JPS60164217A - Flow rate detecting device - Google Patents

Flow rate detecting device

Info

Publication number
JPS60164217A
JPS60164217A JP2021984A JP2021984A JPS60164217A JP S60164217 A JPS60164217 A JP S60164217A JP 2021984 A JP2021984 A JP 2021984A JP 2021984 A JP2021984 A JP 2021984A JP S60164217 A JPS60164217 A JP S60164217A
Authority
JP
Japan
Prior art keywords
blade
flow
fluid
detected
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021984A
Other languages
Japanese (ja)
Inventor
Yukinori Ozaki
行則 尾崎
Shuji Yamanochi
山ノ内 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2021984A priority Critical patent/JPS60164217A/en
Publication of JPS60164217A publication Critical patent/JPS60164217A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make flow-rate resistance very small, by providing linear blades at the blade tip parts of the first curved blade, which axially turns a fluid to be detected, and the second curved blade, which is provided at a downstream position in a 180 deg. point symmetrical manner with respect to the first curved blade. CONSTITUTION:A blade tip part 13 of an arc blade 11, which is the first curved blade that axially turns a fluid to be detected, is constituted of a linear blade, which is approximately in parallel with respect to an arrow 14 indicating the flowing direction in a flow path. An arc blade 16, which is the second curved blade, is provided in a 180 deg. point symmetrical manner with respect to the blade 11 at the downstream from a magnetic ball 15. A blade tip part 17 of the blade 16 is also formed by a linear blade which is approximately in parallel with the flowing direction 14. When the fluid to be detected flows in from the direction of the arrow 14, the fluid to be detected is aligned by the linear blade of the blade tip part 13 and flows along the arc blade 11. Thus the fluid is axially turned. As a result, a magnetic ball 15 placed in the turning flow is turned in a vertical plane with respect to the flow direction 14. The number of turning of the ball 15 is proportional to the flow rate. Therefore, by counting the number of turning of the ball 15, the flow rate can be measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量検出装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow rate detection device for measuring the flow rate of fluid.

従来例の構成とその問題点 従来この種の流量検出装置は第1図及び第2図に示すよ
うに構成されている。第1図、第2図において、1は断
面円形状の環状流路でこの流路の外周に流入通路2、及
び流出通路3が開口している。この流入通路2にはノズ
ル4が設けられている。また環状流路1内には球体5が
挿入されていると共に、透明窓6,7が構成され、発光
素子8と受光素子9が設けられている。このような構成
において流体が流入通路2のノズル4から環状流路1内
に入ると、流れは環状流路1内を環流しながら流入通路
2から流出通路3へ流れ、それと共に球体5も図中実線
の矢印の方向に環状流路1内を周回運動する。この球体
の周回回転数は流体の流量に比例するなど相関があるた
め、球体5の回転数を発光素子8と受光素子9によりパ
ルス信号として検出し制御回路を通して流量を計測する
Structure of the conventional example and its problems A conventional flow rate detection device of this type has a structure as shown in FIGS. 1 and 2. In FIGS. 1 and 2, reference numeral 1 denotes an annular flow path having a circular cross section, and an inflow path 2 and an outflow path 3 are opened at the outer periphery of this flow path. This inflow passage 2 is provided with a nozzle 4 . Further, a sphere 5 is inserted into the annular flow path 1, transparent windows 6 and 7 are formed, and a light emitting element 8 and a light receiving element 9 are provided. In such a configuration, when fluid enters the annular channel 1 from the nozzle 4 of the inflow channel 2, the flow flows from the inflow channel 2 to the outflow channel 3 while circulating in the annular channel 1, and the sphere 5 also flows along with it. It moves around inside the annular flow path 1 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 5 is detected as a pulse signal by the light emitting element 8 and the light receiving element 9, and the flow rate is measured through the control circuit.

この従来例の問題点としては第1に流量抵抗が大きいこ
とh月−げられる。環状流路1を形成しているため流路
の入口出口が方向変換し、それによる曲がり損失を生じ
ると共に、環流が流入通路附近で流入通路2からの流れ
と交わるため流入抵抗となって損失を生じる。更に球体
5の周回が促進するように球体を環状流路1の断面積に
近い大きさで構成されている場合にも大きな流路抵抗と
なる。
The first problem with this conventional example is that the flow resistance is large. Since the annular flow path 1 is formed, the inlet and outlet of the flow path change direction, resulting in bending loss, and the circular flow intersects with the flow from the inflow path 2 near the inflow path, resulting in inflow resistance and loss. arise. Furthermore, if the sphere is configured to have a size close to the cross-sectional area of the annular flow path 1 so as to promote the rotation of the sphere 5, a large flow resistance will occur.

