JPS6338501A - Composite sintered hard alloy and its production - Google Patents
Composite sintered hard alloy and its productionInfo
- Publication number
- JPS6338501A JPS6338501A JP18267586A JP18267586A JPS6338501A JP S6338501 A JPS6338501 A JP S6338501A JP 18267586 A JP18267586 A JP 18267586A JP 18267586 A JP18267586 A JP 18267586A JP S6338501 A JPS6338501 A JP S6338501A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- alloy
- hard alloy
- hard phase
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000956 alloy Substances 0.000 title abstract description 25
- 229910045601 alloy Inorganic materials 0.000 title abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000008188 pellet Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 8
- 238000001746 injection moulding Methods 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 238000004898 kneading Methods 0.000 claims description 4
- 238000005238 degreasing Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 abstract description 8
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910000601 superalloy Inorganic materials 0.000 abstract 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000012188 paraffin wax Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ドリル、研削機の刃先などに好適の複合超硬
合金及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite cemented carbide suitable for cutting edges of drills, grinders, etc., and a method for manufacturing the same.
通常、超硬合金は、タングステン炭化物を主体とする硬
質相と、金属コバルト等の鉄族元素を主体とする結合相
とから構成され、各相の微粉末を混合して成形し、高温
炉中で焼結して製造される。Normally, cemented carbide is composed of a hard phase mainly composed of tungsten carbide and a binder phase mainly composed of iron group elements such as metallic cobalt.The fine powders of each phase are mixed and formed, and then placed in a high-temperature furnace. Manufactured by sintering.
製品の表面硬度は、構成する硬質相の平均粒径に依存し
、これが1μm以下になると硬度が顕若に上界し、微粒
超硬合金として近年注目されている。The surface hardness of a product depends on the average particle size of the hard phase that constitutes it, and when this becomes 1 μm or less, the hardness reaches a significant upper limit, and it has recently attracted attention as a fine-grained cemented carbide.
しかし微粒超硬合金においては、曲げ強度や耐衝撃性に
劣るという欠点がある。また、微粒超硬合金粉末は、そ
の製造工程において取扱いが芹しく、さらに、吸湿しや
すいために成分コン10−ルも困難になる上、焼結中に
選択的な粒粗大化が起こって、特性値のバラツキを生じ
やすい。従って、微粒超硬合金は、その硬度における有
利性にも拘らず強度と製造工程の管理及び製造コストに
5に点があるために、その用途も極小径トリルや(瓜小
径杯などに限定されているのが現状である。焼結前の成
形にあたっては従来プレス成形や押出し成形が行なわれ
ているが、この場合得られる製品形状は単一断面の一次
元的伸張形に限られ、複雑形状のものは作りにくい。こ
のような形状選択の自由度の低さも、用途限定の原因に
なっていた。However, fine-grained cemented carbide has the drawback of being inferior in bending strength and impact resistance. In addition, fine-grained cemented carbide powder is delicate to handle during the manufacturing process, and furthermore, it easily absorbs moisture, making it difficult to concentrate the components, and selective grain coarsening occurs during sintering. Variations in characteristic values are likely to occur. Therefore, despite its advantage in hardness, fine-grained cemented carbide has disadvantages in terms of strength, manufacturing process control, and manufacturing cost, and its applications are limited to extremely small diameter trills and small-diameter gourd cups. Currently, press forming or extrusion forming is used for forming before sintering, but the shape of the product obtained in this case is limited to a one-dimensional elongated form with a single cross section, and complex shapes are not possible. It's difficult to make things.This low degree of freedom in shape selection also limits its uses.
本発明は、上記のような微粒超硬合金の強度や耐衝撃性
を改善し、製造コストの低減と製品形状選択の自由度の
増加をも副次的に得ようとするものである。The present invention aims to improve the strength and impact resistance of the above-mentioned fine-grained cemented carbide, thereby reducing production costs and increasing the degree of freedom in selecting product shapes.
