JPS6337326B2 - - Google Patents

Info

Publication number
JPS6337326B2
JPS6337326B2 JP58121834A JP12183483A JPS6337326B2 JP S6337326 B2 JPS6337326 B2 JP S6337326B2 JP 58121834 A JP58121834 A JP 58121834A JP 12183483 A JP12183483 A JP 12183483A JP S6337326 B2 JPS6337326 B2 JP S6337326B2
Authority
JP
Japan
Prior art keywords
flow path
flow
downstream
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58121834A
Other languages
Japanese (ja)
Other versions
JPS6013217A (en
Inventor
Yukinori Ozaki
Shuji Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12183483A priority Critical patent/JPS6013217A/en
Publication of JPS6013217A publication Critical patent/JPS6013217A/en
Publication of JPS6337326B2 publication Critical patent/JPS6337326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量検出装置の
全体構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the overall configuration of a flow rate detection device for measuring the flow rate of fluid.

従来例の構成とその問題点 従来この種の流量検出装置は第1図及び第2図
に示すように構成されている。第1図、第2図に
おいて、1は断面円形状の環状流路でこの流路の
外周に流入流路2、及び流出通路3が開口してい
る。この流入通路2にはノズル4が設けられてい
る。また環状流路1内には球体5が挿入されてい
ると共に、透明窓6,7が構成され、発光素子8
と受光素子9が設けられている。このような構成
において流体が流入通路2のノズル4から環状流
路1内に入ると、流れは環状流路1内を環流しな
がら流入通路2から流出通路3へ流れ、それと共
に球体5も図中実線の矢印の方向に環状流路1内
を周回運動する。この球体の周回回転数は流体の
流量に比例するなど相関があるため、球体5の回
転数を発光素子8と受光素子9によりパルス信号
として検出し制御回路を通して流量を計測する。
Configuration of Conventional Example and its Problems Conventionally, this type of flow rate detection device is configured as shown in FIGS. 1 and 2. In FIGS. 1 and 2, reference numeral 1 denotes an annular channel having a circular cross section, and an inflow channel 2 and an outflow channel 3 are opened at the outer periphery of this channel. This inflow passage 2 is provided with a nozzle 4 . In addition, a sphere 5 is inserted into the annular flow path 1, transparent windows 6 and 7 are formed, and a light emitting element 8 is formed.
and a light receiving element 9 are provided. In such a configuration, when fluid enters the annular channel 1 from the nozzle 4 of the inflow channel 2, the flow flows from the inflow channel 2 to the outflow channel 3 while circulating in the annular channel 1, and the sphere 5 also flows along with it. It moves around inside the annular flow path 1 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 5 is detected as a pulse signal by the light emitting element 8 and the light receiving element 9, and the flow rate is measured through the control circuit.