また流入通路2に球体5の周回を円滑にするようノズル
4を設けるとさらに大きな流路抵抗となる。
Further, if a nozzle 4 is provided in the inflow passage 2 so that the sphere 5 circulates smoothly, the flow passage resistance becomes even greater.

第2にセンサとしての構造が大きくなりやすいなど構成
」二の課題がある。」二記のように通路抵抗が大きくな
るためそれを低減するよう通路径を大きくする必要があ
り、また直管などに対し、環状流路1を有しているため
その分のスペースが必要でありセンサ全体として前後の
通路に対し大型になる。加えて流入通路2と流出通路a
の方向がある程度限定されることになり、センサとして
機器などに組込む際に構成上の制約が生じたり、全体の
大型化につながるなどの問題点がある。
Second, there is the second problem of configuration, such as the fact that the sensor structure tends to be large. 2, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it, and since it has an annular passage 1, it requires more space than a straight pipe. Yes, the sensor as a whole is larger than the front and rear passages. In addition, the inflow passage 2 and the outflow passage a
The direction of the sensor is limited to some extent, which poses problems such as constraints on the structure when incorporating it into equipment as a sensor, and an increase in overall size.

発明の目的 本発明はこのような従来の欠点を解消するもので流量抵
抗の小さい小型コンパクトな流量検出装置を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a small and compact flow rate detection device that eliminates such conventional drawbacks and has low flow resistance.

発明の構成 この目的を達成するために本発明は被検出流体を軸流旋
回させる第1の曲線翼と、この旋回流の中で周回する回
転体と、この回転体の下流に位置し前記第1の曲線翼に
対して180度点対称に設けられた第2の曲線翼と、前
記回転体の周回回転数を検出する検出手段からなり、少
なくとも一方の曲線翼の翼端部を直線翼としたものであ
る。この構成により被検出流体を軸流旋回させ、この旋
回流の中で流路断面積に比べ面積の小さい回転体を周回
するとともに、直線翼部で被検出流体を整流することに
より、極めて小さい流量抵抗を有する小型コンパクトな
流量検出装置を得ることができる。
Structure of the Invention In order to achieve this object, the present invention includes a first curved blade that swirls the fluid to be detected in an axial flow, a rotating body that revolves in this swirling flow, and a first curved wing that is located downstream of this rotating body. It consists of a second curved wing provided 180 degrees symmetrically with respect to the first curved wing, and a detection means for detecting the rotational speed of the rotating body, and the blade tip of at least one of the curved wings is connected to a straight wing. This is what I did. With this configuration, the fluid to be detected is swirled in an axial flow, and in this swirling flow, it goes around a rotating body whose area is smaller than the cross-sectional area of the flow path, and the fluid to be detected is rectified by the straight blades, resulting in an extremely small flow rate. A small and compact flow rate detection device having resistance can be obtained.

実施例の説明 次に本発明の実施例について第3図、第4図に基づいて
説明する。第3図において10はハウジングであり、こ
のハウジング10の内部には被検出流体を軸流旋回させ
る第1の曲線翼である円弧翼11がケーシング12に固
定されている。この円弧翼11の翼端部13は流路中の
流れ方向を示す矢印14に対してほぼ平行な直線翼で構
成されている。この円弧翼11の下流には流れの方向に
対して垂直面で周回し流路断面積に比べ一段と小径な回
転体の磁性球体15が設けられている。この磁性球体、
15の構成としては、鋼球、中空鋼球、樹脂球に磁性メ
ッキをしさらに樹脂モールドを行なった球体がある。前
記磁性球体15の下流には第2の曲線翼である円弧翼1
6が前記第1の円弧翼11と180度点対称に設けられ
ている。第2の円弧翼16の前記磁性球体15の周回面
と反対側の翼端部17も流路中の流れ方向を示す矢印1
4に対してほぼ平行な直線翼で構成されている。
DESCRIPTION OF EMBODIMENTS Next, embodiments of the present invention will be described with reference to FIGS. 3 and 4. In FIG. 3, reference numeral 10 denotes a housing, and inside the housing 10 are fixed to a casing 12 arcuate blades 11, which are first curved blades for axially swirling the fluid to be detected. The blade tip portion 13 of the arcuate blade 11 is constituted by a straight blade substantially parallel to an arrow 14 indicating the flow direction in the flow path. A magnetic sphere 15, which is a rotary body, is provided downstream of the arcuate blade 11 and rotates in a plane perpendicular to the flow direction and has a diameter much smaller than the cross-sectional area of the flow path. This magnetic sphere,
15 configurations include steel balls, hollow steel balls, and resin balls that are magnetically plated and then resin molded. A circular arc blade 1, which is a second curved blade, is downstream of the magnetic sphere 15.
6 is provided 180 degrees symmetrically with the first arcuate blade 11. The blade tip 17 of the second arcuate blade 16 on the opposite side to the circumferential surface of the magnetic sphere 15 also has an arrow 1 indicating the flow direction in the flow path.
It consists of straight wings that are approximately parallel to the 4.

