JPS6326845B2 - - Google Patents
Info
- Publication number
- JPS6326845B2 JPS6326845B2 JP57197006A JP19700682A JPS6326845B2 JP S6326845 B2 JPS6326845 B2 JP S6326845B2 JP 57197006 A JP57197006 A JP 57197006A JP 19700682 A JP19700682 A JP 19700682A JP S6326845 B2 JPS6326845 B2 JP S6326845B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- sphere
- fluid
- flow rate
- outflow prevention
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 26
- 230000002265 prevention Effects 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/056—Orbital ball flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は流体の流量を計測する流量センサの全
体構成に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the overall configuration of a flow rate sensor that measures the flow rate of fluid.
従来例の構成とその問題点
流体の流量を計測する手段として所謂計測器と
しての電磁流量計など各種流量計を初め様々な形
式があるが、流量計測器としてではなく流体を扱
う機器や自動車などの流量センサとして使用され
る用途も近年増加してきており、この場合小型で
機器等に組込易い形式のものが要求される。その
一方式としてセンサ部の構成が比較的簡易なボー
ル周回式流量センサの形態があり、その従来例を
第1図、第2図に於いて説明する。両図に於いて
101は断面円形の環状通路でこの通路の外周に
102の流入通路と103の流出通路が開口し、
環状通路101内には球体104が挿入されてい
る。流体が図中実線の矢印の方向に環状通路10
1内を環流しながら流入通路102から流出通路
103へ流れ、それと共に球体104も破線の矢
印の方向へ環状通路内を周回運動する。この球体
の周回の回転数は流体の流量に比例するなど相関
がある為、球体の回転数を図示してない光センサ
などでパルス的に検出し制御回路を通して流量を
計測する。第2図は第1図と同様であるが、流出
通路103が環状通路101の中央から流路面に
垂直方向に流出するよう構成された場合である。
いずれの場合もこれら従来例の問題点として、ま
ず第1に流量抵抗が大きいことが上げられる。環
状通路を形成している為流路の入口出口が方向変
換しそれによる曲がり損失を生じると共に、環流
が流入通路付近で流入の流れと交錯して流入抵抗
となり損失を生じ、更に球体の周回が促進するよ
うに球体が環状通路断面に近い大きさで形成され
ている場合にも大きな流路抵抗となる。また流入
通路102に球体の周回を円滑にするようノズル
を設けた場合更に大きな流路抵抗となる。第2に
センサとしての構造が大きくなり易いなど構成上
の課題がある。Configuration of conventional examples and their problems There are various types of flowmeters, such as electromagnetic flowmeters, which are so-called measuring instruments as a means of measuring the flow rate of fluid, but they are not used as flowmeters, but are used in equipment that handles fluids, automobiles, etc. In recent years, applications for use as flow rate sensors have been increasing, and in this case, there is a need for a type that is small and easy to incorporate into equipment. One type of such flow sensor is a ball-circulating flow rate sensor whose sensor part has a relatively simple configuration, and a conventional example thereof will be explained with reference to FIGS. 1 and 2. In both figures, 101 is an annular passage with a circular cross section, and an inflow passage 102 and an outflow passage 103 are opened on the outer periphery of this passage.
A sphere 104 is inserted into the annular passage 101 . The fluid flows through the annular passage 10 in the direction of the solid arrow in the figure.
The sphere 104 circulates within the annular passage 102 and flows from the inflow passage 102 to the outflow passage 103, and at the same time, the sphere 104 also moves around the annular passage in the direction of the dashed arrow. Since the rotational speed of this sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere is detected in a pulsed manner by an optical sensor (not shown), and the flow rate is measured through a control circuit. FIG. 2 is similar to FIG. 1, except that the outflow passage 103 is configured to flow out from the center of the annular passage 101 in a direction perpendicular to the flow path surface.
In either case, the first problem with these conventional methods is that the flow resistance is large. Since the annular passage is formed, the inlet and outlet of the flow passage change direction, causing bending loss, and the circular flow intersects with the inflow flow near the inflow passage, causing inflow resistance and loss, and furthermore, the rotation of the sphere causes loss. If the sphere is formed to have a size close to the cross section of the annular passage, it will also result in a large flow passage resistance. In addition, if a nozzle is provided in the inflow passage 102 to make the rotation of the sphere smooth, the flow resistance becomes even greater. Second, there are structural problems, such as the fact that the sensor structure tends to be large.
