KR100462702B1 - Method of manufacturing sliding parts - Google Patents

Method of manufacturing sliding parts Download PDF

Info

Publication number
KR100462702B1
KR100462702B1 KR10-2003-0086444A KR20030086444A KR100462702B1 KR 100462702 B1 KR100462702 B1 KR 100462702B1 KR 20030086444 A KR20030086444 A KR 20030086444A KR 100462702 B1 KR100462702 B1 KR 100462702B1
Authority
KR
South Korea
Prior art keywords
base
sintered
temperature
binder
nickel
Prior art date
Application number
KR10-2003-0086444A
Other languages
Korean (ko)
Other versions
KR20030097752A (en
Inventor
송근철
조정환
김경운
심동섭
Original Assignee
대우종합기계 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1019980010375A priority Critical patent/KR100422092B1/en
Application filed by 대우종합기계 주식회사 filed Critical 대우종합기계 주식회사
Priority to KR10-2003-0086444A priority patent/KR100462702B1/en
Publication of KR20030097752A publication Critical patent/KR20030097752A/en
Application granted granted Critical
Publication of KR100462702B1 publication Critical patent/KR100462702B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition

Abstract

본 발명은 습동부품의 제조방법에 관한 것으로, 탄화물, 질화물, 붕화물등의 경질입자와, 니켈기지에 액상온도를 낮추는 원소가 포함된 금속계의 결합재 분말을 혼합한 초경합금 분말을 소결온도로 1차 가열하여 소결체를 제작하고, 이 소결체를 모재에 올려놓고 접합온도로 2차 가열하여 접합함으로써 철계합금의 모재에 별도의 용가재를 사용함이 없이 직접 가열접합하므로 내마모재와 모재사이에 우수한 접합강도를 부여하는 것이다.The present invention relates to a method of manufacturing a sliding part, comprising: a cemented carbide powder containing a hard particle such as carbide, nitride, boride, and a metal binder powder containing a nickel base element containing an element that lowers the liquidus temperature at a sintering temperature. The sintered body is manufactured by heating, and the sintered body is placed on the base material and secondly heated and joined at the joining temperature to directly heat-bond the iron base material without using any filler material, thereby providing excellent bonding strength between the wear resistant material and the base material. To grant.

Description

습동부품 제조방법{Method of manufacturing sliding parts}Method of manufacturing sliding parts

본 발명은 습동부품 제조방법에 관한 것으로, 특히 탄화물, 질화물, 붕화물 등의 경질입자와 금속계의 결합제로 이루어진 초경합금의 성형체를 철계합금으로 이루어진 모재와 직접 가열접합하거나 상기 초경합금의 혼합분말을 소결한 소결체를 철계합금으로 이루어진 모재에 얹고 가열접합므로써, 별도의 용가재를 사용하지 않고 습동부품을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a sliding part, in particular, a heat-bonded molded body of a cemented carbide composed of hard particles such as carbides, nitrides and borides and a metal-based binder with a base metal made of an iron alloy or sintered a mixed powder of the cemented carbide. The present invention relates to a method of manufacturing a sliding part without using a separate filler material by placing a sintered body on a base metal made of an iron alloy and heating it.

일반적으로 초경합금은 텅스텐 탄화물, 크롬탄화물 등의 탄화물, 질화물, 붕화물 등과 같은 경질의 강화입자와 니켈, 코발트 등의 단일금속 혹은 니켈합금, 코발트합금의 결합제로 구성되어 있는 것으로, 내마성이 우수하여 공구류 및 내마모성이 크게 요구되는 내연기관의 습동부품에 널리 사용되고 있다.In general, cemented carbide is composed of hard reinforcing particles such as tungsten carbide, chromium carbide, nitride, boride, etc., and a single metal such as nickel and cobalt, or a binder of nickel alloy and cobalt alloy. It is widely used in sliding parts of internal combustion engines that require great tools and wear resistance.