ケーシング12はハウジング10に挿入され、Cリング
18により固定されている。またハウジング10の外部
には永久磁石19と磁気検出素子である磁気抵抗素子2
0で構成された前記磁性球体15の回転数を検出する検
出手段である回転検出器21が設けられ流量検出装置を
構成している。
The casing 12 is inserted into the housing 10 and fixed by a C-ring 18. Also, on the outside of the housing 10, there is a permanent magnet 19 and a magnetic resistance element 2 which is a magnetic detection element.
A rotation detector 21, which is a detection means for detecting the number of rotations of the magnetic sphere 15, is provided to constitute a flow rate detection device.

22.23は配管接続口であり24は磁性球体15の回
転方向を示す矢印である。
22 and 23 are piping connection ports, and 24 is an arrow indicating the direction of rotation of the magnetic sphere 15.

第4図は、被検出流体の流入方向が矢印25のように第
3図と反対側になった状態を示した図であるが、構成は
第3図と同様であり説明は省略する。
FIG. 4 is a diagram showing a state in which the inflow direction of the fluid to be detected is opposite to that in FIG. 3 as indicated by an arrow 25, but the configuration is the same as that in FIG. 3, and a description thereof will be omitted.

上記構成における動作を第3図において説明する。第3
図において被検出流体が矢印14の方向から流入すると
、被検出流体は翼端部13の直線翼で整流された後円弧
翼11に沿って流れることにより軸流旋回される。この
結果旋回流の中に置かれた磁性球体15は、旋回流によ
り運動力を得て矢印14に示した流れの方向に対して垂
直面で周回する。前記磁性球体15の位置を通過した被
検出流体は、円弧翼16に沿って流れた後、翼端部17
の直線翼で整流され配管接続口23の方向へと流れる。
The operation of the above configuration will be explained with reference to FIG. Third
In the figure, when the fluid to be detected flows in from the direction of the arrow 14, the fluid to be detected is rectified by the straight blades of the blade tips 13, and then flows along the arcuate blades 11, thereby causing an axial swirl. As a result, the magnetic sphere 15 placed in the swirling flow gains a kinetic force from the swirling flow and rotates in a plane perpendicular to the direction of the flow shown by the arrow 14. The fluid to be detected that has passed the position of the magnetic sphere 15 flows along the arcuate blade 16 and then reaches the blade tip 17.
It is rectified by the straight blades and flows in the direction of the piping connection port 23.

前記直線翼で整流された流れは旋回流ではなく、矢印1
4の方向とほぼ同じ流れとなっている。
The flow rectified by the straight blade is not a swirling flow, but as shown by arrow 1.
The flow is almost the same as direction 4.

前記磁性球体15の周回回転数は流量に比例するためこ
の磁性球体15の回転数を計測することにより流量を測
定することができる。その方法としては、磁気抵抗素子
20に永久磁石19により一定強さの磁界を与えておき
、磁性球体15がこの磁界中を通過した際の磁気抵抗素
子20の抵抗変化を電圧のパルス変化として取り出し制
御回路(図示せず)を介して計測するものである。
Since the number of rotations of the magnetic sphere 15 is proportional to the flow rate, the flow rate can be measured by measuring the number of rotations of the magnetic sphere 15. As a method, a magnetic field of a constant strength is applied to the magnetoresistive element 20 by a permanent magnet 19, and the change in resistance of the magnetoresistive element 20 when the magnetic sphere 15 passes through this magnetic field is extracted as a pulse change in voltage. The measurement is performed via a control circuit (not shown).

第4図は被検出流体の流入方向が矢印25の方向になっ
た際の図であるが、この場合には、被検出流体は円弧翼
16により軸流旋回されるものであり磁性球体15の周
回方向は矢印24の方向となる。動作は第3図と同様で
あり説明は省略する。
FIG. 4 is a diagram when the inflow direction of the fluid to be detected is in the direction of the arrow 25. In this case, the fluid to be detected is axially swirled by the arcuate blades 16, and the magnetic sphere 15 The direction of rotation is the direction of arrow 24. The operation is the same as that shown in FIG. 3, and the explanation will be omitted.

