JPS60100646A - High toughness sintered body of ceramic - Google Patents

High toughness sintered body of ceramic

Info

Publication number
JPS60100646A
JPS60100646A JP20849183A JP20849183A JPS60100646A JP S60100646 A JPS60100646 A JP S60100646A JP 20849183 A JP20849183 A JP 20849183A JP 20849183 A JP20849183 A JP 20849183A JP S60100646 A JPS60100646 A JP S60100646A
Authority
JP
Japan
Prior art keywords
sintered body
ceramics
powder
metal
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20849183A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakamoto
広志 坂本
Hiromi Kozobara
楮原 広美
Tetsuo Kuroda
哲郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20849183A priority Critical patent/JPS60100646A/en
Publication of JPS60100646A publication Critical patent/JPS60100646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered body of ceramics having superior toughness by dispersing a specified amount of an oxidation resistant alloy having a specified average particle size in a sintered body of ceramics. CONSTITUTION:An oxidation resistant alloy having <=0.5mum average particle size is dispersed in a sintered body of ceramics such as zirconia or alumina by 0.5- 6wt%. An alloy consisting of, by weight, 0.1-0.2% C, 5-20% Cr, 3-10% Mo, 3-10% W, 2-5% Al, 2-5% Ti and the balance Ni or Co is used as the oxidation resistant alloy. A sintered body having superior oxidation resistance and strength at high temp. as well as improved toughness is obtd.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高靭性セラミックス焼結体に係り、特にジルコ
ニアおよびアルミナの超微粉末にバインダーとして耐酸
化性合金の超微粉末を添加して成形、焼結してなる靭性
に優れたセラミックス焼結体に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a high-toughness ceramic sintered body, and in particular to ultrafine powder of zirconia and alumina, which is formed by adding ultrafine powder of an oxidation-resistant alloy as a binder. This invention relates to a ceramic sintered body with excellent toughness that is obtained by sintering.

〔発明の背景〕[Background of the invention]

高温及び腐蝕性ガス雰囲気中で使用される材料としては
、従来よシ耐熱合金が広ぐ用いられている。耐熱合金は
その使用温度に限度がある。そこで金属材料を使用する
ことができない不可能分野ではセラミックスを使用する
気運が高まっている。
Conventionally, heat-resistant alloys have been widely used as materials used in high temperatures and corrosive gas atmospheres. Heat-resistant alloys have a limited use temperature. Therefore, there is a growing trend to use ceramics in fields where it is impossible to use metal materials.

例えばガスタービン用構造部材やエンジン用部品のセラ
ミックス化がある。セラミックスは耐熱。
For example, structural members for gas turbines and engine parts are made of ceramics. Ceramics are heat resistant.

耐蝕には非常にすぐれた性質を持っている反面、非常に
脆いという大きな欠点がある。そのため、現在ではこの
欠点を克服するため種々の検討がなされている。その方
法の一つとして、耐熱、耐蝕性のセラミックスと靭性の
すぐれた金属とを複合することによって克服することが
考えられる。例えば特公昭54−8371号(金属セラ
ミック)に示されているように高融点酸化物と金属クロ
ムとを含む金属セラミックであって、前記高融点金属酸
化物が金属クロマイトからなる金属セラミックが開示さ
れている。また特公昭52−4564号に示しているよ
うにアルミナに金属モリブデン、タングステンを添加し
て強靭化を図っている。しかしながら、従来の技術では
セラミックスの靭性を十分に克服するに至っていない。
Although it has excellent corrosion resistance, it has the major drawback of being extremely brittle. Therefore, various studies are currently being conducted to overcome this drawback. One possible way to overcome this problem is to combine heat-resistant and corrosion-resistant ceramics with tough metals. For example, as disclosed in Japanese Patent Publication No. 54-8371 (Metal Ceramics), a metal ceramic containing a high melting point oxide and a metal chromium is disclosed, where the high melting point metal oxide is made of metal chromite. ing. Furthermore, as shown in Japanese Patent Publication No. 52-4564, metal molybdenum and tungsten are added to alumina to make it tougher. However, conventional techniques have not yet sufficiently overcome the toughness of ceramics.