この従来例の問題点としては第1に流量抵抗が
大きいことが上げられる。環状流路1を形成して
いるため流路の入口出口が方向変換し、それによ
る曲がり損失を生じると共に、環流が流入通路附
近で流入通路2からの流れと交わるため流入抵抗
となつて損失を生じる。更に球体5の周回が促進
するように球体を環状流路1の断面積に近い大き
さで構成されている場合にも大きな流路抵抗とな
る。また流入通路2に球体5の周回を円滑にする
ようノズル4を設けるとさらに大きな流路抵抗と
なる。第2にセンサとしての構造が大きくなりや
すいなど構成の課題がある。上記のように通路抵
抗が大きくなるためそれを低減するよう通路径を
大きくする必要があり、また直管などに対し、環
状流路1を有しているためその分のスペースが必
要でありセンサ全体として前後の通路に対し大型
になる。加えて流入通路2と流出通路3の方向が
ある程度限定されることになり、センサとして機
器などに組込む際に構成上の制約が生じたり、全
体の大型化につながるなどの問題点がある。ま
た、従来のボールの上流側と下流側にドーナツ型
流路を持つものとしては特開昭50−51758号公報
に記載の例がある。これは上流側と下流側のドー
ナツ型流路は各々形状が異なるもので、かつボー
ルは上流側と下流側のドーナツ型流路の間で周回
する構成であつた。
The first problem with this conventional example is that the flow resistance is large. Since the annular flow path 1 is formed, the inlet and outlet of the flow path change direction, resulting in bending loss, and the circular flow intersects with the flow from the inflow path 2 near the inflow path, resulting in inflow resistance and loss. arise. Furthermore, if the sphere is configured to have a size close to the cross-sectional area of the annular flow path 1 so as to promote the rotation of the sphere 5, a large flow resistance will occur. Further, if a nozzle 4 is provided in the inflow passage 2 so that the sphere 5 circulates smoothly, the flow passage resistance becomes even greater. Second, there are problems with the structure, such as the fact that the sensor structure tends to be large. As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it.Also, since it has an annular passage 1 compared to a straight pipe, a corresponding space is required for the sensor. Overall, it is larger than the front and rear aisles. In addition, the directions of the inflow passage 2 and the outflow passage 3 are limited to some extent, which poses problems such as structural restrictions when incorporating the sensor into equipment, etc., and an increase in overall size. Furthermore, an example of a conventional ball having donut-shaped channels on the upstream and downstream sides is disclosed in Japanese Patent Application Laid-open No. 51758/1983. This is because the upstream and downstream donut-shaped channels have different shapes, and the ball revolves between the upstream and downstream donut-shaped channels.

発明の目的 本発明はこのような従来の欠点を解消するもの
で流量抵抗の小さい小型コンパクトな流量検出装
置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a small and compact flow rate detection device that eliminates such conventional drawbacks and has low flow resistance.

発明の構成 この目的を達成するために本発明は被検出流体
を軸流旋回させる旋回翼と、この旋回流の中で周
回する回転体と、この回転体の流出防止手段と、
前記回転体の回転数を検出する検出手段からな
り、前記流出防止手段は、上流側流路の断面が下
流側に漸次縮少するドーナツ型、下流側流路の断
面が下流側に漸次拡大するドーナツ型とし、これ
らドーナツ型断面を有する上流側流路と下流側流
路を同形状で対称的に構成し、前記回転体が前記
流出防止手段の上流側流路位置で周回する形態と
したものである。
Composition of the Invention In order to achieve this object, the present invention includes a swirling vane for axially swirling a fluid to be detected, a rotating body that rotates in the swirling flow, and a means for preventing outflow of the rotating body.
The outflow prevention means includes a detection means for detecting the rotation speed of the rotating body, and the outflow prevention means has a donut shape in which the cross section of the upstream flow path gradually decreases toward the downstream side, and the cross section of the downstream flow path gradually expands toward the downstream side. It is donut-shaped, and the upstream flow path and the downstream flow path having the donut-shaped cross section are configured in the same shape and symmetrically, and the rotating body is configured to revolve at the upstream flow path position of the outflow prevention means. It is.

この構成により、流体の流れ方向を軸流方向と
し、旋回流の中で流路面積に比べ面積の小さい回
転体を回転するとともに、漸次縮少および漸次拡
大する構成を有した流出防止手段を用いることに
より、流れに対する損失が少ない構成となり流量
抵抗が小さくなり、さらに小型コンパクトな流量
検出装置を得ることができる。
With this configuration, the flow direction of the fluid is the axial direction, a rotating body whose area is smaller than the flow path area is rotated in the swirling flow, and an outflow prevention means is used that has a configuration that gradually contracts and gradually expands. This results in a configuration with less flow loss, resulting in lower flow resistance and a smaller and more compact flow rate detection device.