이러한 초경합금을 내연기관의 습동부품과 같은 내마모성 부품으로 이용하기 위해서는 용가재 금속을 이용하여 금속모재에 접합한 뒤 사용하는 것이 일반적이나, 이러한 용가재 금속을 이용하여 접합할 경우 초경합금 및 접합모재와의 접합성이 우수하여야 할 뿐아니라 용가재 금속자체의 강도, 내충격성 등의 기계적 특성에 의해 접합체의 기계적 특성이 제한되는 문제점이 있기 때문에, 용가재 금속을 사용하지 않고 내마모재와 철계 모재를 직접 접합하는 방법이 기계적 특성과 경제적인 측면에서 유리하다.In order to use such cemented carbide as wear-resistant parts such as sliding parts of internal combustion engines, it is common to use a filler metal after joining it to a metal base material, but when joining using such filler metal, the bondability between the cemented carbide and the bonded base material is used. In addition, the mechanical properties of the joining body are limited by the mechanical properties such as strength and impact resistance of the filler metal itself. Therefore, the method of directly joining the wear-resistant material and the iron base material without using the filler metal is mechanical. It is advantageous in terms of characteristics and economics.

이러한 내마모부재와 모재를 직접 접합하는 방법이 일본국 특개소 62-182407 및 일본국 특개소 62-185806에 개시되어 있는 바, 이 방법에 따르면 탄화물 등의 경질입자와 니켈 및 니켈합금으로 이루어진 결합재 분말을 성형하고, 이 성형체를 접합모재 상에서 소결시키므로써 초경합금의 소결과 접합을 동시하므로써 접합체를 제조하고 있다.The method of directly joining the wear-resistant member and the base material is disclosed in Japanese Patent Laid-Open No. 62-182407 and Japanese Patent Laid-Open No. 62-185806. According to this method, a binder composed of hard particles such as carbide and nickel and nickel alloy The joined body is manufactured by simultaneously sintering and cementing the cemented carbide by molding the powder and sintering the molded body on the bonded base material.

그러나 성형체를 모재에 소결과 동시에 접합시키는 종래의 방법을 따르게 되면, 성형체는 형태만 유지하고 있을 뿐 자체 강도가 매우 낮으므로 취급상에 어려움이 많이 있고, 접합체에 직접적으로 하중을 가할 수 없게 되어 접합체의 상태를 개선시키기 어려운 문제점이 있다. 또한 성형체의 소결시 수축이 발생되기 때문에 최종 접합체의 치수를 정밀하게 제어하기 어려워서, 소결공정후 후가공처리가 요구되는 문제점도 있다. 따라서 성형체를 모재에 소결과 동시에 접합하는 종래의 방법 보다는 성형체를 미리 소결 또는 예비소결한 상태에서 모재와 접합시키는 것이 유리하다.However, according to the conventional method of joining the molded body to the base material at the same time as sintering, the molded body maintains only its shape but its own strength is very low, so there are many difficulties in handling, and it is impossible to apply a load directly to the joined body. There is a problem that is difficult to improve the state of. In addition, since shrinkage occurs during sintering of the molded body, it is difficult to precisely control the dimensions of the final joined body, and there is also a problem that post-processing treatment is required after the sintering process. Therefore, it is advantageous to join the molded body with the base material in the sintered or pre-sintered state in advance than the conventional method of simultaneously joining the molded body to the base material.

이에 본 발명은 용가재 금속을 사용하지 않고, 초경합금의 소결체를 철계합금으로 이루어진 모재와 직접 접합하거나 탄화물, 질화물, 붕화물 등 경질의 입자와 금속계 결합제의 혼합분말을 접합하려는 철계합금 상에서 소결하여 소결과 동시에 접합하여 습동부품을 제조하는 방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention does not use a filler metal, and directly sinters the cemented carbide with a base metal made of an iron alloy, or sinters it onto an iron alloy intended to join a mixed powder of hard particles such as carbides, nitrides and borides and a metal binder. It is an object to provide a method of manufacturing sliding parts by simultaneously bonding.