上記のように通路抵抗が大きくなる為それを低
減するよう通路径を大きくする必要があり、また
通常の直管などに対し環状通路を形成しておりそ
の分のスペースが必要でありセンサ全体として前
後の通路に対し大型になる。加えて流入通路10
2に対し流出通路103の方向がある程度限定さ
れることになり、センサとして機器などに組込む
場合の構成上の制約を生じたり全体の大型化につ
ながり易いなどの問題点がある。第3に、球体が
比較的大きくなり易い環状通路101を周回する
為その運動量も大きく、球体と環状通路外周面と
で摩擦する時の騒音が大きいなど特性上の欠点も
あげられる。また他の従来例としては特開昭50−
51758号公報、及び実開昭47−3762号公報がある。
しかしながら特開昭50−51758号公報は、ボール
が3点に接触する構成であるため、流量が急変時
には遠心力の変化によりボールの接触点(少なく
とも2点)が変化し、ボールの回転が不安定にな
ると言う問題がある。またボール回転位置の中心
部には中心ボス部を有しているため、ボールの直
径は、中心ボス部の外周と流路の外周の間に入る
直径のボール径に限定される。従つて、ボール径
を変えることにより検出範囲等を可変する手段が
取りにくい構成であつた。更にボールの下流側に
は整流用の第2のスピンナーを設けているため、
この整流部における圧損が大きいと言う問題もあ
つた。 As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it.Also, since an annular passage is formed compared to a normal straight pipe, a corresponding space is required, and the sensor as a whole It is larger than the front and rear passages. In addition, the inflow passage 10
In contrast to No. 2, the direction of the outflow passage 103 is limited to some extent, which poses problems such as constraints on the structure when incorporating it into equipment as a sensor, and the overall size tends to increase. Thirdly, since the sphere revolves around the annular passage 101, which tends to be relatively large, its momentum is large, and there are disadvantages in characteristics such as large noise when the sphere rubs against the outer peripheral surface of the annular passage. Another conventional example is JP-A-50-
There are No. 51758 and Utility Model Application Publication No. 47-3762.
However, in JP-A-50-51758, since the ball is in contact with three points, when the flow rate suddenly changes, the contact points (at least two points) of the ball change due to changes in centrifugal force, and the ball does not rotate. There is a problem with stability. Furthermore, since the ball has a central boss at the center of the rotational position, the diameter of the ball is limited to a diameter that fits between the outer periphery of the central boss and the outer periphery of the flow path. Therefore, the configuration makes it difficult to change the detection range by changing the ball diameter. Furthermore, a second spinner for rectification is provided downstream of the ball, so
Another problem was that the pressure loss in this rectifying section was large.
一方、実開昭47−3762号公報は、回転する物体
を単に格子により下流へ流れることを止どめる構
成であり、一定の軌道を周回することは困難であ
るとともに、旋回流が格子を通過する際には圧損
が大きいとも推考される。 On the other hand, Utility Model Application Publication No. 47-3762 has a configuration in which a rotating object is simply stopped from flowing downstream by a lattice, and it is difficult to orbit a rotating object in a fixed orbit, and the swirling flow passes through the lattice. It is also assumed that there is a large pressure loss when passing through.
発明の目的
本発明は上記従来の流量センサの欠点に鑑み、
流体を扱う機器や自動車などの流量センサに適用
し易い高性能で小型コンパクトな流量検出装置を
提供することを目的とする。Purpose of the Invention In view of the above-mentioned drawbacks of the conventional flow rate sensor, the present invention has been made to
The purpose of the present invention is to provide a high performance, small and compact flow rate detection device that can be easily applied to flow rate sensors for devices that handle fluids, automobiles, etc.
