KR100514342B1 - Abrasion resistance cemented carbide alloy - Google Patents

Abrasion resistance cemented carbide alloy Download PDF

Info

Publication number
KR100514342B1
KR100514342B1 KR1019980010376A KR19980010376A KR100514342B1 KR 100514342 B1 KR100514342 B1 KR 100514342B1 KR 1019980010376 A KR1019980010376 A KR 1019980010376A KR 19980010376 A KR19980010376 A KR 19980010376A KR 100514342 B1 KR100514342 B1 KR 100514342B1
Authority
KR
South Korea
Prior art keywords
cemented carbide
nickel
carbide
binder
silicon
Prior art date
Application number
KR1019980010376A
Other languages
Korean (ko)
Other versions
KR19990075888A (en
Inventor
심동섭
김경운
송근철
조정환
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to KR1019980010376A priority Critical patent/KR100514342B1/en
Publication of KR19990075888A publication Critical patent/KR19990075888A/en
Application granted granted Critical
Publication of KR100514342B1 publication Critical patent/KR100514342B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 초경합금에 관한 것으로, 텅스텐카바이드, 크롬카바이드 등의 탄화물, 질화규소, 질화알루미늄 등의 질화물 들 중에서 어느 하나 또는 2이상을 선택하여서 된 경질강화입자와, 니켈과, 니켈과 공정반응을 형성하는 실리콘, 인듐, 붕소 들 중에서 1 또는 2이상을 선택하여서 이루어진 원소들로 구성되어져, 상기 니켈과 실리콘, 인듐, 붕소 등이 공융반응을 형성하여 액상출현온도가 저하되므로써 강 등으로 이루어진 접합모재에 접합시에 요구되는 접합온도를 효과적으로 낮추어 주게 되어 우수한 기계적 특성을 가지는 금속모재와 초경합금의 접합재를 제조할 수 있게 되는 것이다.The present invention relates to a cemented carbide alloy, and forms a process reaction with hard reinforced particles, nickel, and nickel by selecting any one or two or more from nitrides such as carbides such as tungsten carbide and chromium carbide, silicon nitride, and aluminum nitride. Consists of elements formed by selecting one or two or more among silicon, indium, and boron. The nickel and silicon, indium, and boron form a eutectic reaction, and thus the liquidus appearance temperature is lowered. Effectively lowering the bonding temperature required at the time will be able to manufacture a bonding material of a metal base material and a cemented carbide having excellent mechanical properties.

Description

내마모성 초경합금{abrasion resistance cemented carbide alloy}Abrasion Resistance Cemented Carbide Alloy

본 발명은 내마모성 초경합금에 관한 것으로, 특히 초경합금을 구성하는 성분중 텅스텐 카바이드(WC) 혹은 크롬카바이드(Cr3C2) 등의 강화입자를 제외한 결합재(Binder)의 액상출현온도를 낮아지게 하므로써 상대적으로 저온에서도 금속과의 반응성이 우수하게 딘 내마모성 초경합금에 관한 것이다.The present invention relates to a wear resistant cemented carbide, and in particular, by lowering the liquid phase appearance temperature of the binder (Binder) excluding the reinforcing particles such as tungsten carbide (WC) or chromium carbide (Cr 3 C 2 ) of the components constituting the cemented carbide The present invention relates to a dean wear resistant cemented carbide having excellent reactivity with a metal even at low temperatures.

일반적으로 초경합금은 텅스텐카바이드, 크롬카바이드 등의 탄화물과 같은 경질의 강화입자와 니켈(Ni), 코발트(Co) 등의 단일금속 혹은 니켈합금 또는 코발트합금 등의 결합재로 구성된 것으로, 높은 경도값과 내마모성이 뛰어난 기계적 특성을 가지게 된다.Generally, cemented carbide is composed of hard reinforcing particles such as tungsten carbide and chromium carbide, and a single metal such as nickel (Ni) and cobalt (Co), or a binder such as nickel alloy or cobalt alloy, and has high hardness and wear resistance. This has excellent mechanical properties.

따라서 절삭공구 등의 공구류, 차량엔진의 타펫트(tappet), 록커-암(Rocker-Arm) 등과 같이 내마모성이 요구되는 부품에 금속과 접합된 형태로 많이 사용되고 있다. Therefore, it is widely used in the form of joining with metal to parts such as tools such as cutting tools, tappets of vehicle engines, and rocker-arms that require wear resistance.