도 1은 습동부품을 구성하는 내마모재와 모재를 도시한 도면,1 is a view showing a wear-resistant material and the base material constituting the sliding part,

도 2는 접합공정 후의 내마모재의 접합체를 도시한 도면,2 is a view showing a bonded body of the wear-resistant material after the bonding step;

도 3은 접합이 완료된 상태의 접합계면을 도시한 모식도이다.3 is a schematic diagram showing a joining interface in a state where joining is completed.

이하, 본 발명을 첨부한 예시도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

도 1은 본 발명에 따른 습동부품의 단면을 모식적으로 도시한 도면으로, 내마모재(1)와 모재(2) , 예컨대 탄화물계 초경합금과 강의 접합체로 이루어져 있다. 내마모재(1)는 탄화물, 질화물, 붕화물 등의 경질입자와 액상온도 저하원소가 첨가된 니켈기지의 결합제의 혼합분말을 가열하여 소결한 소결체(1b)이고, 모재(2)는 주철, 탄소강 및 합금강 등의 철계합금이다.1 is a view schematically showing a cross section of a sliding part according to the present invention, which is composed of a wear-resistant material 1 and a base material 2, for example, a carbide-based cemented carbide and a joint of steel. The wear resistant material 1 is a sintered body 1b obtained by heating and sintering a mixed powder of hard particles such as carbides, nitrides and borides and a binder of a nickel base to which a liquid phase temperature reducing element is added, and the base material 2 is cast iron, Iron-based alloys such as carbon steel and alloy steel.

내마모재(1)과 모재(2)를 원하는 접합면에 대하여 서로 접촉시킨 후 소정의 온도로 가열하여 도 2와 같은 접합체를 제조한다.The wear-resistant material 1 and the base material 2 are brought into contact with each other with respect to a desired bonding surface and then heated to a predetermined temperature to prepare a bonded body as shown in FIG.

도 1의 내마모재(1)에 있어서 경질입자, 예를 들면 텅스텐 탄화물의 비율은 60-90% 정도가 적정하다. 탄화물의 양이 60%이하가 되면 습동부품으로서 요구되는 경도를 얻을 수 없으며, 90%이상이 되면 모재와의 접합에 기여하는 결합재의 양이 적어서 충분한 접합강도를 얻을 수 없다.In the wear-resistant material 1 of FIG. 1, the ratio of hard particles, for example, tungsten carbide, is suitably about 60-90%. When the amount of carbide is less than 60%, the hardness required for sliding parts cannot be obtained. When the amount of carbide is more than 90%, sufficient bonding strength cannot be obtained because the amount of binder that contributes to bonding with the base material is small.

내마모재의 결합제로는 코발트보다는 액상온도를 낮추는 원소들인 실리콘, 크롬, 철, 붕소 등의 원소와 합금화가 용이한 니켈이 바람직하다. 결합제의 액상형성온도를 낮추는 원소로 실리콘과 붕소를 선택하여 초경합금의 소결성 및 인성 등의 기계적 성질을 크게 해치지 않는 범위에서 표 1에서와 같이 두원소의 적정한 첨가량을 결정하였다.As the binder of the wear resistant material, nickel, which is easily alloyed with elements such as silicon, chromium, iron, and boron, which lower the liquidus temperature than cobalt, is preferable. Silicon and boron were selected as elements to lower the liquidus formation temperature of the binder, and the appropriate amounts of two elements were determined as shown in Table 1 within the range of not significantly impairing the mechanical properties such as sintering and toughness of the cemented carbide.