また、ジルコニア及びアルミナ等のセラミックスの欠点
は金属に比較して著しく脆いことと、耐熱衝撃が劣るこ
とである。セラミックスに靭性のある金属を添加して強
化したものとしては従来からサーメットと呼ばれる材料
が一般に知られている。このサーメットは、金属酸化物
、炭化物およびケイ化物などに結合材としてl;”e、
Co、 Ni等の金属を添加した一種の複合材料である
。これは機械切削用の工具に用いられている。しかしな
がら、このサーメットではバインダーとしての金属がか
なシ多量に添加されており、セラミックス本来の性質を
失なっているという欠点を有していた。
Furthermore, the drawbacks of ceramics such as zirconia and alumina are that they are significantly more brittle than metals and have poorer thermal shock resistance. A material called cermet has been generally known as a material made by adding a tough metal to ceramics to strengthen it. This cermet can be used as a binder for metal oxides, carbides, silicides, etc.
It is a type of composite material to which metals such as Co and Ni are added. This is used in mechanical cutting tools. However, this cermet has the disadvantage that a large amount of metal as a binder is added, and the properties inherent to ceramics are lost.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、セラミックスたとえばジルコニアおよ
びアルミナを主体とする焼結体の脆性を改善した強靭性
のセラミックス焼結体を提供するにおる。
An object of the present invention is to provide a strong ceramic sintered body which has improved brittleness in a sintered body mainly composed of ceramics such as zirconia and alumina.

〔発明の概要〕[Summary of the invention]

本発明に係るセラミックス焼結体は、特に、ジルコニア
およびアルミナの焼結体中に平均粒径が0.5μm以下
である耐酸化性合金が重量比で0.5〜6%分散してい
ることを特徴としている。
In particular, the ceramic sintered body according to the present invention has 0.5 to 6% by weight of an oxidation-resistant alloy having an average particle size of 0.5 μm or less dispersed in the zirconia and alumina sintered body. It is characterized by

特に、本発明はセラミックス焼結体に平均粒径で0.5
μm以下の耐酸化性合金の超微粉末をバインダーとして
添加したところに特徴としている。
In particular, the present invention provides a ceramic sintered body with an average grain size of 0.5
It is characterized by the addition of ultrafine powder of an oxidation-resistant alloy of micrometers or less as a binder.

セラミックスを強靭化する重要因子は重要な出発原料と
なるセラミックスと金属の粉末の大きさでおる。一般に
セラミックスの平均粒径が微細であるほど焼結体の靭性
が改善されることは周知である。これは焼結する際に粉
末同志の接触面積が増加し、焼結し易くなるためである
。このようにして得た焼結体はその結晶粒が微細化され
、かつ相対密度が増加し内部欠陥の少ないものとなる。
An important factor in making ceramics tough is the size of the ceramic and metal powders that serve as important starting materials. It is generally known that the finer the average particle size of ceramics, the better the toughness of the sintered body. This is because the contact area between powders increases during sintering, making sintering easier. The sintered body thus obtained has finer crystal grains, an increased relative density, and fewer internal defects.

一方緻密な焼結体の靭性を改善する方法としては、靭性
のある金属粉末を適量添加する。この方法では金属がク
ラックのアレスターあるいは緩衝材となシ、クラックの
進展度合を低減させて靭性を改善できることは十分に期
待される。
On the other hand, as a method for improving the toughness of a dense sintered body, an appropriate amount of tough metal powder is added. In this method, the metal acts as a crack arrester or buffer, and it is fully expected that the degree of crack propagation can be reduced and toughness can be improved.

しかし金属粉末の添加量がある程度以上になると、靭性
は改善される反面、強度が低下して、セラミックス本来
の特性が消失する難点がある。また金属粉末同志が接触
して凝集し、かえって靭性を改善する効果が発揮されな
くなる。セラミックス粉末と金属粉末の混合体を成形し
た後、焼結する過程でセラミックス粉子間で金属粒子相
互が凝集するため、セラミックス粒子間に空隙を形成す
るためである。この空隙は応力集中の起点となって靭性
を低下させる。
However, when the amount of metal powder added exceeds a certain level, although the toughness is improved, the strength decreases and the original characteristics of ceramics are lost. In addition, the metal powders come into contact with each other and coagulate, and the effect of improving toughness is no longer exhibited. This is because the metal particles coagulate between the ceramic powders during the sintering process after forming the mixture of ceramic powder and metal powder, thereby forming voids between the ceramic particles. These voids serve as starting points for stress concentration and reduce toughness.