이러한 초경합금은 텅스텐카바이드, 크롬카바이드 등의 탄화물 분말과 결합재로서 니켈, 코발트 등의 단일금속 혹은 니켈합금, 코발트합금 등의 분말을 혼합한 다음 충분히 건조하여 일정한 형상으로 성형한 후, 이 성형체를 고온에서 일정시간 유지시키는 소결공정에 의해서 제조하게 된다. 이때 소결온도는 통상 1350℃-1550℃의 고온에서 이루어지게 된다.The cemented carbide is mixed with carbide powders such as tungsten carbide and chromium carbide and a single metal such as nickel and cobalt as a binder, or powders such as nickel alloy and cobalt alloy, and then sufficiently dried and molded into a constant shape. It is manufactured by the sintering process to maintain a certain time. At this time, the sintering temperature is usually made at a high temperature of 1350 ℃-1550 ℃.

이렇게 제조된 초경합금은 금속과 접합하기 위해서는 초경합금의 결합재에서 액상이 출현되는 온도이상으로 가열하여 모재인 금속과 반응하므로써 접합이 이루어지게 되는 데, 이때 접합온도는 강의 특성이 변화되지 않는 온도내에서 행해지는 것이 바람직하다.The cemented cemented carbide is heated by heating above the temperature at which the liquid phase appears in the cemented carbide to react with the metal and reacts with the metal as the base metal. The joining temperature is performed within a temperature at which the properties of the steel do not change. Is preferred.

그러나 현재 사용되고 있는 결합재인 니켈, 코발트 등의 단일금속 혹은 니켈합금 또는 코발트합금의 액상출현온도는 대략 1350℃이상으로서 접합하여야 하는 모재인 강(steel)의 융점(1450℃)에 근접하게 되어 접합후 모재인 강의 기계적 성질이 저하될 우려가 있다.However, the liquid phase emergence temperature of currently used binders such as nickel and cobalt, or nickel alloys or cobalt alloys is approximately 1350 ° C or higher, which is close to the melting point (1450 ° C) of the base steel to be joined. There exists a possibility that the mechanical property of steel which is a base material may fall.

이에 본 발명은 상기한 문제점을 해결하기 위한 것으로, 각종 원소의 첨가에 의하여 초경합금에서 결합재의 액상출현온도 즉, 접합온도를 효과적으로 저하시키면서도 경도 등의 기계적물성이 기존의 니켈, 코발트 등의 단일금속 혹은 니켈합금 또는 코발트합금의 결합재를 사용한 초경합금에 비하여 저하되지 않는 내마모성 초경합금을 제공하는 데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, and by adding various elements, the mechanical properties such as hardness and the like, while effectively reducing the liquid phase appearance temperature of the binder in the cemented carbide, that is, the bonding temperature, may be used for the conventional single metal such as nickel, cobalt, or the like. It is an object of the present invention to provide a wear resistant cemented carbide that does not degrade compared to cemented carbide using a binder of nickel alloy or cobalt alloy.

상기한 목적을 달성하기 위한 본 발명의 내마모성 초경합금은, 텅스텐카바이드, 크롬카바이드 등의 탄화물, 질화규소, 질화알루미늄 등의 질화물 들중에서 어느 하나 또는 2이상을 선택하여서 된 경질강화입자와, 결합재로 구성되어지되, 상기 결합재가 니켈과, 니켈과 공정반응을 형성하는 원소들로 이루어진 것을 특징으로 한다.The wear-resistant cemented carbide of the present invention for achieving the above object is composed of hardened particles and binders selected by selecting any one or two or more from carbides such as tungsten carbide, chromium carbide, silicon nitride, aluminum nitride and the like. However, the binder is characterized in that consisting of nickel, and elements forming a process reaction with nickel.

이때 상기 니켈과 공정반응을 형성하는 원소로는 실리콘, 인듐, 붕소 들 중에서 1 또는 2이상을 선택하여서 이루어지게 된 것을 특징으로 한다.In this case, the element forming the process reaction with nickel is characterized in that it is made by selecting one or two or more from silicon, indium, boron.

이러한 구성으로 된 내마모성 초경합금은 결합재를 이루는 니켈과 실리콘, 인듐, 붕소 중에서 1 또는 2이상을 선택하여 이루어진 원소들이 공정반응을 형성하여 액상출현온도가 저하되므로써 강 등으로 이루어진 접합모재에 접합시에 요구되는 접합온도를 효과적으로 낮추어 주게 되어 우수한 기계적 특성을 가지는 금속모재와 초경합금의 접합재를 제조할 수 있게 되는 것이다.Wear-resistant cemented carbide of such a structure is required when joining to a bonded base material made of steel by reducing the liquid phase temperature by forming a process reaction in which elements formed by selecting one or two or more from nickel, silicon, indium, and boron as a binder are formed. Effectively lowering the bonding temperature is to be able to manufacture the bonding material of the metal base material and cemented carbide having excellent mechanical properties.