구분division NiNi SiSi BB 접합온도Junction temperature 실시예1Example 1 BalBal 1wt%1wt% 8wt%8wt% 1100℃1100 ℃ 실시예2Example 2 BalBal 3wt%3wt% 8wt%8wt% 1100℃1100 ℃ 실시예3Example 3 BalBal 6wt%6wt% 8wt%8wt% 1200℃1200 ℃ 실시예4Example 4 BalBal 12wt%12wt% 8wt%8wt% 1200℃1200 ℃ 실시예5Example 5 BalBal 15wt%15 wt% 8wt%8wt% 1200℃1200 ℃ 실시예6Example 6 BalBal 9wt%9wt% 1wt%1wt% 1300℃1300 ℃ 실시예7Example 7 BalBal 9wt%9wt% 2wt%2wt% 1200℃1200 ℃ 실시예8Example 8 BalBal 9wt%9wt% 4wt%4wt% 1200℃1200 ℃ 실시예9Example 9 BalBal 9wt%9wt% 8wt%8wt% 1200℃1200 ℃ 실시예10Example 10 BalBal 9wt%9wt% 10wt%10wt% 1100℃1100 ℃ 실시예11Example 11 BalBal 9wt%9wt% 15wt%15 wt% 1000℃1000 ℃

실리콘의 양이 적으면 액상형성 온도를 낮추는 효과가 적어서 접합상태가 불량하고, 실리콘이 증가할수록 고용강화에 의해 결합재의 경도를 높이는 효과가 있으나, 실리콘의 양이 너무 많아지면 니켈과 화합물을 형성하여 내마모재를 취약하게 만든다.When the amount of silicon is small, the effect of lowering the liquid-forming temperature is small, and the bonding state is poor. As the amount of silicon increases, the hardness of the binder is increased by solid solution strengthening. However, when the amount of silicon is too high, a compound with nickel is formed. Makes wear resistant. 붕소의 양이 너무 적으면 실리콘의 경우와 마찬가지로 액상형성 온도를 낮추는 효과가 미미하여 접합상태가 불량하였으며 붕소가 너무 많을 경우는 결합제와 탄소강재인 모재사이에 합금화가 일어나 접합계면에 취약한 상을 형성하여 접합강도에 문제가 발생한다. 적정한 액상온도 저하 원소의 첨가량은 니켈기지에 대하여 실리콘 3-12wt%, 붕소 2-10wt%정도이다.If the amount of boron is too small, as in the case of silicon, the effect of lowering the liquidus formation temperature is insignificant, and the bonding state is poor. If the boron content is too high, alloying occurs between the binder and the base material, which is a carbon steel, to form a weak phase at the bonding interface. Problems with strength Appropriate amount of the liquid phase temperature lowering element is about 3-12wt% silicon and about 2-10wt% boron based on nickel base.

위의 조성으로 제조한 분말로 성형체를 제조하여 900-1400℃ 온도범위에서 접합실험을 행하였다. 표 2에 나타난 바와 같이, 1000℃이하의 온도에서는 접합이일어나지 않았다. 1300℃이상의 온도에서는 접합계면에 취약한 화합물이 생성되어 접합강도가 낮아지고, 내마모재 및 모재의 변형이 심하였다. 접합온도는 1000 - 1300℃의 범위에서 안정한 접합이 이루어졌다.A molded article was prepared from the powder prepared by the above composition, and the bonding experiment was performed at a temperature range of 900-1400 ° C. As shown in Table 2, the bonding did not occur at a temperature of less than 1000 ℃. At temperatures above 1300 ° C, compounds vulnerable to the bonding interface were formed, resulting in low bonding strength and severe deformation of the wear resistant material and the base material. Bonding temperature was stable in the range of 1000-1300 ℃.