発明の構成
上記目的を達成する為に本発明は、流路中に設
けられた流体を軸流旋回させる固定羽根車と、前
記旋回流の中に位置し流れの方向に対し垂直方向
に周回する球体と、前記球体を前記旋回流の範囲
内に止どめる流出防止手段と、前記球体の周回の
回転数を検出する検出手段と、前記固定羽根車と
前記流出防止手段の間に設けられ前記流路の中心
から前記流路の内壁までの全域にわたり旋回流を
生じさせる球体周回室とを有し、前記流出防止手
段は前記球体が周回する流路断面を上流側に拡大
したドーナツ型の流出防止手段部を有する流量検
出装置を構成するもので、以下本発明の一実施例
を図面と共に説明する。Structure of the Invention In order to achieve the above object, the present invention includes a fixed impeller that is provided in a flow path and rotates a fluid in an axial flow, and a fixed impeller that is located in the swirling flow and rotates in a direction perpendicular to the flow direction. A spherical body, an outflow prevention means for stopping the spherical body within the range of the swirling flow, a detection means for detecting the number of rotations of the spherical body, and a flow prevention means provided between the fixed impeller and the outflow prevention means. and a spherical circulating chamber that generates a swirling flow over the entire area from the center of the channel to the inner wall of the channel, and the outflow prevention means has a donut-shaped chamber in which the cross section of the channel around which the sphere circulates is enlarged toward the upstream side. This constitutes a flow rate detection device having an outflow prevention means section, and one embodiment of the present invention will be described below with reference to the drawings.
実施例の説明
第3図で、1は流路2を形成するためのハウジ
ングで、ハウジング内の上流側には流体に旋回流
を与えるための回転しない固定羽根車3が圧入等
により固定されている。羽根車3の下流側には流
体の旋回流により流路内を周回する不透明樹脂の
球体4と、球体4が下流側に流出するのを防止す
ると共に球体4が周回するための受けとなる流出
防止部材5がある。球体4と流出防止部材5も前
記ハウジング1内に収納されており、流出防止部
材5はハウジング1に圧入等により固定されてい
る。尚流出防止部材5は球体4が接触し周回する
部分の断面が流路内壁とで上流側に拡大したテー
パ状のドーナツ型で形成しており、球体4が周回
しうる固定羽根車3との適当な距離に位置してい
る。DESCRIPTION OF THE EMBODIMENTS In Fig. 3, numeral 1 denotes a housing for forming a flow path 2, and a fixed impeller 3 that does not rotate is fixed by press-fitting or the like on the upstream side of the housing to give a swirling flow to the fluid. There is. On the downstream side of the impeller 3, there is an opaque resin sphere 4 that circulates in the flow path due to the swirling flow of the fluid, and an outflow that prevents the sphere 4 from flowing downstream and serves as a receiver for the sphere 4 to circulate. There is a prevention member 5. The sphere 4 and the outflow prevention member 5 are also housed in the housing 1, and the outflow prevention member 5 is fixed to the housing 1 by press fitting or the like. The outflow prevention member 5 has a tapered donut shape in which the cross section of the part where the sphere 4 comes into contact and revolves is enlarged toward the upstream side with the inner wall of the flow path, and the cross section of the part where the sphere 4 comes in contact with and revolves is formed in a tapered donut shape, and is connected to the fixed impeller 3 around which the sphere 4 can circulate. Located at an appropriate distance.
また固定羽根車3と流出防止部材5の間に設け
られた球体周回室13は流路中心から流路内壁ま
での全域にわたり旋回流が生じる構成であり、こ
の旋回流の中で球体4が周回する。更に球体4の
周回の回転数を検出するために、球体の周回部外
周のハウジングに流路1を横断する貫通孔6が設
けられ、発光素子7とそれに対抗する位置に受光
素子8があり、其々の素子は頭部が流路に突出し
ないよう望むと共にゴムパツキン等のシール部材
9,9′でシールされ接着材等によりハウジング
1に固定され、外部に素子の端子及びリード線1
0,10′が引き出されている。以上が流量検出
装置11の全体構成であり、ハウジング1は通常
の配管部材と類似の形態で形成されており、通常
配管に直接接続可能とするため流路の出入口はメ
スネジ12,12′で構成されている。以上が構
成であり次に動作について述べる。 Further, the spherical rotating chamber 13 provided between the fixed impeller 3 and the outflow prevention member 5 is configured to generate a swirling flow over the entire area from the center of the channel to the inner wall of the channel, and the sphere 4 circulates in this swirling flow. do. Furthermore, in order to detect the number of revolutions of the orbit of the sphere 4, a through hole 6 is provided in the housing on the outer periphery of the orbit of the sphere, and a through hole 6 that crosses the flow path 1 is provided, and a light emitting element 7 and a light receiving element 8 are provided at a position opposite to the through hole 6. It is desired that the head of each element does not protrude into the flow path, and is sealed with sealing members 9, 9' such as rubber gaskets and fixed to the housing 1 with an adhesive or the like, and the terminals and lead wires 1 of the elements are externally connected.