本発明者らはセラミックス粒と金属粉末の平均粒径を変
化させて混合し、混合粉末を成形、焼結となると共に焼
結体が緻密になることを見い出しプと。さらに、靭性の
向上を図るためには、セラミックス粉末に0.5μm以
下の金属粉末を重量比で0.5〜6チ添加させることが
好ましい。平均粒径が数μm以上のセラミックスに平均
粒径約0.5μm以下の金属粉末を添加した場合には、
セラミック同志が接触した空隙に金属粉末が集合する傾
向になる、このような粉末成形体を焼成すると、集合し
た粉末が焼結あるいは溶融して凝固する際にセラミック
ス粒子境界に微小な空隙が残存し、緻密な焼結体が得ら
れず靭性が劣下することになる。すなわち、セラミック
ス粉末に金属粉末τ添加して靭性を改善するには、微細
化されたセラミックス及び金属粉末を用いて、金属粉末
を微細にかつ均一にマトリックス中に分散させるのがキ
ーポイントである。さらに、本発明はセラミックスとし
てジルコニアおよびアルミナに対して漏れ性の優れた耐
酸化性合金たとえばCrを含有する耐酸化性を向上させ
たNi基合金、あるいはCo基合金の超微粉末を添加し
たところに特徴がある。
The present inventors have discovered that by mixing ceramic grains and metal powder with varying average particle diameters, the mixed powder is molded and sintered, and the sintered body becomes dense. Furthermore, in order to improve the toughness, it is preferable to add metal powder of 0.5 μm or less to the ceramic powder in a weight ratio of 0.5 to 6 times. When metal powder with an average particle size of about 0.5 μm or less is added to ceramics with an average particle size of several μm or more,
Metal powder tends to aggregate in the voids where ceramics come into contact with each other. When such a powder compact is fired, when the aggregated powder is sintered or melted and solidified, small voids remain at the boundaries of the ceramic particles. , a dense sintered body cannot be obtained and the toughness deteriorates. That is, in order to improve toughness by adding metal powder τ to ceramic powder, the key point is to use finely divided ceramics and metal powder to disperse the metal powder finely and uniformly in the matrix. Furthermore, the present invention is a ceramic in which ultrafine powder of an oxidation-resistant alloy with excellent leakage properties is added to zirconia and alumina, such as a Ni-based alloy containing Cr and having improved oxidation resistance, or a Co-based alloy. There are characteristics.

1’Ji基合金としては、重量比でC:0.1〜0.2
%、Cr : 5〜20%、Mo : 3〜10%、W
:3〜10チ、J、、t:2〜5%、’pi:2〜5チ
および残部Niからなるものが好ましい。
As a 1'Ji-based alloy, C: 0.1 to 0.2 in weight ratio
%, Cr: 5-20%, Mo: 3-10%, W
: 3 to 10%, J, t: 2 to 5%, 'pi: 2 to 5%, and the balance is preferably Ni.

またCo基合金としては、C:0.1〜0.2%。Further, as a Co-based alloy, C: 0.1 to 0.2%.

Cr : 5〜20%、Mo :3〜10%、W: 3
〜10%、At:2〜5%%pi:2〜5チおよび残部
COからなるものが好ましい。このようなNi基合金あ
るいはCo基合金において(fま、ジルコニアおよびア
ルミナに対する漏れ性に優れた〇r、AtおよびTiあ
るいはこれらの酸化物を含有するため、焼結体の強度を
向上させると共に靭性に寄与するものである。耐酸化性
合金であるNi基合金およびCo基合金の化学組成を上
記のように限定した理由を以下述べる。
Cr: 5-20%, Mo: 3-10%, W: 3
-10%, At: 2-5%, Pi: 2-5%, and the balance is preferably CO. In such Ni-based alloys or Co-based alloys, they contain At and Ti or their oxides, which improve the strength and toughness of the sintered body. The reason why the chemical compositions of the Ni-based alloy and Co-based alloy, which are oxidation-resistant alloys, are limited as described above will be described below.

Cr:5〜20チ CrはNi基およびCo基の耐酸化性を向上させる元素
でちって5係未満ではその効果が小さく一方、20%を
越えるとその効果が飽和するので、上限を20%とした
Cr: 5 to 20% Cr is an element that improves the oxidation resistance of Ni and Co groups, and its effect is small when it is less than 5%, but its effect is saturated when it exceeds 20%, so the upper limit is set to 20%. And so.