접합온도Junction temperature 시간time 내마모재와 모재의 접합 면적비율Bonding area ratio of abrasion resistant material and base material 900℃900 ℃ 60분60 minutes 0%0% 950℃950 ℃ 60분60 minutes 14%14% 1000℃1000 ℃ 60분60 minutes 96%96% 1050℃1050 ℃ 60분60 minutes 99%99% 1150℃1150 ℃ 60분60 minutes 100%100% 1300℃1300 ℃ 60분60 minutes 100%100% 1400℃1400 ℃ 60분60 minutes 100%100%

따라서 본 발명에서는 결합재인 니켈기지에 실리콘 3 - 12wt%, 붕소 2- 10wt%을 액상온도 저하원소로 첨가한 소결체를 1000-1300℃의 온도로 가열하여 접합하므로써 양호한 접합상태를 가지는 내마모재와 모재의 접합체를 얻을 수 있었다.Therefore, in the present invention, a sintered body in which 3-12 wt% of silicon and 2-10 wt% of boron are added as a liquid phase temperature reducing element is bonded to a nickel base, which is a binder, by heating to a temperature of 1000-1300 ° C. and a wear resistant material having a good bonding state. The bonded body of the base material was obtained.

상기 조성의 혼합분말의 성형체를 700-900℃의 온도에서 별도의 예비소결을 행하여 어느 정도의 강도를 가지는 가소결체를 제작하고, 이를 모재와의 접합면에 접촉시킨 후 가열하여 소결 및 접합을 동시에 행하였다. 소결접합 온도범위는 1000-1300℃였다. 이 경우에도 소결체를 접합한 경우와 마찬가지로 양호한 접합체를 얻을 수 있었다.Pre-sintering the molded body of the mixed powder of the composition is performed separately at a temperature of 700-900 ° C. to produce a plastic sintered body having a certain strength, which is brought into contact with the joining surface with the base material and heated to sinter and join simultaneously. It was done. Sintering junction temperature range was 1000-1300 degreeC. Also in this case, the favorable joined body was obtained similarly to the case where the sintered compact was joined.

[실시예A]Example A

니켈기지에 액상온도를 낮추는 금속인 실리콘과 붕소를 각각 9.0wt%, 8.0wt%첨가한 결합재와 텅스텐 탄화물로 구성된 경질입자를 25:75의 비율로 혼합하였다. 상기의 혼합분말에 1.0wt%의 윤활제(kenolube)를 첨가하였다. 이 혼합분말을 성형하고 1200℃에서 60분간 소결하여 소결체를 제조하였다. 소결체는 HRA 86이상의 경도를 나타내었다.In the nickel base, silicon and boron, which are metals for lowering the liquidus temperature, were mixed with a binder containing tungsten carbide and 9.0 wt% and 8.0 wt%, respectively, in a ratio of 25:75. 1.0 wt% of a lubricant (kenolube) was added to the mixed powder. This mixed powder was molded and sintered at 1200 ° C. for 60 minutes to prepare a sintered body. The sintered compact had a hardness of HRA 86 or more.

이렇게 제조한 소결체를 탄소강(SM45C)으로 제작한 접합모재와 접합온도 1150℃에서 60분간 유지하여 접합을 행하였다. 강과의 접합에 있어서 접합면의 강쪽부위에 용융으로 인한 기공 등이 형성되지 않고 연속적인 접합계면이 형성되어진 것을 알 수 있다. 접합한 시편의 전단강도를 측정한 결과 접합체의 전단강도는 400㎏/㎠이상이었다.The thus prepared sintered body was bonded for 60 minutes at a bonding temperature of 1150 DEG C and a bonding base material made of carbon steel (SM45C). It can be seen that in the bonding with the steel, pores due to melting are not formed at the steel side of the bonding surface, and a continuous bonding interface is formed. As a result of measuring the shear strength of the bonded specimens, the shear strength of the bonded body was 400 kg / cm 2 or more.