0,10' are drawn out. The above is the overall configuration of the flow rate detection device 11. The housing 1 is formed in a form similar to a normal piping member, and the entrance and exit of the flow path is configured with female screws 12 and 12' so that it can be directly connected to normal piping. has been done. The above is the configuration, and the operation will be described next.
流路検出装置11は流体が図中矢印の方向から
ハウジング1内に流入し、流入流体は固定羽根車
3で旋回し、その流体の旋回流により球体4が運
動力を得て、流出防止部材5とハウジング内壁に
接触する位置で流体の流れの方向に対し垂直方向
に流路2内を周回することになる。その周回によ
る回転数は流体の流量に相関し、本構成の場合比
例関係となり、球体の回転数を発光素子7と受光
素子8で光学的に検出することにより流体の流量
が測定される。球体は不透明体であり発光素子と
受光素子の間の光を遮断するものは球体のみであ
り、球体1回転当り2パルスが出力され、リード
線10,10′が接続される図示してない制御回
路により流量として検出されることになる。球体
4の材質は流体の種数によつて変えるなど、特に
特定されるものではないが、樹脂など非金属材料
の軽量な材質を使うことにより流体の最少検出流
量を下げられるなどの点で有利となる。流体に旋
回流を起こさせる手段として実施例では固定羽根
車を使用しているが、平板ねじり部材や数個の斜
孔がある円筒部材など手段は各種ある。実施例で
示した流体旋回手段としての羽根車は抵抗が少な
くてより強力な旋回流を発生させるのに有効であ
り、流出防止手段としての断面テーパ形状は球体
と同軌道で安定して周回させるのに有効である。
しかしながら、流路は球体の周回部を除き断面円
形に限定されるものではない。尚、流量検出装置
11は湯沸器の水やガス及び空気など、自動車の
ガソリンや水及び空気など其々の流量センサとし
て、各種機器、機械に適用されるもので、出入口
は配管ネジ構成にしてあり流体の通路の一部とし
て構成できる。 In the flow path detection device 11, fluid flows into the housing 1 from the direction of the arrow in the figure, the inflowing fluid is swirled by the fixed impeller 3, and the swirling flow of the fluid gives the sphere 4 a motion force, and the outflow prevention member 5 and the inner wall of the housing, the fluid circulates within the flow path 2 in a direction perpendicular to the direction of fluid flow. The number of rotations caused by the rotation is correlated with the flow rate of the fluid, and in the case of this configuration, there is a proportional relationship, and the flow rate of the fluid is measured by optically detecting the number of rotations of the sphere using the light emitting element 7 and the light receiving element 8. The sphere is an opaque body, and the only thing that blocks light between the light emitting element and the light receiving element is the sphere, and two pulses are output per revolution of the sphere, and a control (not shown) to which lead wires 10 and 10' are connected. This will be detected as a flow rate by the circuit. The material of the sphere 4 is not particularly specified, as it can be changed depending on the type of fluid, but using a lightweight material such as a non-metallic material such as resin is advantageous in that the minimum detectable flow rate of the fluid can be lowered. becomes. Although a fixed impeller is used in the embodiment as a means for causing a swirling flow in the fluid, there are various means such as a flat plate torsion member and a cylindrical member having several diagonal holes. The impeller as a fluid swirling means shown in the example has less resistance and is effective in generating a stronger swirling flow, and the tapered cross-sectional shape as an outflow prevention means allows it to rotate stably in the same orbit as the sphere. It is effective for
However, the flow path is not limited to a circular cross section except for the circumferential portion of the sphere. The flow rate detection device 11 is applied to various devices and machines as a flow rate sensor for water, gas, and air in water heaters, gasoline, water, and air in automobiles, and the inlet and outlet are configured with pipe screws. and can be configured as part of the fluid passageway.
発明の効果 以上が本発明の構成であり次に効果を述べる。Effect of the invention The above is the configuration of the present invention, and the effects will be described next.