実施例の説明 次に本発明の一実施例について第3図、第4図
に基づいて説明する。
DESCRIPTION OF EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図において10はハウジングであり、この
ハウジング10の内部には被検出流体を軸流旋回
させる旋回翼11がケーシング12に固定されて
いる。この旋回翼11は円弧翼13と軸14で構
成されている。前記施回翼11の下流には回転体
である磁性球体15があり、この下流には前記磁
性球体15の流出防止手段である球体受け16が
前記ケーシングに固定されている。この球体受け
16の上流側流路17は断面が下流側に漸次縮少
するテーパ状のドーナツ型で構成され、下流側流
路18は断面が下流側に漸次拡大するテーパ状の
ドーナツ型に構成されている。また上流側流路1
7と下流側流路18は同形状で対象的に構成され
ている。ハウジング10の外部には永久磁石19
と磁気抵抗素子20からなる前記磁性球体15の
検出手段である回転検出器21が設けられ流量検
出装置が構成されている。なお前記磁性球体15
の構成としては、中空鋼球、中実鋼球、鉄ニツケ
ル(FeNi)メツキを表面に行なつた樹脂球等が
ある。22はケーシング12の止め輪である。2
3,24は入口および出口であり25は磁性球体
15の回転方向を示す矢印である。
In FIG. 3, reference numeral 10 denotes a housing, and inside the housing 10, a swirling vane 11 for axially swirling the fluid to be detected is fixed to a casing 12. The swirling wing 11 is composed of an arcuate wing 13 and a shaft 14. A magnetic sphere 15, which is a rotating body, is located downstream of the rotating blade 11, and a sphere receiver 16, which is a means for preventing the magnetic sphere 15 from flowing out, is fixed to the casing. The upstream flow path 17 of this spherical receiver 16 is configured in a tapered donut shape with a cross section that gradually decreases toward the downstream side, and the downstream flow path 18 is configured in a tapered donut shape with a cross section that gradually expands toward the downstream side. has been done. Also, the upstream flow path 1
7 and the downstream flow path 18 have the same shape and are symmetrically constructed. A permanent magnet 19 is located outside the housing 10.
A rotation detector 21, which is a means for detecting the magnetic sphere 15 and includes a magnetoresistive element 20, is provided to constitute a flow rate detection device. Note that the magnetic sphere 15
The configurations include hollow steel balls, solid steel balls, and resin balls with iron-nickel (FeNi) plating on the surface. 22 is a retaining ring of the casing 12. 2
3 and 24 are an inlet and an outlet, and 25 is an arrow indicating the direction of rotation of the magnetic sphere 15.

第4図は球体受け16であるが、26の内側テ
ーパ面と27の外側テーパ面で構成された上流側
流路17と下流側流路18はドーナツ型に構成さ
れている。なお内側テーパ面26は、前記磁性球
体15が周回転する際の周回面となる。
FIG. 4 shows the spherical receiver 16, and the upstream flow path 17 and the downstream flow path 18, which are comprised of an inner tapered surface 26 and an outer tapered surface 27, are configured in a donut shape. Note that the inner tapered surface 26 becomes a circumferential surface when the magnetic sphere 15 rotates circumferentially.

