm2)をターゲット4の近傍に照射して、蒸気圧3.
  OX 1 (15Torr:、酸素ガス流:115
SCCMて基板S上に薄膜を形成した。この結果、成膜
速度0.05人/パルスでTc=85にの超電導体薄膜
を得た。
First, the distance between the substrate 5 and the target 4 is 40 mm, and the composition of the target 4 is Bi: Sr: Ca: Cu: 0=2.
: 2: 2: 3: X, substrate 5 is MgO single crystal,
The temperature of the substrate 5 is set to 650°C, and a Nd YAG laser beam (wavelength 1.0
64μm, pulse width 15ns, output 0. 8J/cm2
) to the target 4, and the laser oscillator 1
ArF excimer laser light for ionization (wavelength 0
.. 193 μm, pulse width 10 ns, output 2 x 10 J/
cm2) near the target 4, and the vapor pressure is 3.
OX 1 (15 Torr:, oxygen gas flow: 115
A thin film was formed on the substrate S using SCCM. As a result, a superconductor thin film with Tc=85 was obtained at a deposition rate of 0.05 persons/pulse.

次いて、クラスタが分解されて正極にイオン化した粒子
に対し、基板5に一32Vの電圧を印加したところ、成
膜速度が0.46人/バールスにまで向上し、M織が数
回化されて臨界温度もTc=94Kにまで向上した。
Next, when a voltage of -32V was applied to the substrate 5 to the particles whose clusters were decomposed and ionized to the positive electrode, the film formation rate increased to 0.46 people/bars, and the M weave was formed several times. The critical temperature was also improved to Tc=94K.

く効果〉 以上説明したように本願の発明によれば、気相超電導体
セラミックと被着体とを互いに逆極性に帯電させるよう
にしたため、気相超電導体セづミックを被着体に収率良
く堆積させることができ、良質な超電導体薄膜を高速度
にて形成することができる。
Effect> As explained above, according to the invention of the present application, since the vapor phase superconductor ceramic and the adherend are charged with opposite polarities, the yield of the vapor phase superconductor ceramic to the adherend is increased. It can be deposited well and a high quality superconductor thin film can be formed at high speed.

また、特にレーザービームスバッタリング法に本願発明
を適用した場合には、原子単位のエネルギーが比較的小
さいクラスタ状の粒子を被着体への移動途中でレーザー
光により原子に分解してイオン化し、これを逆極性に印
加された被着体上に堆積させることとなるため1.イオ
ン化原子を被着体に効率良く捕捉できると共に被着体上
での再スパツタを防止することができ、数回且つ均質な
超電導体薄膜を効率良く形成することができる。また、
クラスタ発生用レーザー光によりターゲットからクラス
タ状のスパッタ粒子を発生させ、これをクラスタ分解用
レーザー光により分解して被着体上に堆積させるように
したため、上記効果に加え、ターゲットの組成に近い組
成の超電導体薄膜を容易に得ることができる。更に、レ
ーザー光の種類によりクラスタの励起状態を容易に制御
することができ、超電導体組成等に応じた細かな制御を
達成することができる。
In addition, especially when the present invention is applied to a laser beam scattering method, cluster-like particles having relatively small energy per atomic unit are decomposed into atoms and ionized by a laser beam on the way to the adherend. Since this will be deposited on the adherend to which polarity is applied in the opposite direction, 1. Ionized atoms can be efficiently captured on the adherend, and re-sputtering on the adherend can be prevented, and a homogeneous superconductor thin film can be efficiently formed several times. Also,
Since cluster-shaped sputtered particles are generated from the target using a laser beam for cluster generation, and these are decomposed by a laser beam for cluster decomposition and deposited on the adherend, in addition to the above effects, a composition close to that of the target can be obtained. superconductor thin films can be easily obtained. Furthermore, the excited state of the cluster can be easily controlled by the type of laser light, and fine control can be achieved depending on the superconductor composition, etc.