() 流出防止手段は球体が周回する流路断面を
上流側に拡大したドーナツ状の流出防止手段部
を備えているから、球体は流出防止手段部の軌
道面を常に2点で接触しながら同一軌道を周回
するため検出精度が高い。また流量計測時に流
量が急変した時においても球体は流体の下流側
への力を受けることにより、常に流出防止手段
の軌道面に2点で当接され球体の軌道は変わら
ないため過度状態においても検出精度が確保さ
れると言う効果を有している。() Since the outflow prevention means is equipped with a donut-shaped outflow prevention means part that expands the cross section of the flow path around which the sphere revolves toward the upstream side, the sphere always contacts the raceway surface of the outflow prevention means part at two points and remains in the same position. Detection accuracy is high because it orbits. In addition, even when the flow rate changes suddenly during flow rate measurement, the sphere is always in contact with the raceway surface of the outflow prevention means at two points due to the force applied to the downstream side of the fluid, and the trajectory of the sphere does not change, even in transient conditions. This has the effect of ensuring detection accuracy.
() センサ部としては固定羽根車と球体と流出
防止手段であり、固定羽根車は流路径に対し低
抵抗であり、球体も流路内で軸流に対し周回す
る構成で流路径よりも一段と径小であり、また
流出防止手段も、旋回流を妨げないドーナツ形
状であるため全体として流量抵抗が極めて小さ
い。又従来のボール式流量センサとの比較にお
いても、流路の極端な曲がりがない。流動自体
の干渉がない、球体の大きさは流路に対しより
径小に設けられるなど流体の流量抵抗は極めて
小さくなる。() The sensor part consists of a fixed impeller, a sphere, and an outflow prevention means.The fixed impeller has low resistance relative to the flow path diameter, and the sphere also rotates in the flow path against the axial flow, so the resistance is one step higher than the flow path diameter. Since the diameter is small and the outflow prevention means is donut-shaped so as not to impede the swirling flow, the flow resistance as a whole is extremely small. Also, in comparison with conventional ball-type flow rate sensors, there is no extreme bending of the flow path. There is no interference with the flow itself, and the size of the sphere is smaller than the flow path, so the flow resistance of the fluid is extremely small.
() 球体が周回する流路の中心部にはボス部が
無いため球体の直径を可変することが可能であ
る。これにより球体の回転数を変えることが可
能であり、流体の種類に応じて回転数を任意に
設定可能となり用途に最適な設計が出来る。ま
た中心部にボス部が無いため光検出においては
球体1回転当り2パルスの出力信号を得ること
ができ、計測時の分解能が向上する効果も有し
ている。() Since there is no boss in the center of the channel around which the sphere revolves, it is possible to vary the diameter of the sphere. This makes it possible to change the rotation speed of the sphere, making it possible to arbitrarily set the rotation speed depending on the type of fluid, allowing for the optimal design for the application. Furthermore, since there is no boss at the center, it is possible to obtain an output signal of two pulses per revolution of the sphere in optical detection, which also has the effect of improving resolution during measurement.
以上のような効果を有し、従つて本発明の流量
検出装置は機器等への適用性が大幅に図れるもの
である。 Having the above-mentioned effects, the flow rate detection device of the present invention can be greatly adapted to devices and the like.
第1図、第2図は従来例のボール周回式流量セ
ンサの流路断面図、第3図は本発明の流量検出装
置の流路断面図である。
2……流路、3……固定羽根車、4……球体、
5……流出防止部材、7……発光素子、8……受
光素子、11……流量検出装置。
1 and 2 are cross-sectional views of a flow path of a conventional ball-circulating flow rate sensor, and FIG. 3 is a cross-sectional view of a flow path of a flow rate detection device of the present invention. 2... Channel, 3... Fixed impeller, 4... Sphere,
5... Outflow prevention member, 7... Light emitting element, 8... Light receiving element, 11... Flow rate detection device.