次に上記構成における動作を第3図、第4図に
おいて説明する。入口23から流入した被検出流
体は円弧翼13に沿つて下流へと流れることによ
り軸流旋回される。この旋回流により運動力を得
て磁性球体15は流れの方向に対して直角方向に
周回する。この時磁性球体15は球体受け16の
内側テーパ面26とケーシング12の2点に当接
して周回する。被検出流体は旋回流となつたの
ち、下流側流路18を経て出口24へと流出す
る。この磁性球体15の周回回転数は流量に比例
するため前記磁性球体15の回転数を計測するこ
とにより流量を測定することができる。その方法
は、磁気抵抗素子20に永久磁石19で一定強さ
の磁界をあたえておき、磁性球体15がこの磁界
中を通過した際の磁気抵抗素子20の抵抗値変化
を電圧のパルス変化として取り出し制御回路(図
示せず)を介して処理するものである。本実施例
では、球体受け16の上流側流路17の断面をテ
ーパ状に構成しているため、長期間使用時、摩耗
により磁性球体15の直径が小さくなつた場合で
も、内側テーパ面26が磁性球体15に対して同
じ角度で当接するため周回時の摩耗抵抗変化が極
めて少なく安定した周回精度を得ることができ
る。またドーナツ型断面を有する上流側流路17
と下流側流路18を同形状で対象的に構成するこ
とにより球体受け16の方向性が無くなり、特に
組立時において組立の方向違いを無くすることが
できる。
Next, the operation of the above configuration will be explained with reference to FIGS. 3 and 4. The fluid to be detected flowing in from the inlet 23 flows downstream along the arcuate blades 13 and is swirled in an axial flow. The magnetic sphere 15 obtains a kinetic force from this swirling flow and rotates in a direction perpendicular to the direction of the flow. At this time, the magnetic sphere 15 contacts two points, the inner tapered surface 26 of the sphere receiver 16 and the casing 12, and rotates. After the fluid to be detected becomes a swirling flow, it flows out through the downstream flow path 18 to the outlet 24 . Since the number of rotations of the magnetic sphere 15 is proportional to the flow rate, the flow rate can be measured by measuring the number of rotations of the magnetic sphere 15. This method involves applying a magnetic field of constant strength to the magnetoresistive element 20 using a permanent magnet 19, and extracting the change in the resistance value of the magnetoresistive element 20 as a voltage pulse change when the magnetic sphere 15 passes through this magnetic field. The processing is performed via a control circuit (not shown). In this embodiment, the upstream channel 17 of the ball receiver 16 has a tapered cross section, so even if the diameter of the magnetic ball 15 becomes smaller due to wear during long-term use, the inner tapered surface 26 Since the magnetic sphere 15 contacts the magnetic sphere 15 at the same angle, there is very little change in abrasion resistance during circling, and stable circling accuracy can be obtained. In addition, the upstream channel 17 has a doughnut-shaped cross section.
By symmetrically configuring the downstream flow path 18 in the same shape, the directionality of the ball receiver 16 is eliminated, and especially during assembly, it is possible to eliminate the difference in the direction of assembly.

次に本発明の他の実施例を第5図により説明す
る。第5図は球体受け28であるが、この球体受
け28の中心部29は釣鐘状の流線形状に構成さ
れている。このような形状にすることにより、被
検出流体が球体受け28を通過する際の流量抵抗
を前記テーパ状の流路断面に比べて減少させる効
果を有している。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a spherical receiver 28, and the center portion 29 of the spherical receiver 28 is configured in a bell-shaped streamlined shape. This shape has the effect of reducing the flow resistance when the fluid to be detected passes through the spherical receiver 28 compared to the tapered flow path cross section.

発明の効果 以上の説明から明らかなように本発明の流量検
出装置は、被検出流体を軸流旋回させる旋回翼
と、この旋回翼の中に位置し流れの方向に対して
垂直面で回転する回転体と、この回転体を前記旋
回流の範囲内にとどめる流出防止手段と、前記回
転体の回転数を検出する検出手段からなり、前記
流出防止手段は、上流側流路の断面が下流側に漸
次縮少するドーナツ型、下流側流路の断面が下流
側に漸次拡大するドーナツ型とし、これらドーナ
ツ型断面を有する上流側流路と下流側流路を同形
状で対称的に構成し、前記回転体が前記流出防止
手段の上流側流路位置で周回する形態とすること
により下記の効果を有するものである。
Effects of the Invention As is clear from the above description, the flow rate detection device of the present invention includes a swirler that axially swirls the fluid to be detected, and a swirler that is located inside the swirler and rotates in a plane perpendicular to the flow direction. It consists of a rotating body, an outflow prevention means for keeping the rotating body within the range of the swirling flow, and a detection means for detecting the number of rotations of the rotary body, and the outflow prevention means is configured so that the cross section of the upstream flow path is on the downstream side. The cross section of the downstream flow path is a donut shape that gradually decreases toward the downstream side, and the upstream flow path and the downstream flow path having these donut shaped cross sections are configured symmetrically with the same shape, By arranging the rotating body to rotate at a position in the flow path upstream of the outflow prevention means, the following effects can be obtained.