[실시예B]Example B

실시예A에 사용한 합금분말을 2Ton/㎠의 성형압으로 프레스성형하여 성형체를 제조하였다. 성형체를 850℃에서 60분간 가열하여 경도 HRA 60이상의 가소결체를 제작하고, 이를 다시 탄소강(SM45C)으로 제작한 접합모재와 결합하여 1200℃에서 90분간 재소결을 행하였다. 소결체는 HRA 86이상의 경도를 나타내었으며, 접합계면의 상태는 소결체를 접합한 경우와 동일한 양상을 나타내었다. 접합한 시편의 전단강도를 측정한 결과 접합체의 전단강도는 400㎏/㎠이상이었다.The alloy powder used in Example A was press-molded at a molding pressure of 2 Ton / cm 2 to prepare a molded article. The molded body was heated at 850 ° C. for 60 minutes to produce a plastic sintered body having a hardness of HRA 60 or more, which was then combined with a bonded base material made of carbon steel (SM45C) and resintered at 1200 ° C. for 90 minutes. The sintered body had a hardness of HRA 86 or more, and the state of the bonding interface was the same as that of the sintered body. As a result of measuring the shear strength of the bonded specimens, the shear strength of the bonded body was 400 kg / cm 2 or more.

[실시예C]Example C

실시예 A에 사용한 합금분말을 2ton/cm2의 성형압으로 프레스 성형하여 성형체를 제조하였다, 성형체를 탄소강(SM45C)으로 제작한 접합모재 위에 놓고 200g의 하중을 가하면서 1050℃에서 60분간 접합하였다. 소결체는 HRA86이상의 경도를 나타내었으며, 접합계면에서 미접합부는 전혀 관찰할 수 없었다, 접합한 시편의 전단강도를 측정한 결과 접합체의 전단강도는 400kg/cm2이상 이었다.The alloy powder used in Example A was press-molded at a molding pressure of 2 ton / cm 2 to prepare a molded article. . The sintered body had a hardness of more than HRA86, and at the joint interface, the unbonded portion was not observed at all. The shear strength of the bonded specimen was 400kg / cm 2 or more.

습동면을 가지는 부품에 있어서 습동면의 내마모성을 향상시키기 위해 내마모재와 철계합금의 접합체를 형성하는 방법들이 많이 제안되어 왔다. 본 발명에서는 용가제 금속 없이 내마모재의 소결체 또는 혼합분말을 철계의 모재에 직접 접합하는 것이 가능하여 우수한 접합강도를 가짐과 동시에 경제성있는 접합체를 제조하였다.In order to improve the wear resistance of the sliding surface in a component having a sliding surface, a number of methods for forming a bonded body of a wear resistant material and an iron alloy have been proposed. In the present invention, it is possible to directly bond the sintered body or mixed powder of the wear-resistant material to the iron-based base material without using a solvent metal, thereby producing a bonded body having excellent bonding strength and economical efficiency.

Claims (7)