本実施例においては曲線翼を円弧翼で構成しているため
被検出流体を軸流旋回する際の損失が小さい効果を有し
ている。また回転体の検出は磁気センサであるため、ハ
ウジングの外部から回転検出が可能であり被検出流体が
不透明であっても検出ができる特長を有している。
In this embodiment, since the curved blades are configured with circular arc blades, the loss when the fluid to be detected is swirled in an axial flow is reduced. Furthermore, since the rotating body is detected by a magnetic sensor, the rotation can be detected from outside the housing, and even if the fluid to be detected is opaque, it has the advantage of being able to detect it.

発明の効果 以上の説明から明らかなように本発明の流量検出装置は
流路中を流れる被検出流体を軸流旋回させる第1の旋回
翼と、この旋回流の中に位置し流れの方向に対して垂直
面で周回する回転体と、この回転体の下流に位置し前記
第1の曲線翼に対して180度点対称に設けられた第2
の曲線翼と、前記回転体の周回回転数を検出する検出手
段からなり、少なくとも一方の曲線翼の前記回転体周回
面と反対側の翼端部は前記流路中を流れる被検出流体に
対してほぼ平行に構成することにより下記の効果を有す
る。
Effects of the Invention As is clear from the above explanation, the flow rate detection device of the present invention includes a first swirling vane that axially swirls the fluid to be detected flowing in a flow path, and a first swirling vane that is located in this swirling flow in the direction of the flow. a rotating body rotating in a plane perpendicular to the rotating body, and a second curved blade located downstream of the rotating body and provided 180 degrees symmetrically with respect to the first curved blade.
and a detecting means for detecting the rotational speed of the rotating body, and a blade end portion of at least one curved blade on the side opposite to the rotating body circumferential surface is configured to detect a fluid to be detected flowing in the flow path. The following effects can be obtained by arranging the elements substantially parallel to each other.

(1)流量抵抗が小さい。被検出流体は軸流旋回される
とともに、回転体も流路断面積に比べ一段と小径に構成
されている。また従来のボール式流量センサとの比較に
おいても流路の極端な変化がなく流体自体の干渉がない
など流体の流量抵抗は極めて小さくなる。
(1) Low flow resistance. The fluid to be detected is axially swirled, and the rotating body is also configured to have a smaller diameter than the cross-sectional area of the flow path. Furthermore, in comparison with conventional ball-type flow rate sensors, the flow resistance of the fluid is extremely small, as there is no extreme change in the flow path and no interference with the fluid itself.

(2)流量検出装置の構造が小型コンパクトとなる。(2) The structure of the flow rate detection device is small and compact.

流路自体が環状流路を形成するものと異なり、直管部に
軸流旋回を生じさせて回転体を周回することに特長があ
り、流路構造が最もシンプルで流路長さも短く構成でき
る。
Unlike those in which the flow path itself forms an annular flow path, this type has the feature that it creates an axial flow swirl in the straight pipe section and circulates around a rotating body, and the flow path structure is the simplest and can be constructed with a short flow path length. .

(3)被検出流体の流れ方向に関係なく流量計測が可能
である。、第1の曲線翼の下流に回転体を設け、この回
転体の下流には前記第1の曲線翼と点対称に第2の曲線
翼を設けることにより、被検出流体。
(3) Flow rate measurement is possible regardless of the flow direction of the fluid to be detected. , a rotating body is provided downstream of the first curved blade, and a second curved blade is provided downstream of the rotating body in point symmetry with respect to the first curved blade, thereby detecting the fluid to be detected.

の2方向流れの計測が可能となる。また曲線翼の少なく
とも一方の曲線翼の前記回転体周回面と反対側の翼端部
は被検出流体に対してほぼ平行な直線翼で構成すること
により、曲線翼前後の流れが整流され損失を小さくする
効果を有する。
It becomes possible to measure the flow in two directions. Furthermore, by configuring at least one of the curved blades on the opposite side of the rotating body circumferential surface as a straight blade that is substantially parallel to the fluid to be detected, the flow before and after the curved blade is rectified and loss is reduced. It has the effect of making it smaller.