C:0.1〜0.2 qb Cは耐酸化性のちる炭化物を生成させてNi基合金およ
びCo基合金を強化するのに有効な元素であり、その添
加量は0.1〜0.2係が妥当である。
C: 0.1 to 0.2 qb C is an element effective in strengthening Ni-based alloys and Co-based alloys by forming oxidation-resistant solid carbides, and the amount added is 0.1 to 0.2 qb. Section 2 is appropriate.

MO:3〜10チ、W:3〜10g6 Mo、Wは耐酸化性を向上させるのに有効な元素であっ
て、両元素とも3係未満ではその効果が小さい一方、1
0%を越えると、その効果が飽和すると共に、高価な元
素であるので経済上好ましくない。したがって、MOお
よびW量は3〜10チに限定した。
MO: 3 to 10 g, W: 3 to 10 g6 Mo and W are effective elements for improving oxidation resistance.
If it exceeds 0%, its effect will be saturated and it will be economically unfavorable since it is an expensive element. Therefore, the amount of MO and W was limited to 3 to 10 inches.

At:2〜5頭、 Ti2〜5% At、Tiはセラミックスとのぬれ性が良く強靭化に有
効であシ2チ未満では効果がなく、5係以上では耐酸化
性が劣化するので、At、Ti共に2〜5%に限定した
At: 2 to 5%, Ti: 2 to 5% At and Ti have good wettability with ceramics and are effective for toughening, but if it is less than 2%, it is ineffective, and if it is more than 5%, the oxidation resistance deteriorates, so At , Ti were both limited to 2 to 5%.

残部Nl:残部C0 なおNi基には3〜10%のCoを、Co基には3〜1
0%のNiを添加するとよシ耐酸化性を向上させている
。このような化学組成からなるNi基合金およびCo基
合金では蒸発法により超微粉(平均粒径0.05μm)
に製造することが容易でおる。特にRene’80 (
C:0.17. Co:9.5.Mo+W: 8+ A
t: 3.T i : 5.Cr:14.残部Niは良
好な耐酸化性を有するのでジルコニアとアルミナの結合
材として有効である。
Remaining Nl: Remaining C0 Note that 3 to 10% of Co is added to the Ni group, and 3 to 1% of Co is added to the Co group.
Addition of 0% Ni significantly improves oxidation resistance. Ni-based alloys and Co-based alloys with such chemical compositions are made into ultrafine powder (average particle size 0.05 μm) by evaporation.
It is easy to manufacture. Especially Rene'80 (
C:0.17. Co:9.5. Mo+W: 8+ A
t: 3. Ti: 5. Cr:14. The remaining Ni has good oxidation resistance and is therefore effective as a binding material for zirconia and alumina.

〔発明の実施例〕 〈実施例1〉 平均粒径0.03μmのジルコニア粉末(3wt/。[Embodiments of the invention] <Example 1> Zirconia powder with an average particle size of 0.03 μm (3wt/.

Y2O3で部分安定化したもの)に粒径を0.05μm
〜10μmと変化させた各Ni基耐熱合金(lene’
3 Q )粉末を機械的混合法(たとえばらいかい機お
よび遠心ボールミン)で混合し、各混合粉末からプレス
で中間成形体を成形した。この混合粉末を作製する際に
はジルコニアに対する金属粉末を3w10と一定とした
。次いで各中間成形体を10’−’)ル以上の高真空下
で1500cで焼結した。各焼結体より3 MX 4 
MX 30 rentの試験片を切υ出し、鏡面に研摩
したのち4点曲げ試験に供した。試験は各々30本につ
いて行い平均値をめた。
partially stabilized with Y2O3) with a particle size of 0.05 μm.
Each Ni-based heat-resistant alloy (lene'
3Q) The powders were mixed using a mechanical mixing method (for example, using a milling machine and a centrifugal ball mill), and intermediate compacts were formed from each mixed powder using a press. When producing this mixed powder, the metal powder relative to zirconia was kept constant at 3w10. Each intermediate compact was then sintered at 1500c under high vacuum of 10'-') or more. 3 MX 4 from each sintered body
A test piece of MX 30 rent was cut out, polished to a mirror surface, and then subjected to a four-point bending test. The test was conducted on 30 pieces each, and the average value was calculated.

その結果は第1図および第2図に示す通シである。The results are as shown in FIGS. 1 and 2.