탄화물, 질화물, 붕화물중 에서 선택된 하나 이상의 경질입자 60-90중량% 와, 니켈기지에 액상온도를 낮추는 원소 로서 실리콘과 붕소가 포함된 금속계의 결합재 분말 10-40중량% 을 혼합한 초경합금 분말을 1050-1200℃로 1차 가열하여 소결체를 제작하고, 이 소결체를 모재에 올려놓고 1000 - 1300℃로 2차 가열하여 접합하는 것을 특징으로 하는 습동부품의 제조방법.Cemented carbide powder containing 60-90% by weight of one or more hard particles selected from carbides, nitrides and borides, and 10-40% by weight of metallic binder powder containing silicon and boron as elements to lower liquidus temperature on a nickel base A method for producing a sliding part, comprising: heating a primary at 1050-1200 ° C. to produce a sintered body, and placing the sintered body on a base material, followed by secondary heating at 1000 to 1300 ° C. to join. 삭제delete 제2항에 있어서, 상기 실리콘은 결합재중 3-12wt%이고, 붕소는 결합재중 2-10wt%인 것을 특징으로 하는 습동부품의 제조방법.The method of claim 2, wherein the silicon is 3-12 wt% in the binder and boron is 2-10 wt% in the binder. 제1항에 있어서, 상기 1차 가열온도는 1200℃인 것을 특징으로하는 습동부품의 제조방법.The method of claim 1, wherein the primary heating temperature is 1200 ℃. 제1항에 있어서, 상기 2차 가열온도는 1050 - 1150 ℃인 것을 특징으로 하는 습동부품의 제조방법.The method of claim 1, wherein the secondary heating temperature is 1050-1150 ℃. 니켈기지에 액상온도를 낮추는 원소로 실리콘, 붕소, 잔부가 니켈로 이루어진 금속계의 결합재 분말의 10-40중량% 과, 탄화물, 질화물, 붕화물 중에서 선택된 하나이상의 경질입자를 혼합한 초경합금 분말의 60-90중량% 로 성형체를 만들고, 상기 성형체를 모재와 1000-1200℃ 로 가열하여 소결접합하되, 상기 결합재는 실리콘이 3-12중량%, 붕소가 2-10중량%, 잔부가 니켈로 이루어진 것 을 특징으로 하는 습동부품의 제조방법.With an element to lower the liquid phase temperature of nickel base silicon, boron, the balance of 60 of 10 to 40% by weight of the metal-based bonding material powder made of a nickel, a carbide, a mixture of one or more hard particles selected from the group consisting of nitride, boride hard metal powder Make a molded body to 90% by weight , and the molded body is heated and sintered to the base material at 1000-1200 ℃ , the binder is 3-12% by weight of silicon, 2-10% by weight of boron, the balance is made of nickel A method of manufacturing a sliding part, characterized in that. 삭제delete
KR10-2003-0086444A 1998-03-25 2003-12-01 Method of manufacturing sliding parts KR100462702B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980010375A KR100422092B1 (en) 1998-03-25 1998-03-25 Sliding parts and manufacturing method thereof
KR10-2003-0086444A KR100462702B1 (en) 1998-03-25 2003-12-01 Method of manufacturing sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0086444A KR100462702B1 (en) 1998-03-25 2003-12-01 Method of manufacturing sliding parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019980010375A Division KR100422092B1 (en) 1998-03-25 1998-03-25 Sliding parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20030097752A KR20030097752A (en) 2003-12-31
KR100462702B1 true KR100462702B1 (en) 2004-12-23

Family

ID=32389574

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0086444A KR100462702B1 (en) 1998-03-25 2003-12-01 Method of manufacturing sliding parts

Country Status (1)

Country Link
KR (1) KR100462702B1 (en)

Also Published As

Publication number Publication date
KR20030097752A (en) 2003-12-31

Similar Documents

Publication Publication Date Title
US6756009B2 (en) Method of producing hardmetal-bonded metal component
EP0331679B1 (en) High density sintered ferrous alloys
US4724000A (en) Powdered metal valve seat insert
EP0167034A1 (en) Valve-seat insert for internal combustion engines and its production
US4029476A (en) Brazing alloy compositions
KR100189233B1 (en) Iron-based powder, component made thereof, and method of making the component
US4280841A (en) Method for manufacturing a mechanical seal ring
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
KR100462702B1 (en) Method of manufacturing sliding parts
KR100422092B1 (en) Sliding parts and manufacturing method thereof
EP0085125B1 (en) Cemented carbide compositions and process for making such compositions
US4690711A (en) Sintered compact and process for producing same
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
KR100514342B1 (en) Abrasion resistance cemented carbide alloy
JP3230125B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230124B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
KR100205795B1 (en) Valve lifter and its mamufacturing method of internal combustion engine
JP3254909B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230126B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2827909B2 (en) Internal combustion engine tappet member with high bonding strength with tip material
JPH0768600B2 (en) Compound boride sintered body
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JP2560816B2 (en) Method for producing reaction-bonded gold for surface hardening
JP2002069562A (en) Ni BASED CERMET AND PARTS FOR PLASTIC MOLDING MACHINE AND FOR DIE CASTING MACHINE USING THE SAME
JP3230137B2 (en) Internal-combustion engine tappet member having high joining strength with chip material

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101020

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130904

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 14

EXPY Expiration of term