本発明は、硬度に優る微粒硬質相の超硬合金を表面構成
部材とし、これに強度に優る通常超硬合金の主要構成部
材を一体焼結した複合超硬合金材料を提供するものであ
り、これにより強度上、コスト上の問題を解消した。こ
こに、微粒超硬合金の表面部材は、その硬質相が粒径1
μm以下のタングステン炭化物又はそれに他の金属炭化
物或いは金属窒化物の一種又は二種以上を含むものであ
り、その結合相は、コバルト又は他の鉄族元素の一種又
は二種以上から成る。主構成部材の元素成分は表面部材
と同じであるが、硬質相の平均粒径は、通常得られる1
μmをこえるものでよい。The present invention provides a composite cemented carbide material in which a surface component is made of a fine-grained hard phase cemented carbide with excellent hardness, and main components of a normal cemented carbide with excellent strength are integrally sintered with the surface component. This solved problems in terms of strength and cost. Here, in the surface member of fine-grained cemented carbide, the hard phase has a grain size of 1
It contains tungsten carbide of micrometer or less, or one or more kinds of other metal carbides or metal nitrides, and its binder phase consists of one or more kinds of cobalt or other iron group elements. The elemental composition of the main constituent member is the same as that of the surface member, but the average particle size of the hard phase is
It may be larger than μm.
微粒超硬合金の表面部材と、通常超硬合金の主部材との
接合においては、本発明ではろう付けや溶接などの後加
工によらず、両部材と密着成形後、同時焼結させる方法
をとる。各部材成分の成形にあたっては、プレス成形や
押出し成形の替わりに、プラスチックの成形方法に広く
用いられている射出成形を応用する。射出成形を可能に
するためには、まず各部材成分の粉末に流動性を持たせ
るためパラフィンワックスを5.0〜5.4重量%加え
て、これを混練、ペレット状に造粒し、その後表面部材
又は主部材のいずれか一方を最終形状に応じて選んだ金
型に射出成形する。射出条件は、温度80〜120℃、
圧力1000〜1500kg/mとする。第一部材の成
形後、これを別の金型に埋め込み、残りの部材を射出成
形する。このような二重成形法によって両部材の一体化
した複合成形体が得られるが、これに300℃近傍での
脱脂工程、1400℃近傍での焼結工程を経て、最終加
工を行ない、複合超硬合金を得る。When joining a surface member made of fine-grained cemented carbide and a main member usually made of cemented carbide, the present invention employs a method in which both parts are molded in close contact and then simultaneously sintered, without using post-processing such as brazing or welding. Take. When molding each component, injection molding, which is widely used for plastic molding, will be used instead of press molding or extrusion molding. In order to make injection molding possible, first 5.0 to 5.4% by weight of paraffin wax is added to the powder of each component component to give it fluidity, and this is kneaded and granulated into pellets. Either the surface member or the main member is injection molded into a mold selected depending on the final shape. The injection conditions were a temperature of 80 to 120°C;
The pressure shall be 1000 to 1500 kg/m. After molding the first member, it is embedded in another mold, and the remaining members are injection molded. Through this double molding method, a composite molded body in which both parts are integrated is obtained, which undergoes a degreasing process at around 300°C, a sintering process at around 1400°C, and final processing to form a composite superstructure. Obtain hard metal.
以上の工程を経て得られた複合超硬合金においては、画
構成部材が同時に焼結されているため界面の強度も充分
に強く、界面での割れや破断の心配はない。また、射出
成形法を用いて成形するため、その金型を適宜変えるこ
とにより、比較的複雑形状の製品にも応用できる。°超
硬合金においては、表面硬度が要求される緒特性の中で
もっとも重要であるが、かかる複合超硬合金の表面硬度
は、微粒超硬合金のそれと同等であり、通常超硬合金と
の一体化により靭性も向上するため折れや破壊にも強い
。また、微粒超硬合金部材は少量の使用で済むので製造
コストが低下し、総合的に既存の超硬合金よりはるかに
優る特性及び経済性が得られる。In the composite cemented carbide obtained through the above steps, since the image constituent members are sintered at the same time, the strength of the interface is sufficiently strong, and there is no fear of cracking or breaking at the interface. In addition, since the injection molding method is used for molding, by appropriately changing the mold, it can be applied to products with relatively complex shapes. °Surface hardness is the most important characteristic required for cemented carbide, but the surface hardness of such composite cemented carbide is equivalent to that of fine-grained cemented carbide, and is generally comparable to that of cemented carbide. Integration improves toughness, making it resistant to breakage and breakage. In addition, since a small amount of fine-grained cemented carbide components are used, manufacturing costs are reduced, and overall properties and economy are far superior to existing cemented carbide materials.
本発明の実施例について以下説明する。 Examples of the present invention will be described below.
爽立皿土
寸法5 sm X 5 sm X 40 mの棒状複合
超硬合金の製造の実際と、この試験片を用いて機械的特
性値の評価を行なった結果を以下に示す。The actual production of a bar-shaped composite cemented carbide with a soutachi plate size of 5 sm x 5 sm x 40 m and the results of evaluating mechanical properties using this test piece are shown below.