第1図は曲げ強度であシ、第2図はビッカース硬度計で
荷重20に4の圧痕をつけたのちの曲げ強度である。第
1図から明らかなように、金属平均粒径0.5μ、mま
ではわずかの低下であるが、金属平均粒径がさらに増加
すると曲げ強度は劣下する傾向を示した。第2図におい
て平均粒径0.05μmの金属粉末を添加した焼結体は
単味のジルコニア(無添加)に比較して約6 h / 
rta 2も高い値を示した。このことは金属微粉末を
添加したジルコニア焼結体は靭性がすぐれていると考え
られる。
Figure 1 shows the bending strength, and Figure 2 shows the bending strength after making an impression of 4 under a load of 20 using a Vickers hardness tester. As is clear from FIG. 1, there was a slight decrease in the average metal particle size up to 0.5 μm, but as the average metal particle size further increased, the bending strength tended to decrease. In Figure 2, the sintered body to which metal powder with an average particle size of 0.05 μm is added has a sintered body of about 6 h /
rta 2 also showed a high value. This suggests that the zirconia sintered body containing fine metal powder has excellent toughness.

すなわち、表面に小さな欠陥が生じていた単味のジルコ
ニア焼結体では、小さな外力によって容易に破断するの
に対し、金属微粉末を添加したジルコニア焼結体では約
25%高い外力に耐えることができる。これを確認する
ため各焼結体にビッカース硬度計で圧痕をつけて荷重と
削れ長さの関係から応力拡大係数KCを次式よシ算出し
た。
In other words, a plain zirconia sintered body with small defects on its surface would easily break due to a small external force, whereas a zirconia sintered body with fine metal powder added could withstand an external force about 25% higher. can. To confirm this, an indentation was made on each sintered body using a Vickers hardness tester, and the stress intensity coefficient KC was calculated from the relationship between the load and the scraped length using the following formula.

ただし、Pはビッカース圧子荷重、φはビッカース圧子
先端の角度、Cは割れの長さである。第3図は金属粉末
の粒径と上記から算出したKC値との関係を示す線図で
ある。図に示すように、第2図で示した曲げ強度と同様
な傾向が認められた。
Here, P is the Vickers indenter load, φ is the angle of the Vickers indenter tip, and C is the crack length. FIG. 3 is a diagram showing the relationship between the particle size of metal powder and the KC value calculated from the above. As shown in the figure, the same tendency as the bending strength shown in FIG. 2 was observed.

金属粉末の粒径が0.05μmのものを添加した焼結体
では単味のジルコニアからなる焼結体に比べて約15倍
のKCを示し、2μm以上では著しく減少している。ビ
ッカース硬度計によって焼結体にダイヤモンド圧痕をつ
けた場合の割れの状態を観察した。単味のジルコニアか
らなる焼結体での割れ長さは本発明による平均粒径O,
OSμmの金属粉末を添加した焼結体Bの縦方向の割れ
長さよシ大きく、本発明の焼結体は、従来の焼結体に比
べて割れ長さが約半分であることが確認された。
A sintered body containing metal powder with a particle size of 0.05 μm exhibits a KC that is about 15 times that of a sintered body made of simple zirconia, and it significantly decreases when the particle size is 2 μm or more. The state of cracking was observed when a diamond indentation was made on the sintered body using a Vickers hardness tester. The crack length in a sintered body made of single zirconia is determined by the average grain size O according to the present invention,
It was confirmed that the crack length in the longitudinal direction of sintered body B containing OSμm metal powder was larger, and that the crack length of the sintered body of the present invention was about half that of the conventional sintered body. .

ジルコニア焼結体の脆性改善には上記のことがら金属粉
末を平均粒径で0.5μm以下が有効である。
For improving the brittleness of zirconia sintered bodies, it is effective to use metal powder with an average particle size of 0.5 μm or less based on the above.

次KNi基耐熱合金粉末の平均粒径を0.05μmと一
定にしてその添加量を種々変えて添加し、金属粉末をジ
ルコニア中に分散させた後、その混合粉末を成形し、次
いで焼結して焼結体を作製した。前述したようなこの焼
結体から試験片を作製し曲げ強度試験に供した。曲げ試
験はビッカース硬度計で圧痕をつけたのち曲げ試聴を行
った。
Next, the average particle size of KNi-based heat-resistant alloy powder was kept constant at 0.05 μm, and the amount added was varied. After the metal powder was dispersed in zirconia, the mixed powder was molded, and then sintered. A sintered body was produced. A test piece was prepared from this sintered body as described above and subjected to a bending strength test. In the bending test, an indentation was made using a Vickers hardness tester, and then a bending test was performed.