Claims (1)
羽根車と、前記旋回流の中に位置し流れの方向に
対し垂直方向に周回する球体と、前記球体を前記
旋回流の範囲内に止どめる流出防止手段と、前記
球体の周回の回転数を検出する検出手段と、前記
固定羽根車と前記流出防止手段の間に設けられ前
記流路の中心から前記流路の内壁までの全域にわ
たり旋回流を生じさせる球体周回室とを備え、前
記流出防止手段は前記球体が周回する流路断面が
上流側に拡大したドーナツ状の流出防止手段部を
有する流量検出装置。 2 球体は非金属材料で形成してなる特許請求の
範囲第1項記載の流量検出装置。[Scope of Claims] 1. A fixed impeller provided in a flow path for axially swirling the fluid, a spherical body located in the swirling flow and rotating in a direction perpendicular to the flow direction, and a fixed impeller that is disposed in a flow path and rotates the fluid in an axial direction; an outflow prevention means for stopping the flow within a range of the flow; a detection means for detecting the number of revolutions of the spherical body; and a detection means for detecting the number of rotations of the sphere; A flow rate detection device comprising a spherical circulating chamber that generates a swirling flow over the entire area up to the inner wall of the passage, and the outflow prevention means has a donut-shaped outflow prevention means section in which a cross section of the flow passage around which the sphere circulates expands toward the upstream side. . 2. The flow rate detection device according to claim 1, wherein the sphere is formed of a non-metallic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19700682A JPS5987320A (en) | 1982-11-10 | 1982-11-10 | Flow rate detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19700682A JPS5987320A (en) | 1982-11-10 | 1982-11-10 | Flow rate detector |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24128087A Division JPS63153430A (en) | 1987-09-25 | 1987-09-25 | Flow rate detector |
JP24127987A Division JPS63153429A (en) | 1987-09-25 | 1987-09-25 | Flow rate detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5987320A JPS5987320A (en) | 1984-05-19 |
JPS6326845B2 true JPS6326845B2 (en) | 1988-05-31 |
Family
ID=16367221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19700682A Granted JPS5987320A (en) | 1982-11-10 | 1982-11-10 | Flow rate detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5987320A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0299358A (en) * | 1988-10-07 | 1990-04-11 | Canon Inc | Recorder |
JPH08114959A (en) * | 1994-10-14 | 1996-05-07 | Nec Corp | Image forming device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59133428A (en) * | 1983-01-20 | 1984-07-31 | Matsushita Electric Ind Co Ltd | Flow rate detector |
DE3577347D1 (en) * | 1984-07-31 | 1990-05-31 | Matsushita Electric Ind Co Ltd | FLOW SPEED DETECTOR. |
JPH02287217A (en) * | 1989-04-28 | 1990-11-27 | Matsushita Electric Ind Co Ltd | Flow rate detector |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051758A (en) * | 1973-09-06 | 1975-05-08 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS473762U (en) * | 1971-01-30 | 1972-09-06 |
-
1982
- 1982-11-10 JP JP19700682A patent/JPS5987320A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051758A (en) * | 1973-09-06 | 1975-05-08 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0299358A (en) * | 1988-10-07 | 1990-04-11 | Canon Inc | Recorder |
JPH08114959A (en) * | 1994-10-14 | 1996-05-07 | Nec Corp | Image forming device |
Also Published As
Publication number | Publication date |
---|---|
JPS5987320A (en) | 1984-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6326845B2 (en) | ||
US4089220A (en) | Fluid flow meter | |
JPH0464010B2 (en) | ||
JPS63153429A (en) | Flow rate detecting device | |
JPH0139529B2 (en) | ||
JPH0140297B2 (en) | ||
JPH0360047B2 (en) | ||
JPH0136886B2 (en) | ||
JPH0210417Y2 (en) | ||
JPH0468568B2 (en) | ||
JPH0140298B2 (en) | ||
JPS608716A (en) | Detector for flow rate | |
JPS6013215A (en) | Flow-rate detecting device | |
JPH0384422A (en) | Flow rate sensor | |
JP2638204B2 (en) | Flow detector | |
JPH0139530B2 (en) | ||
JPS6013217A (en) | Flow-rate detecting device | |
JPH0472175B2 (en) | ||
JPS6326725Y2 (en) | ||
JPH02287217A (en) | Flow rate detector | |
JPH0122096Y2 (en) | ||
JPH01265121A (en) | Flow rate detector | |
JPH0554044B2 (en) | ||
JPS6146418Y2 (en) | ||
JP2002188944A (en) | Flow measuring device having restrictor |