まず微粒合金部材には、平均粒径0.6μmのタングス
テン炭化物粉末に、所定重量%のCo粉末と、粒の粗大
化防止の、ために1重量%のバナジウム粉末を加え、ボ
ールミルにて湿式粉砕混合した。これにパラフィンワッ
クスを5.0〜5.4重缶%加え、100℃で混練後、
ペレット状に造粒する。通常合金粉末mには、平均粒径
5μmのタングステン炭化物粉末に所定型1%のCo粉
末を加え、ボールミルにて湿式粉砕混合した後、パラフ
ィンワックスを5.0〜5.4重量%加えて100℃で
混練し、ペレット状に造粒した。これらのペレットを、
射出成形機を用いて二重成形するのであるが、まず微粒
合金部分のペレットを角型の金型に温度100℃、射出
圧力1200 kg/龍”で射出した。次に底深の同型
角型の金型に移し、その上に通常合金粉末のペレットを
、同様の射出条件で射出成形した。得られた複合成形体
を300℃に保持して脱脂を行ない、1400℃(±2
0℃)の高温焼結炉で焼結させた後、表面研削を施して
棒状複合超硬合金を製造した。得られた試験片の微粒合
金部及び通常合金部の厚さは、それぞれ211及び3u
である。First, a fine-grained alloy member is made by adding a predetermined weight % of Co powder and 1 weight % of vanadium powder to tungsten carbide powder with an average particle size of 0.6 μm, and wet-pulverizing it in a ball mill. Mixed. Add 5.0 to 5.4 heavy cans of paraffin wax to this, and after kneading at 100°C,
Granulate into pellets. Normally, alloy powder m is prepared by adding 1% Co powder of a specified type to tungsten carbide powder with an average particle size of 5 μm, wet-pulverizing and mixing in a ball mill, and then adding 5.0 to 5.4% by weight of paraffin wax to 100% The mixture was kneaded at ℃ and granulated into pellets. These pellets,
Double molding is carried out using an injection molding machine. First, the pellets of the fine-grained alloy part are injected into a square mold at a temperature of 100°C and an injection pressure of 1200 kg/ryu. Next, a similar-shaped square mold with a deep bottom is injected. was transferred to a mold, and pellets of normal alloy powder were injection molded thereon under the same injection conditions.The resulting composite molded body was held at 300°C, degreased, and heated to 1400°C (±2
After sintering in a high temperature sintering furnace (0°C), surface grinding was performed to produce a rod-shaped composite cemented carbide. The thicknesses of the fine-grained alloy part and the normal alloy part of the obtained test piece were 211 and 3u, respectively.
It is.
これを試験片として行なった機械試験の結果を、従来の
通常超硬合金及び微粒超硬合金に比較して第1表に示す
。ここに、硬度測定は、微粒合金表面にて行ない、曲げ
強度は微粒合金面を上面とした3点曲げ測定により、衝
撃強度は、微粒合金面を前面としてシャルピー衝撃試験
により、それぞれ評価した。Table 1 shows the results of mechanical tests conducted using this as a test piece in comparison with conventional ordinary cemented carbide and fine-grained cemented carbide. Here, the hardness was measured on the surface of the fine grain alloy, the bending strength was evaluated by three-point bending measurement with the fine grain alloy surface as the top surface, and the impact strength was evaluated by Charpy impact test with the fine grain alloy surface as the front surface.
第1表
1.2は、それぞれ通常合金及び微粒合金単相材料の同
一寸法の試験片に対する特性値であり、3〜5は、全体
の40%を微粒合金とした本発明による複合超硬合金の
特性値である。本発明合金は、通常合金に比べて硬度に
有意な向上が見られる一方、微粒合金よりも曲げ強度及
び衝撃強度に優れており、かつ経済的には格段に優位で
ある。Table 1 1.2 shows the characteristic values for test specimens of the same size of normal alloy and fine-grained alloy single-phase materials, respectively, and 3 to 5 are the composite cemented carbide according to the present invention in which 40% of the total is made of fine-grained alloy. is the characteristic value of The alloy of the present invention exhibits a significant improvement in hardness compared to normal alloys, while also being superior to fine-grained alloys in bending strength and impact strength, and is significantly more economically advantageous.