이하, 본 발명의 실시예를 첨부한 예시도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, an embodiment of the present invention will be described in detail.

본 발명에서는 니켈에 첨가되면 액상에서 제1, 2고상이 석출되는 공정반응이 발생하여 결합재의 액상출현온도를 저하시키는 원소인 실리콘, 인듐, 붕소 등을 니켈에 첨가하여 결합재를 구성하고, 이들 결합재와 텅스텐카바이드 등의 강화입자를 혼합하여 내마모성 초경합금을 제조하였다. In the present invention, when added to nickel, a process reaction occurs in which the first and second solid phases precipitate in the liquid phase, and silicon, indium, and boron, which are elements that lower the liquid phase appearance temperature of the binder, are added to the nickel to form a binder. Abrasion resistant cemented carbide was prepared by mixing reinforcing particles such as tungsten carbide.

[실시예1]Example 1

도 1에서 보듯이 니켈-실리콘 합금에서 공정조성은 21.4at%Si(공정점 1143℃), 29.8at%Si(공정점 1215℃), 46at%Si(공정점 964℃), 56.2at%Si(공정점 966℃)의 네가지 경우이며 공정반응이 일어나는 조성의 범위는 각각 15.8at%Si-25at%Si, 27.9at%Si-33.3at%Si, 41at%Si-50at%Si, 50at%Si-66.7at%Si의 범위이다. 이러한 조성의 범위의 니켈-실리콘합금을 결합재로서 강화입자인 텅스텐카바이드 혹은 크롬카바이드 등과 함께 초경합금을 혼합한 뒤 이를 성형, 소결하여 내마모성 초경합금을 제조하였다.As shown in FIG. 1, the process composition in the nickel-silicon alloy is 21.4 at% Si (process point 1143 ° C.), 29.8 at% Si (process point 1215 ° C.), 46 at% Si (process point 964 ° C.), 56.2 at% Si ( Process point 966 ℃), and the range of composition where process reaction occurs is 15.8at% Si-25at% Si, 27.9at% Si-33.3at% Si, 41at% Si-50at% Si, 50at% Si-66.7 at% Si range. The wear-resistant cemented carbide was prepared by mixing a cemented carbide with tungsten carbide or chromium carbide as reinforcing particles using a nickel-silicon alloy in a range of such a composition, followed by molding and sintering thereof.

본 실시예에서는 액상출현온도가 낮은 내마모성 초경합금을 제조하기 위하여 강화입자는 텅스텐카바이드로 하고 결합재의 조성은 니켈과 실리콘을 주성분으로 하는 내마모성 초경합금을 다음 표1과 같이 3가지 성분으로 제조하였다. 제조방법은 원료분말을 혼합하고 성형한 뒤 이를 Ni-Si상태도상에서의 액상출현온도인 1143℃보다 높은 1150℃에서 1시간동안 유지하여 소결하였다. In this embodiment, in order to produce a wear resistant cemented carbide having a low liquidus appearance temperature, the reinforced particles were made of tungsten carbide, and the binder was composed of a wear resistant cemented carbide composed of nickel and silicon as three components as shown in Table 1 below. In the manufacturing method, the raw material powder was mixed and molded and then sintered by maintaining it at 1150 ° C. for 1 hour, which is higher than 1143 ° C., which is a liquid phase appearance temperature in a Ni-Si state.

이렇게 하여 제조된 내마모성 초경합금의 경도와 소결밀도를 측정하고 1150℃에서의 액상의 출현여부를 관찰한 결과 실시예1-3번 조성물에서 소결밀도와 경도가 가장 높았으나, 실시예1-1번 및 실시예1-5번의 조성물에서는 소결밀도 및 경도값이 실시예1 - 2, 3, 4번 조성물에 비하여 낮았으며 액상의 출현도 관찰되지 않았다.The hardness and sintered density of the wear-resistant cemented carbide prepared in this way were measured, and the appearance of liquid phase at 1150 ° C. was observed. In the compositions of Examples 1-5, the sintered density and hardness were lower than those of the compositions of Examples 1, 2, 3, and 4, and no appearance of liquid phase was observed.