なお、本発明は、前記構成に限られるものではなく第1
の曲線翼と第2の曲線翼を一体に構成してもよい。
Note that the present invention is not limited to the above configuration, but the first
The curved wing and the second curved wing may be integrally constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における流量検出装置の流路水平断面図
、第2図は同装置の垂直断面図、第3図、第4図はそれ
ぞれ本発明の一実施例を示す流量検出装置の断面図であ
る。 11・・・・・・第1の曲線翼(円弧翼)、13・・・
・・・翼端部(直線翼)、15・・・・・・回転体(磁
性球体)、16・・・・・・第2の曲線翼(円弧翼)、
17・・・・・・翼端部(直線翼)、21・・・・・・
検出手段(回転検出器)。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 3 第2図 第3図 9 第4図
FIG. 1 is a horizontal sectional view of the flow path of a conventional flow rate detection device, FIG. 2 is a vertical sectional view of the same device, and FIGS. 3 and 4 are cross sections of a flow rate detection device each showing an embodiment of the present invention. It is a diagram. 11...First curved wing (arc wing), 13...
... Wing tip (straight wing), 15... Rotating body (magnetic sphere), 16... Second curved wing (arc wing),
17... Wing tip (straight wing), 21...
Detection means (rotation detector). Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 2 Figure 3 Figure 9 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)流路中を流れる被検出流体を軸流旋回させる第1
の曲線翼と、この旋回流の中に位置し流れの方向に対し
て垂直面で周回する回転体と、この回転体の下流に位置
し前記第1の曲線翼に対して180度点対称に設けられ
た第2の曲線翼と、前記回転体の周回回転数を検出する
検出手段からなり、少なくとも一方の曲線翼の前記回転
体周回面と反対側の翼端部は前記流路中を流れる被検出
流体に対してほぼ平行な直線翼で構成した流量検出装置
(1) A first system that rotates the detected fluid flowing in the flow path in an axial flow.
a curved blade, a rotating body located in the swirling flow and rotating in a plane perpendicular to the flow direction, and a rotating body located downstream of the rotating body and 180 degrees symmetrical with respect to the first curved blade. It comprises a second curved blade provided and a detection means for detecting the orbiting rotation speed of the rotating body, and a blade end portion of at least one curved blade on the opposite side to the rotating body circumferential surface flows in the flow path. A flow rate detection device consisting of straight blades that are almost parallel to the fluid to be detected.
(2)曲線翼は円弧翼で構成した特許請求の範囲第1項
記載の流量検出装置。
(2) The flow rate detection device according to claim 1, wherein the curved blade is an arcuate blade.
(3)回転体を磁性球体で構成し磁気センサで検出する
検出手段からなる特許請求の範囲第1項記載の流量検出
装置。
(3) The flow rate detection device according to claim 1, comprising a detection means in which the rotating body is a magnetic sphere and is detected by a magnetic sensor.
JP2021984A 1984-02-06 1984-02-06 Flow rate detecting device Pending JPS60164217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021984A JPS60164217A (en) 1984-02-06 1984-02-06 Flow rate detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021984A JPS60164217A (en) 1984-02-06 1984-02-06 Flow rate detecting device

Publications (1)

Publication Number Publication Date
JPS60164217A true JPS60164217A (en) 1985-08-27

Family

ID=12021049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021984A Pending JPS60164217A (en) 1984-02-06 1984-02-06 Flow rate detecting device

Country Status (1)

Country Link
JP (1) JPS60164217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498577U (en) * 1991-01-30 1992-08-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498577U (en) * 1991-01-30 1992-08-26

Similar Documents

Publication Publication Date Title
JPS60164217A (en) Flow rate detecting device
JPS60135721A (en) Flow rate detector
JPS608716A (en) Detector for flow rate
JPS6013217A (en) Flow-rate detecting device
JPH0472175B2 (en)
JPS59133428A (en) Flow rate detector
JPH0140298B2 (en)
JPH0136886B2 (en)
JPH0360047B2 (en)
JPH0140297B2 (en)
JPS603519A (en) Flow rate detecting device
JPS6326845B2 (en)
JP2518785B2 (en) Flow sensor
JPS603520A (en) Flow rate detecting device
JPS6015517A (en) Flow rate detector
JPS59153124A (en) Flow rate detecting device
JPH01178819A (en) Flow rate sensor
JPS6159213A (en) Flow rate detecting device
JPS6013214A (en) Flow-rate detecting device
JPS6013215A (en) Flow-rate detecting device
JPH01265121A (en) Flow rate detector
JPH0731134Y2 (en) Flowmeter
JPH0140296B2 (en)
JPH0754814Y2 (en) Flow rate detector
JPS61138124A (en) Flow rate detector