の製造方法の概念図、第2図(a)、(b)はそれぞれ
超電導体薄膜の製造過程の概念図、第3図は本発明に用
いる製造装置の一例の構成図、第4図は従来の起電導体
薄膜の製造方法の概念図である。
2(a) and 2(b) are conceptual diagrams of the manufacturing process of a superconductor thin film, FIG. 3 is a block diagram of an example of the manufacturing apparatus used in the present invention, and FIG. 4 is a conventional FIG. 2 is a conceptual diagram of a method for manufacturing an electromotive conductor thin film.

4.21.31はターゲット、 5.24.35は被着体(基板)、 9.10はレーザー発振器、 22.32.33はレーザー光である。4.21.31 is the target, 5.24.35 is the adherend (substrate), 9.10 is a laser oscillator, 22.32.33 is a laser beam.

特許出願人     三菱金属株式会社代理人 弁理士
   桑 井 清 −(外1名)
Patent applicant Mitsubishi Metals Co., Ltd. agent Patent attorney Kiyoshi Kuwai - (1 other person)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る超電導体薄膜第1 図 第3図 第2図 第2図 (む) (b) 第4図 一二二)21 FIG. 1 shows a first superconductor thin film according to an embodiment of the present invention. figure Figure 3 Figure 2 Figure 2 (nothing) (b) Figure 4 122) 21

Claims (1)

【特許請求の範囲】[Claims] 気相超電導体セラミックスにレーザー光を照射して当該
超電導体セラミックスの構成原子をイオン化する一方、
被着体に前記イオンと逆極性の電圧を印加し、気相超電
導体セラミックスを被着体上に堆積させることを特徴と
する超電導体薄膜の製造方法。
While ionizing the constituent atoms of the superconducting ceramic by irradiating the gas phase superconducting ceramic with laser light,
A method for producing a superconductor thin film, which comprises applying a voltage having a polarity opposite to that of the ions to an adherend to deposit vapor phase superconductor ceramics on the adherend.
JP31174688A 1988-12-09 1988-12-09 Production of thin superconductor film Pending JPH02156075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31174688A JPH02156075A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31174688A JPH02156075A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Publications (1)

Publication Number Publication Date
JPH02156075A true JPH02156075A (en) 1990-06-15

Family

ID=18020981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31174688A Pending JPH02156075A (en) 1988-12-09 1988-12-09 Production of thin superconductor film

Country Status (1)

Country Link
JP (1) JPH02156075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146234A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Method of manufacturing oxide superconducting film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220415A (en) * 1985-03-27 1986-09-30 Matsushita Electric Ind Co Ltd Apparatus for forming thin film and manufacture of thin film using same
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220415A (en) * 1985-03-27 1986-09-30 Matsushita Electric Ind Co Ltd Apparatus for forming thin film and manufacture of thin film using same
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146234A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Method of manufacturing oxide superconducting film

Similar Documents

Publication Publication Date Title
WO1989008605A1 (en) Process for producing thin-film oxide superconductor
JP2001262335A (en) Film coating method
JPH02156075A (en) Production of thin superconductor film
RU2205893C2 (en) Method and apparatus for plasma chemical deposition of coatings
RU2238999C1 (en) Method of pulse-periodic implantation of ions and plasma precipitation of coatings
JPS6277454A (en) Formation of cubic boron nitride film
RU2339735C1 (en) Method for film coating
JPS6352108B2 (en)
JP2525910B2 (en) Laser excited thin film formation method
JPH02156073A (en) Production of thin superconductor film
JPH05279844A (en) Laser abrasion device
JPH04191364A (en) Method and device for ion plating
JPS63262457A (en) Preparation of boron nitride film
JP2692724B2 (en) Surface deposition method for metallic materials
JPH08259400A (en) Etching of diamond and device therefor
SU1708919A1 (en) Method for applying thin films in vacuum
JPH0559984B2 (en)
JPH01255669A (en) Formation of multicomponent material film by beam sputtering
JPH06145979A (en) Film forming device
JPS5842769A (en) Ion plating device using light beam
JPH04350156A (en) Thin film forming device
JPH04191358A (en) Production of boron nitride film
JPH09209128A (en) Ion plating apparatus using laser for evaporating source
JPH0610338B2 (en) Method for forming boron thin film
KR20020084322A (en) Manufacturing Method for High Density Thin Film under Low Temperature Condition