[실시예 2]Example 2

실시예1과 동일한 목적으로 강화입자는 텅스텐카바이드로 하고 결합재의 조성은 니켈과 인듐을 주성분으로 하는 초경합금을 다음 표2와 같이 3가지 성분으로 제조하였다. 제조방법은 원료분말을 혼합하고 성형한 뒤 이를 Ni-In상태도상에서의 액상출현온도인 910℃보다 높은 915℃에서 1시간 동안 유지하여 소결하였다. For the same purpose as in Example 1, the reinforcing particles were made of tungsten carbide, and the composition of the binder was prepared with three components, as shown in Table 2 below, containing a cemented carbide composed mainly of nickel and indium. In the manufacturing method, the raw material powder was mixed and molded, and then sintered by maintaining it at 915 ° C. higher than 910 ° C., which is a liquid phase appearance temperature in a Ni-In state diagram.

이렇게 하여 제조된 내마모성 초경합금의 경도와 소결밀도를 측정하고, 915℃에서의 액상출현여부를 관찰한 결과 실시예2-3번조성물에서 소결밀도와 경도가 가장 높았으나, 실시예2-1번 및 실시예2-5번의 조성물에서는 소결밀도 및 경도값이 실시예2-2,3,4번 조성에 비하여 낮았으며 액상의 출현도 관찰되지 않았다.The hardness and sintered density of the wear-resistant cemented carbide prepared in this way were measured, and the appearance of liquid phase at 915 ° C. was observed. As a result, the sintered density and hardness were the highest in the composition of Example 2-3. In the composition of Example 2-5, the sintered density and hardness value were lower than those of the compositions of Examples 2-2, 3 and 4, and no appearance of liquid phase was observed.

[실시예 3]Example 3

실시예 1과 동일한 목적으로 강화입자는 텅스텐카바이드로 하고 결합재의 조성은 니켈-실리콘성분에 붕소를 첨가하여 제조한 내마모성 초경합금을 다음 표 3에 나타내었다.For the same purpose as in Example 1, the reinforcing particles were made of tungsten carbide, and the composition of the binder was shown in Table 3 below. The wear-resistant cemented carbide was prepared by adding boron to the nickel-silicon component.

표 3에서 알 수 있는 바와 같이, 상기 결합재의 조성은, 실리콘이 8 - 12wt%, 붕소 0.75-4.25wt%, 잔부가 니켈로 이루어져 있다.As can be seen in Table 3, the composition of the binder, 8-12wt% silicon, 0.75-4.25wt% boron, the balance is made of nickel.

제조방법은 원료분말을 혼합하고 성형한 뒤 이를 Ni-Si계의 액상출현온도인 1143℃보다 낮은 1100℃에서 1시간 동안 유지하여 소결하였다. In the manufacturing method, the raw material powder was mixed and molded, and then sintered by maintaining it at 1100 ° C. for 1 hour, which is lower than 1143 ° C., which is a liquid phase appearance temperature of Ni-Si.

이렇게 하여 제조된 내마모성 초경합금의 경도와 소결밀도를 측정하고 1100℃에서 액상의 출현여부를 관찰한 결과 실시예3-3번 조성물에서 소결밀도와 경도가 가장 높았으며 붕소의 첨가에 의하여 결합재의 액상출현온도가 저하되는 것을 확인할 수 있었다. 한편, 실시예3-1번 및 실시예3-5번의 조성물에서는 소결밀도 및 경도값이 실시예3-3번 조성물에 비하여 낮았으며 액상의 출현도 관찰되지 않았다.The hardness and sintered density of the wear-resistant cemented carbide prepared in this way were measured, and the appearance of liquid phase was observed at 1100 ° C. As a result, the sintered density and hardness were the highest in the composition of Example 3-3. It was confirmed that the temperature was lowered. On the other hand, in the compositions of Example 3-1 and Example 3-5, the sintered density and hardness values were lower than those of the Example 3-3 composition, and no appearance of liquid phase was observed.

[실시예 4]Example 4

상기 실시예 3-3에 사용한 합금분말을 2ton/cm2의 성형압으로 프레스 성형하여 성형체를 제고하고, 이 성형체를 탄소강(SM45C)으로 제작한 접합모재 위에 놓고 200g의 하중을 가하면서 1050℃에서 60분간 접합하였다. 소결체는 HRA 86이상의 경도를 나타내었으며, 접합계면에서 미접합부는 전혀 관찰할 수 없었다. 접합한 시편의 전달강도를 측정한 결과 접합체의 전단강도는 400Kg/cm2이상 이었다.The alloy powder used in Example 3-3 was press-molded at a molding pressure of 2 ton / cm 2 to improve the molded body, and the molded product was placed on a bonded base material made of carbon steel (SM45C) at 200 ° C. under a load of 200 g. Bonding for 60 minutes. The sintered body had a hardness of HRA 86 or more, and the unbonded portion could not be observed at the junction interface. As a result of measuring the transfer strength of the bonded specimen, the shear strength of the bonded body was 400Kg / cm 2 or more.