災脩勇1
複合超硬合金を用いて切削刃を以下の様に製造した。ま
ず平均粒径0.6μmのタングステン炭化物粉末に、1
5重撥%のCo粉末及び、粒粗大化防止のため1重量%
のバナジウム炭化物粉末を加え、ボールミルにて湿式中
で粉砕混合したものと、平均粒径5μmのタングステン
炭化物粉末に10重量%のCo粉末を加え、ボールミル
にて湿式粉砕混合したものを、それぞれ用意した。これ
らにパラフィンワックスを5.4重量%加えて100℃
で混練し、それぞれペレッ、ト状に造粒後、まず微粒タ
ングステン粉末を用いたペレットを凹型の孔をもつ金型
に、温度100℃、圧力1300kg/c己で射出成形
し、次にこれを別の金型に設置して、その上に通常粒合
金のペレットを同条件で射出成形し、複合化した。この
成形体に、300℃における脱脂、仮焼結、加工、最終
焼結を加え、最終加工で刃付けをして、第1図に示すよ
うな断面形状の焼結棒を得た。本発明品の切削性能は、
全体を微粒合金で作られたものと比較し、変わらなかっ
た。また製造コストは約10%減少した。Disastrous Hero 1 A cutting blade was manufactured using composite cemented carbide as follows. First, tungsten carbide powder with an average particle size of 0.6 μm was
5% Co powder and 1% by weight to prevent grain coarsening
of vanadium carbide powder was added and mixed by wet pulverization in a ball mill, and another was prepared by adding 10% by weight of Co powder to tungsten carbide powder with an average particle size of 5 μm and wet pulverizing and mixing in a ball mill. . Add 5.4% by weight of paraffin wax to these and heat to 100°C.
After kneading and granulating into pellets and pellets, the pellets using fine tungsten powder were first injection molded into a mold with concave holes at a temperature of 100°C and a pressure of 1300 kg/cm; It was placed in a separate mold, and regular grain alloy pellets were injection molded on top of it under the same conditions to create a composite. This compact was subjected to degreasing at 300°C, preliminary sintering, processing, and final sintering, and was sharpened in the final processing to obtain a sintered rod having a cross-sectional shape as shown in FIG. The cutting performance of the product of the present invention is
The whole was compared with one made of fine-grained alloy, and there was no difference. Also, manufacturing costs were reduced by about 10%.
以上のように、本発明により従来より安いコストで、微
粒超硬合金と同等の硬度を持ち、且つ強度や衝撃性に優
れる超硬合金を製造することができた。また本発明によ
れば成形時の金型の選択により比較的複雑な形状のもの
を製造することができる。As described above, according to the present invention, it was possible to produce a cemented carbide having a hardness equivalent to that of fine-grained cemented carbide and excellent strength and impact resistance at a cost lower than conventional ones. Furthermore, according to the present invention, products with relatively complex shapes can be manufactured by selecting a mold during molding.
第1図は実施例2で得られた成形体の縦断面図である。 特許出願人 住友金屈鉱山株式会社 第1図 FIG. 1 is a longitudinal cross-sectional view of the molded body obtained in Example 2. Patent applicant: Sumitomo Kinku Mining Co., Ltd. Figure 1
Claims (2)
主部材の表面に、硬質相の平均粒度が1μm以下の微粒
超硬合金部材が一体焼結されてなる複合超硬合金。(1) A composite cemented carbide formed by integrally sintering a fine-grained cemented carbide member whose hard phase has an average grain size of 1 μm or less on the surface of a normal cemented carbide main member whose hard phase has an average grain size of more than 1 μm.