第4図は金属粉末の添加量と焼結体の曲げ強度との関係
を示している。図から明らかなように金属粉末を、1 
w t 10以上添加することにょシ曲げ強度は増加し
、添加量が2.5Wt10で最大となシそれ以上添加す
ればかえって、強度は低下する傾向を示した。したがっ
て、金属粉末の添加量は0.5〜6%の範囲にすること
が好ましい。この原因は金属微粉末同志が接触して、金
属微粉末が凝集肥大するためである。
FIG. 4 shows the relationship between the amount of metal powder added and the bending strength of the sintered body. As is clear from the figure, the metal powder is
The bending strength increased when wt 10 or more was added, and reached the maximum when the amount added was 2.5Wt10, and the strength tended to decrease when more than that amount was added. Therefore, the amount of metal powder added is preferably in the range of 0.5 to 6%. The reason for this is that the fine metal powders come into contact with each other, causing the fine metal powders to coagulate and enlarge.

7、5 W tloの金属粉末を添加した焼結体の光学
顕微鏡写真を観察した結果、マトリックス中に金属粉末
が凝集して肥大化していることが認められる。そのため
、焼結体の曲げ強度は低下することになる。
As a result of observing an optical micrograph of a sintered body to which 7.5 W tlo of metal powder was added, it was found that the metal powder aggregated and enlarged in the matrix. Therefore, the bending strength of the sintered body decreases.

したがってジルコニアの靭性を高めるためには金属(R
ene’ 130 )の超微粉末は0.5〜6Wt10
の範囲でジルコニア焼結体のマトリックス中に均一に分
散されることが重要である。
Therefore, in order to increase the toughness of zirconia, metal (R
The ultrafine powder of ene' 130) is 0.5-6Wt10
It is important that the zirconia sintered body be uniformly dispersed in the matrix of the zirconia sintered body within this range.

以上のように、ジルコニア中に平均粒径が0.5μm以
下である金属超微粉末を0.5〜6W10分散させるこ
とによシ靭性を向上させることができることが判明した
。なおアルミナ(AI40m )についても本実施例と
同様に行ったが、本発明はアルミナの脆性改善にも゛効
果が認められた。従ってSjC,5j3N4等の他のセ
ラミックスに超微粉を添加しても同様の効果が期待でき
ることは明白である。本発明における超微粉末を製造す
ることは現在の技術水準から可能であシ、本実施例で用
いたNi基耐酸化合金の超微粉末を添加することはよシ
効果的である。
As described above, it has been found that toughness can be improved by dispersing 0.5 to 6W10 of ultrafine metal powder having an average particle size of 0.5 μm or less in zirconia. Alumina (AI40m) was also tested in the same manner as in this example, and the present invention was also found to be effective in improving the brittleness of alumina. Therefore, it is clear that similar effects can be expected even if ultrafine powder is added to other ceramics such as SjC and 5j3N4. It is possible to produce the ultrafine powder in the present invention based on the current state of the art, and it is very effective to add the ultrafine powder of the Ni-based oxidation-resistant alloy used in this example.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、セラ
ミックスたとえばジルコニアおよびアルミナを主体とす
る焼結体の靭性を向上させることができると共に、耐高
温酸化性および高温強度に優れた焼結体を提供すること
ができ、その効果に犬なるものがある。
As is clear from the above description, according to the present invention, it is possible to improve the toughness of a sintered body mainly made of ceramics such as zirconia and alumina, and the sintered body has excellent high-temperature oxidation resistance and high-temperature strength. It is possible to provide a dog with its effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属粉末の粒径と曲げ強度との関係を示す線図
、第2図は金属粉末の粒径とビッカース圧痕後の焼結体
の曲げ強度との関係を示した線図、第3図は金属粉末の
粒径に対するKCを示したt第4図は金属超微粉末の添
加量とダイヤモンド圧痕後の曲げ強度との関係を示した
線図である。 代理人 弁理士 鵜沼辰之 令馳米粒径(J、LTnす も3目 令瓢紛未柾径(μ町
Figure 1 is a diagram showing the relationship between the particle size of metal powder and bending strength. Figure 2 is a diagram showing the relationship between particle size of metal powder and bending strength of the sintered body after Vickers indentation. Figure 3 shows KC with respect to the particle size of the metal powder. Figure 4 is a diagram showing the relationship between the amount of ultrafine metal powder added and the bending strength after diamond indentation. Agent Patent Attorney Tatsuyuki Unuma Rice Grain Diameter (J, LTn Sumo 3rd Rice Grain Diameter