(1) 流出防止手段の上流側と下流側を入れ替える
ことにより初期の特性を得ることが出来る。即
ち流出防止手段と上流側流路と下流側流路が同
形状で対称的に構成されているため、長期間使
用により前記流出防止手段に摩耗が生じ特性が
変化した場合には、前記流出防止手段の上下流
側を入れ替えればよく、新部品に交換すること
なしに修理が可能であり使用年数を延長させる
うえにおいても実用的で且つ効果的な手段であ
る。
(1) Initial characteristics can be obtained by replacing the upstream and downstream sides of the outflow prevention means. That is, since the outflow prevention means, the upstream flow path, and the downstream flow path have the same shape and are constructed symmetrically, if the outflow prevention means wears out due to long-term use and its characteristics change, the outflow prevention means It is only necessary to replace the upstream and downstream sides of the device, and repairs can be made without replacing with new parts, making it a practical and effective means for extending the life of the device.

(2) 流量抵抗が小さい。入口から流入された被検
出流体は円弧翼に沿つて下流に流れる際に軸流
旋回されるため、軸流旋回への変換時の損失を
小さくすることができる。また回転体は流路面
積に比べて一段と小径であり損失が小さい。流
出防止手段の上流側流路と下流側流路は各々漸
次縮少および拡大するドーナツ型に構成されて
いるため、縮流時および拡大流れ時の損失を小
さくすることができる。さらに流体自体に曲り
部もなくこれらの要因が低流量抵抗を実現して
いる。
(2) Low flow resistance. Since the fluid to be detected flowing in from the inlet undergoes axial swirl as it flows downstream along the arcuate blade, it is possible to reduce loss during conversion to axial swirl. Furthermore, the rotating body has a much smaller diameter than the flow path area, so loss is small. Since the upstream flow path and the downstream flow path of the outflow prevention means are each configured in a donut shape that gradually contracts and expands, it is possible to reduce losses during contraction and expansion flow. Furthermore, there are no bends in the fluid itself, and these factors realize low flow resistance.

(3) 流量検出装置の構造が小型コンパクトにな
る。流路自体が環状流路を形成するものと異な
り、直管部に軸流旋回させることに特長があ
り、流路が最もシンプルであり流路長さも短く
構成できる。
(3) The structure of the flow rate detection device becomes smaller and more compact. Unlike those in which the flow path itself forms an annular flow path, it has the advantage of having an axial flow swirl in a straight pipe section, and the flow path is the simplest and can be constructed with a short flow path length.

(4) 流量検出の感度が良くなる。流出防止手段の
上流側流路は漸次縮少され流路面積は、旋回翼
直後に比べ小さいため、上流側流路の位置にお
ける被検出流体の旋回流の流速は、旋回翼直後
より速くなる。従つて少流量においても上流側
流路の旋回流速は速く、この上流側流路に置か
れた回転体は周回しやすくなり感度が良くな
る。
(4) Improved sensitivity of flow rate detection. Since the upstream flow path of the outflow prevention means is gradually reduced and the flow path area is smaller than that immediately after the swirler, the flow velocity of the swirling flow of the detected fluid at the position of the upstream flow path becomes faster than immediately after the swirler. Therefore, even at a small flow rate, the swirling flow velocity in the upstream flow path is high, and the rotating body placed in this upstream flow path can rotate easily, resulting in improved sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来例における流量検出
装置の流路水平断面図および垂直断面図、第3図
は本発明の一実施例を示す流量検出装置の断面
図、第4図は流出防止手段の外観斜視図、第5図
は本発明の他の実施例における流出防止手段の外
観斜視図である。 11……旋回翼、15……回転体(磁性球体)、
16……流出防止手段(球体受け)、17……上
流側流路、18……下流側流路、21……検出手
段(回転検出器)。
Figures 1 and 2 are a horizontal cross-sectional view and a vertical cross-sectional view of a flow path of a conventional flow rate detection device, Figure 3 is a cross-sectional view of a flow rate detector showing an embodiment of the present invention, and Figure 4 is a flow prevention device. Fig. 5 is an external perspective view of the outflow prevention means in another embodiment of the present invention. 11...Swirling blade, 15...Rotating body (magnetic sphere),
16... Outflow prevention means (spherical receiver), 17... Upstream channel, 18... Downstream channel, 21... Detecting means (rotation detector).