らなる結合相粉をワックスと混練した通常超硬合金ペレ
ットと、平均粒径が1μm以下の硬質相粉と鉄族元素か
らなる結合相粉をワックスと混練した微粒超硬合金ペレ
ットの、何れか一方を先に射出成形した後連続して他方
のペレットを射出成形し、該複合成形体を脱脂後焼結す
ることを特徴とする複合超硬合金の製造方法。(2) Normal cemented carbide pellets made by kneading a binder phase powder consisting of a hard phase powder with an average particle size exceeding 1 μm and an iron group element with wax, and a hard phase powder with an average particle size of 1 μm or less and a binder phase powder consisting of an iron group element. It is characterized by first injection molding one of the fine cemented carbide pellets prepared by kneading binder phase powder with wax, then successively injection molding the other pellet, and sintering the composite molded product after degreasing. A method for manufacturing composite cemented carbide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18267586A JPS6338501A (en) | 1986-08-05 | 1986-08-05 | Composite sintered hard alloy and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18267586A JPS6338501A (en) | 1986-08-05 | 1986-08-05 | Composite sintered hard alloy and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6338501A true JPS6338501A (en) | 1988-02-19 |
Family
ID=16122467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18267586A Pending JPS6338501A (en) | 1986-08-05 | 1986-08-05 | Composite sintered hard alloy and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6338501A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971485A (en) * | 1989-01-26 | 1990-11-20 | Sumitomo Electric Industries, Ltd. | Cemented carbide drill |
US5137398A (en) * | 1990-04-27 | 1992-08-11 | Sumitomo Electric Industries, Ltd. | Drill bit having a diamond-coated sintered body |
US5154550A (en) * | 1990-02-20 | 1992-10-13 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill bit |
US5154549A (en) * | 1990-02-05 | 1992-10-13 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill bit |
US5228812A (en) * | 1989-12-25 | 1993-07-20 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill |
DE102004034164B4 (en) * | 2003-07-17 | 2007-07-19 | Advics Co., Ltd., Kariya | Movable core of a solenoid valve with valve stem and method for its production |
JP2007522339A (en) * | 2003-12-15 | 2007-08-09 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Cemented carbide tool for mining and construction, and manufacturing method thereof |
-
1986
- 1986-08-05 JP JP18267586A patent/JPS6338501A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971485A (en) * | 1989-01-26 | 1990-11-20 | Sumitomo Electric Industries, Ltd. | Cemented carbide drill |
US5228812A (en) * | 1989-12-25 | 1993-07-20 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill |
US5154549A (en) * | 1990-02-05 | 1992-10-13 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill bit |
US5154550A (en) * | 1990-02-20 | 1992-10-13 | Sumitomo Electric Industries, Ltd. | Throw-away tipped drill bit |
US5137398A (en) * | 1990-04-27 | 1992-08-11 | Sumitomo Electric Industries, Ltd. | Drill bit having a diamond-coated sintered body |
DE102004034164B4 (en) * | 2003-07-17 | 2007-07-19 | Advics Co., Ltd., Kariya | Movable core of a solenoid valve with valve stem and method for its production |
JP2007522339A (en) * | 2003-12-15 | 2007-08-09 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Cemented carbide tool for mining and construction, and manufacturing method thereof |
JP2013014846A (en) * | 2003-12-15 | 2013-01-24 | Sandvik Intellectual Property Ab | Cemented carbide tool for mining and construction application and method of making same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411334B2 (en) | Powder metal friction stir welding tool and manufacturing method thereof | |
US20070272724A1 (en) | Powder metal friciton stir welding tool and method of manufacture thereof | |
CN104328322A (en) | Heat-resistant steel structure hard alloy and preparation method thereof | |
Heaney et al. | Defect-free sintering of two material powder injection molded components Part I Experimental investigations | |
JPH0115579B2 (en) | ||
US5403373A (en) | Hard sintered component and method of manufacturing such a component | |
JPS6338501A (en) | Composite sintered hard alloy and its production | |
JPH07290186A (en) | Tungsten carbide composite lining material and layer for centrifugal casting | |
CN105970064A (en) | Steel bonded hard alloy and preparation method thereof | |
KR100935037B1 (en) | High toughness cermet and method of manufacturing the same | |
JP2898475B2 (en) | Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body | |
JPS61235533A (en) | High heat resistant sintered hard alloy | |
US11759857B2 (en) | Material obtained by compaction and densification of metallic powder(s) | |
JPS5857502B2 (en) | Sintered material with toughness and wear resistance | |
JPS60100646A (en) | High toughness sintered body of ceramic | |
JPS59118852A (en) | Composite high speed steel of sintered hard alloy and its production | |
KR101159086B1 (en) | Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens | |
JP3297535B2 (en) | Cubic boron nitride sintered body | |
KR100422092B1 (en) | Sliding parts and manufacturing method thereof | |
JPS6335706B2 (en) | ||
CN105586501A (en) | Preparation method for iron-titanium-cobalt alloy | |
KR100462702B1 (en) | Method of manufacturing sliding parts | |
JP3230126B2 (en) | Internal-combustion engine tappet member having high joining strength with chip material | |
JPH01219102A (en) | Fe-ni-b alloy powder as additive for sintering and sintering method thereof | |
JPH0499805A (en) | Complex hard sintered material having excellent wear resistance and melt-welding resistance and manufacture thereof |