절삭공구같은 높은 내마모성이 요구되는 공구류, 디젤엔진의 밸브 리프터, 태핏, 캠팔로우어, 로커아암 등과 같이 내마모성이 요구되는 부품에 대하여 내마모성을 향상시키는 내마모부재/금속접합체를 형성하는 방법들이 많이 제안되어 왔지만, 본 발명에 따르면 초경합금에서 금속재와 반응성이 있는 액상이 출현하는 온도를 1100℃이하로 낮추면서 금속 모재의 기계적 특성에 주는 영향을 최소화하면서 직접 접합이 가능한 내마모성 초경합금을 제조할 수 있다.Many methods for forming wear-resistant members / metal joints to improve wear resistance for tools requiring high wear resistance such as cutting tools, valve lifters of diesel engines, tappets, cam followers and rocker arms are proposed. Although, according to the present invention, it is possible to manufacture a wear resistant cemented carbide that can be directly bonded while lowering the temperature at which the liquid phase reactive with the metal material appears in the cemented carbide to 1100 ° C. or less while minimizing the influence on the mechanical properties of the metal matrix.

도 1 은 Ni-Si계의 상태도이고,1 is a state diagram of the Ni-Si system,

도 2 는 Ni-In계의 상태도이며,2 is a state diagram of the Ni-In system,

도 3 은 Ni-B계의 상태도이다.3 is a state diagram of a Ni-B system.

Claims (3)

텅스텐카바이드, 크롬카바이드 등의 탄화물, 질화규소, 질화알루미늄 등의 질화물 들중에서 어느 하나 또는 2이상을 선택하여서 된 경질강화입자와, 결합재로 구성된 초경합금에 있어서, In a cemented carbide comprising a hardened particle and a binder, selected from one or two or more of carbides such as tungsten carbide and chromium carbide, silicon nitride, and aluminum nitride, 상기 초경합금은 40wt%의 결합재와, 잔부가 경질경화입자로 구성되되, 상기 결합재는 88~89wt%의 니켈과, 니켈과 공정반응을 형성하는 11~12wt%의 실리콘으로 이루어진 것을 특징으로 하는 내마모성 초경합금.The cemented carbide is composed of a 40wt% binder, the remainder is composed of hardened particles, the binder is 88 ~ 89wt% nickel, and wear-resistant cemented carbide, characterized in that 11 to 12wt% of silicon forming a process reaction with nickel . 텅스텐카바이드, 크롬카바이드 등의 탄화물, 질화규소, 질화알루미늄 등의 질화물 들중에서 어느 하나 또는 2이상을 선택하여서 된 경질강화입자와, 결합재로 구성된 초경합금에 있어서,In a cemented carbide comprising a hardened particle and a binder, selected from one or two or more of carbides such as tungsten carbide and chromium carbide, silicon nitride, and aluminum nitride, 상기 초경합금은 40wt%의 결합재와, 잔부가 경질경화입자로 구성되되, 상기 결합재는 55~64wt%의 니켈과, 니켈과 공정반응을 형성하는 36~45wt%의 인듐으로 이루어진 것을 특징으로 하는 내마모성 초경합금.The cemented carbide is composed of a 40wt% binder, the remainder is composed of hardened particles, the binder is 55 ~ 64wt% nickel, wear-resistant cemented carbide, characterized in that consisting of 36 ~ 45wt% indium forming a process reaction with nickel . 텅스텐카바이드, 크롬카바이드 등의 탄화물, 질화규소, 질화알루미늄 등의 질화물 들중에서 어느 하나 또는 2이상을 선택하여서 된 경질강화입자와, 결합재로 구성된 초경합금에 있어서,In a cemented carbide comprising a hardened particle and a binder, selected from one or two or more of carbides such as tungsten carbide and chromium carbide, silicon nitride, and aluminum nitride, 상기 초경합금은 40wt%의 결합재와, 잔부가 경질경화입자로 구성되되, 상기 결합재는 니켈과 공정반응을 형성하는 8.25~11.75wt%의 실리콘과, 0.75~4.25wt%의 붕소와, 잔부가 니켈로 이루어진 것을 특징으로 하는 내마모성 초경합금.The cemented carbide is composed of 40wt% binder, the balance is composed of hardened particles, the binder is 8.25 ~ 11.75wt% silicon forming a process reaction with nickel, 0.75 ~ 4.25wt% boron, the balance is nickel Abrasion resistant cemented carbide, characterized in that made.
KR1019980010376A 1998-03-25 1998-03-25 Abrasion resistance cemented carbide alloy KR100514342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980010376A KR100514342B1 (en) 1998-03-25 1998-03-25 Abrasion resistance cemented carbide alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980010376A KR100514342B1 (en) 1998-03-25 1998-03-25 Abrasion resistance cemented carbide alloy