Claims (1)

【特許請求の範囲】 1 流路中を流れる被検出流体を軸流旋回させ旋
回流を発生させる旋回翼と、この旋回流の中に位
置し流れの方向に対して垂直面で回転する回転体
と、この回転体を前記旋回流の範囲内にとどめる
流出防止手段と、前記回転体の回転数を検出する
検出手段とからなり、前記流出防止手段は上流側
流路の断面が下流側に漸次縮少するドーナツ型
で、下流側流路の断面が下流側に漸次拡大するド
ーナツ型とし、これらドーナツ型断面を有する上
流側流路と下流側流路を同形状で対称的に構成
し、前記回転体が前記流出防止手段の上流側流路
位置で周回する形態とした流量検出装置。 2 上流側流路の断面が下流側に縮少するテーパ
状のドーナツ型、下流側流路の断面が下流側に拡
大するテーパ状のドーナツ型とした特許請求の範
囲第1項記載の流量検出装置。
[Claims] 1. A swirling vane that axially swirls the fluid to be detected flowing in a flow path to generate a swirling flow, and a rotating body that is located in this swirling flow and rotates in a plane perpendicular to the flow direction. , an outflow prevention means for keeping the rotating body within the range of the swirling flow, and a detection means for detecting the number of rotations of the rotary body, and the outflow prevention means is configured so that the cross section of the upstream flow path gradually moves downstream. The cross section of the downstream channel is a donut shape that shrinks, and the cross section of the downstream channel gradually expands toward the downstream side, and the upstream channel and the downstream channel having the donut shaped cross section are configured in the same shape and symmetrically. A flow rate detection device in which a rotating body rotates at a flow path position upstream of the outflow prevention means. 2. Flow rate detection according to claim 1, wherein the upstream flow path has a tapered donut shape in which the cross section narrows toward the downstream side, and the downstream flow path has a tapered donut shape in which the cross section expands toward the downstream side. Device.
JP12183483A 1983-07-04 1983-07-04 Flow-rate detecting device Granted JPS6013217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12183483A JPS6013217A (en) 1983-07-04 1983-07-04 Flow-rate detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12183483A JPS6013217A (en) 1983-07-04 1983-07-04 Flow-rate detecting device

Publications (2)

Publication Number Publication Date
JPS6013217A JPS6013217A (en) 1985-01-23
JPS6337326B2 true JPS6337326B2 (en) 1988-07-25

Family

ID=14821079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12183483A Granted JPS6013217A (en) 1983-07-04 1983-07-04 Flow-rate detecting device

Country Status (1)

Country Link
JP (1) JPS6013217A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212472A (en) * 1988-06-30 1990-01-17 Yokogawa Medical Syst Ltd Method and device for reconstituting picture having double-magnification function
JPH02293626A (en) * 1989-05-09 1990-12-04 Matsushita Electric Ind Co Ltd Flow rate detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Also Published As

Publication number Publication date
JPS6013217A (en) 1985-01-23

Similar Documents

Publication Publication Date Title
JPS6337326B2 (en)
JPH0140297B2 (en)
JPH0139529B2 (en)
JPS608716A (en) Detector for flow rate
JPS6326845B2 (en)
JPH0468568B2 (en)
JPH0136886B2 (en)
JPS603520A (en) Flow rate detecting device
JPH0360047B2 (en)
JPH0472175B2 (en)
CN218913929U (en) Flow cylinder capable of realizing impeller stop during water flow backflow and flow control valve
JP3136098B2 (en) Flow sensor
JPH0554044B2 (en)
JPS603519A (en) Flow rate detecting device
JPS60164217A (en) Flow rate detecting device
JPH0140298B2 (en)
JPS60135721A (en) Flow rate detector
JPH08105772A (en) Flow rate sensor
CN218724432U (en) Pulse counter and water purifier
JPS6159213A (en) Flow rate detecting device
JPS6015517A (en) Flow rate detector
JPH0464412B2 (en)
JP2518785B2 (en) Flow sensor
JPH01265121A (en) Flow rate detector
JPS63153429A (en) Flow rate detecting device