Claims (1)

【特許請求の範囲】 1、セラミックスからなる焼結体中に、平均粒径が0,
5μm以下である耐酸化性合金を重量比で0.5〜6チ
分散したことを特徴とする高靭性セラミックス焼結体。 2、特許請求の範囲第1項において、耐酸化性合金が重
量比でC: 0.1〜0.2%、 Cr : 5〜20
チ、Mo:3〜10チ、W:3〜10%、A4:2〜s
s、Ti:z〜5%および残部Niからなることを特徴
とする高靭性セラミックス焼結体。 3、特許請求の範囲第1項において、耐酸化性合金が重
量比でC: 0.1〜0.3%、 Cr : 5〜20
チ、Mo:3〜10チ、W:3〜10%、At:2〜s
s、Ti:2〜5チおよび残部COからなることを特徴
とする高靭性セラミックス焼結体。
[Claims] 1. In the sintered body made of ceramics, the average grain size is 0,
A high-toughness ceramic sintered body, characterized in that an oxidation-resistant alloy having a diameter of 5 μm or less is dispersed in a weight ratio of 0.5 to 6. 2. In claim 1, the oxidation-resistant alloy has a weight ratio of C: 0.1 to 0.2% and Cr: 5 to 20.
Chi, Mo: 3-10 chi, W: 3-10%, A4: 2-s
A high toughness ceramic sintered body characterized by comprising: s, Ti:z~5% and the balance Ni. 3. In claim 1, the oxidation-resistant alloy has a weight ratio of C: 0.1 to 0.3% and Cr: 5 to 20.
Chi, Mo: 3-10 chi, W: 3-10%, At: 2-s
A high-toughness ceramic sintered body characterized by comprising: s, Ti: 2 to 5 ti and the balance being CO.
JP20849183A 1983-11-07 1983-11-07 High toughness sintered body of ceramic Pending JPS60100646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20849183A JPS60100646A (en) 1983-11-07 1983-11-07 High toughness sintered body of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20849183A JPS60100646A (en) 1983-11-07 1983-11-07 High toughness sintered body of ceramic

Publications (1)

Publication Number Publication Date
JPS60100646A true JPS60100646A (en) 1985-06-04

Family

ID=16557037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20849183A Pending JPS60100646A (en) 1983-11-07 1983-11-07 High toughness sintered body of ceramic

Country Status (1)

Country Link
JP (1) JPS60100646A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245767A (en) * 1984-05-18 1985-12-05 Yoshio Miyamoto Metal dispersion strengthened ceramics and its production
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
CN113061793A (en) * 2021-02-26 2021-07-02 成都虹波实业股份有限公司 Refractory metal-based high-volume-ratio ceramic material and preparation process thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245767A (en) * 1984-05-18 1985-12-05 Yoshio Miyamoto Metal dispersion strengthened ceramics and its production
JPH0243809B2 (en) * 1984-05-18 1990-10-01 Yoshio Myamoto
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7153338B2 (en) 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
CN113061793A (en) * 2021-02-26 2021-07-02 成都虹波实业股份有限公司 Refractory metal-based high-volume-ratio ceramic material and preparation process thereof

Similar Documents

Publication Publication Date Title
TW200914628A (en) Ultra-hard composite material and method for manufacturing the same
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JPH03158445A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPS6362474B2 (en)
JPS60100646A (en) High toughness sintered body of ceramic
US4762557A (en) Refractory metal alloys having inherent high temperature oxidation protection
JP2634103B2 (en) High temperature bearing alloy and method for producing the same
JPH0472027A (en) Valve seat material for outboard motor and its production
JPS58193335A (en) Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
JPS63225579A (en) Ceramic tool material
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
JPH02179843A (en) Tool material for hot tube making
JPS60125348A (en) Tool material
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JP3221192B2 (en) Valve seat for intake
JPS6335706B2 (en)
JP2705376B2 (en) Valve seat made of Fe-based sintered alloy with high strength and toughness
JP3257212B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine intake
JPH0543913A (en) Fe base sintered alloy valve seat with extremely low attackability against object
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP4303172B2 (en) Ferrous sintered alloy valve seat
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3254976B2 (en) Internal-combustion engine tappet member having high joining strength with chip material