Publications (2)

Publication Number Publication Date
KR19990075888A KR19990075888A (en) 1999-10-15
KR100514342B1 true KR100514342B1 (en) 2005-12-05

Family

ID=37306361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980010376A KR100514342B1 (en) 1998-03-25 1998-03-25 Abrasion resistance cemented carbide alloy

Country Status (1)

Country Link
KR (1) KR100514342B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284546B1 (en) 2011-04-14 2013-07-11 국민대학교산학협력단 Abrasion Resistible Composite Comprising Indium Doped Copper Alloy Matrix with Tungsten Carbide Particles and Producing Method Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372785B1 (en) * 2000-10-20 2003-02-25 유영남 A tungsten carbide to the excellent welding and wear-resistent for tappet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145145A (en) * 1979-04-27 1980-11-12 Noboru Ichiyama Titanium diboride-base sintered hard alloy
JPS60255952A (en) * 1984-05-29 1985-12-17 Sumitomo Electric Ind Ltd Sintered hard alloy for warm or hot forging
JPS6360253A (en) * 1986-08-30 1988-03-16 Sumitomo Electric Ind Ltd Warm-and hot-forging tool
KR890014773A (en) * 1988-03-11 1989-10-25 버몬트 아메리칸 코포레이션 Boron Carbide Alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145145A (en) * 1979-04-27 1980-11-12 Noboru Ichiyama Titanium diboride-base sintered hard alloy
JPS60255952A (en) * 1984-05-29 1985-12-17 Sumitomo Electric Ind Ltd Sintered hard alloy for warm or hot forging
JPS6360253A (en) * 1986-08-30 1988-03-16 Sumitomo Electric Ind Ltd Warm-and hot-forging tool
KR890014773A (en) * 1988-03-11 1989-10-25 버몬트 아메리칸 코포레이션 Boron Carbide Alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284546B1 (en) 2011-04-14 2013-07-11 국민대학교산학협력단 Abrasion Resistible Composite Comprising Indium Doped Copper Alloy Matrix with Tungsten Carbide Particles and Producing Method Thereof

Also Published As

Publication number Publication date
KR19990075888A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JPH055152A (en) Hard heat resisting sintered alloy
KR100514342B1 (en) Abrasion resistance cemented carbide alloy
Johnson et al. Design guidelines for processing bi-material components via powder-injection molding
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
JP2893886B2 (en) Composite hard alloy material
JPS613853A (en) Manufacture of sintered hard alloy
KR100422092B1 (en) Sliding parts and manufacturing method thereof
KR100462702B1 (en) Method of manufacturing sliding parts
KR100234601B1 (en) High temperature wear resistant sintered alloy
JPS62211340A (en) Corrosion resistant hard alloy
JP2002069562A (en) Ni BASED CERMET AND PARTS FOR PLASTIC MOLDING MACHINE AND FOR DIE CASTING MACHINE USING THE SAME
JPS63143236A (en) Composite boride sintered body
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
AU2010351588B2 (en) Composite system
JP3230124B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2560816B2 (en) Method for producing reaction-bonded gold for surface hardening
JP3230126B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2001262290A (en) Sintered hard alloy excellent in thermal shock resistance as well as corrosion resistance to molten metal, and member for molten metal using the alloy
CN116134170A (en) Component for watches or jewelry made of cermet
CN116618645A (en) Cemented carbide, preparation method and application thereof, and cutting tool
JPS59222556A (en) Wear resistant sintered iron alloy with superior workability and its manufacture
JP2626863B2 (en) Cemented carbide and its manufacturing method
JP3230127B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2827909B2 (en) Internal combustion engine tappet member with high bonding strength with tip material

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130718

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 13

EXPY Expiration of term