JP2002188944A - Flow measuring device having restrictor - Google Patents

Flow measuring device having restrictor

Info

Publication number
JP2002188944A
JP2002188944A JP2000387469A JP2000387469A JP2002188944A JP 2002188944 A JP2002188944 A JP 2002188944A JP 2000387469 A JP2000387469 A JP 2000387469A JP 2000387469 A JP2000387469 A JP 2000387469A JP 2002188944 A JP2002188944 A JP 2002188944A
Authority
JP
Japan
Prior art keywords
hole
liquid
throttle
upstream
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000387469A
Other languages
Japanese (ja)
Inventor
Takeshi Eguchi
剛 江口
Kikumi Furunaga
貴久美 古長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000387469A priority Critical patent/JP2002188944A/en
Publication of JP2002188944A publication Critical patent/JP2002188944A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten measurement accuracy by suppressing adhesion of a scale on a restrictor with a simple constitution in a flow measuring device equipped with the restrictor. SOLUTION: This device is equipped with a device body 11 having a passage, and the restrictor 21 having a restriction hole 22, and has an upstream pressure hole 26 positioned in the liquid flow direction upstream relative to the restrictor and formed on the device body, and a downstream pressure hole 27 positioned in the liquid flow direction downstream relative to the upstream pressure hole. As for the restrictor 21, a working face 23 along the restrictor radial direction is formed on a part in the upstream relative to the restriction hole, and a mound part 25 having a circumferential side inclined face 25a inclined so as to be separated from the working face toward the upstream in proportion to the distance from the working face toward the restriction hole and an inside inclined face 25b inclined in succession to an opening of the restriction hole toward the downstream in proportion to the distance from a projection part of the circumferential side inclined face toward the restriction hole, is formed on the inner circumferential part in succession to the inner circumferential face of the restriction hole on the working face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絞り体を有する流量
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow measuring device having a throttle body.

【0002】[0002]

【従来の技術】一般の発電プラントにおいて設けられる
給水系の管路などには、この管路を流れる水の流量を測
定するために絞り体を有する流量測定装置が設置されて
いる。この絞り体を有する流量測定装置は、液体が流れ
る通路を有する装置本体と、この装置本体の通路に設け
られ絞り孔に液体流れ方向に対して平行な絞り孔を有す
る絞り体とを具備し、この絞り体に対して液体流れ方向
上流側に位置して装置本体に形成された上流側圧力孔お
よびこの上流側取出し孔に対して液体流れ方向下流側に
位置して装置本体に形成された下流側圧力孔を有するも
のである。すなわち、液体を流れ方向上流側から絞り体
の絞り孔を通して絞って下流側へ流すことにより、上流
側圧力孔と下流側圧力孔で絞り体上流側(高圧側)と下
流側(低圧側)の圧力を夫々取り出してその差圧を検出
し、この差圧を電気信号などに変換して液体の流量を測
定している。絞り体としてはオリフィス、ノズルあるい
はベンチュリ管が挙げられる。
2. Description of the Related Art A flow measuring device having a restrictor for measuring a flow rate of water flowing through a water supply system is provided in a water supply system provided in a general power plant. The flow measurement device having the throttle body includes a device body having a passage through which the liquid flows, and a throttle body provided in the passage of the device body and having a throttle hole parallel to the liquid flow direction in the throttle hole, An upstream pressure hole formed in the apparatus main body located on the upstream side in the liquid flow direction with respect to the throttle body, and a downstream formed in the apparatus main body located on the downstream side in the liquid flow direction with respect to the upstream extraction hole. It has side pressure holes. In other words, by passing to the downstream squeeze through aperture of the throttle hole from the upstream side flows of liquid, upstream pressure hole and the downstream pressure hole in the diaphragm member upstream of the (high pressure side) and the downstream side (low pressure side) Each pressure is taken out, the differential pressure is detected, and the differential pressure is converted into an electric signal or the like to measure the flow rate of the liquid. An orifice, a nozzle or a Venturi tube may be used as the throttle body.

【0003】ところで、絞り体を有する流量測定装置は
プラント管路に設置する前の段階で実流量検定を行なっ
てその装置の流量係数を求め、プラント管路に設置した
段階で測定した差圧に流量係数を掛けることによりプラ
ント管路における液体の流量を求めるようにしている。
この検定は次のようにして行なうものである。すなわ
ち、対象とする流量測定装置を検定用の管路に組み込
み、この管路に予め知られた流量の液体を流し、流量測
定装置がこの液体の流量を測定する。既知の流量
(Q)を装置が測定した流量(Q+h)で除して流量
係数α(流出係数C)を求める。そして、流量測定装置
をプラント管路に設置して流量測定を行なう場合には、
常時絞り体の上流側と下流側の間の差圧ΔPを検出し
て、その差圧ΔPの平方根に流量係数α(流出係数C)
を乗することによりプラント管路に流れる液体の流量を
求める、すなわち流量測定を行なうようになっている。
[0003] By the way, a flow rate measuring device having a restrictor is subjected to an actual flow rate test at a stage before installation in a plant pipeline to determine a flow coefficient of the device, and to a differential pressure measured at the stage of installation in a plant pipeline. The flow rate of the liquid in the plant pipe is determined by multiplying the flow rate coefficient.
This test is performed as follows. That is, the target flow rate measuring device is incorporated in a pipe for verification, a liquid having a known flow rate is caused to flow through the pipe line, and the flow rate measuring device measures the flow rate of the liquid. The known flow rate (Q 0 ) is divided by the flow rate (Q + h ) measured by the apparatus to obtain a flow coefficient α (outflow coefficient C). And, when installing the flow measurement device in the plant pipeline and performing flow measurement,
The differential pressure ΔP between the upstream side and the downstream side of the throttle body is constantly detected, and the flow coefficient α (outflow coefficient C) is calculated as the square root of the differential pressure ΔP.
To obtain the flow rate of the liquid flowing through the plant pipeline, that is, to measure the flow rate.

【0004】[0004]

【発明が解決しようとする課題】従来、流量測定装置に
は次に述べる問題がある。流量測定装置を設置したプラ
ントの管路を流れる液体に含まれる成分によっては流量
測定装置における絞り体にスケールが付着して流量測定
に悪影響を及ぼしている。例えば、液体に含まれる鉄イ
オンが析出して絞り体の表面に酸化鉄のスケールが付着
する。
Conventionally, the flow rate measuring device has the following problems. Depending on the components contained in the liquid flowing through the pipeline of the plant in which the flow rate measuring device is installed, the scale adheres to the throttle body in the flow rate measuring device, which has an adverse effect on the flow rate measurement. For example, iron ions contained in the liquid precipitate and iron oxide scale adheres to the surface of the drawn body.

【0005】このスケールによる流量測定への悪影響に
ついて絞り体としてオリフィスを用いた流量測定装置を
例にとり図4および図5(a)、(b)を参照して説明
する。図4において1は通路2を構成する装置本体で、
液体が図示矢印方向へ流れる。3はオリフィス型の絞り
体である。この絞り体3は円板をなすもので、中心部に
は円形の絞り孔4が形成されている。絞り体3における
液体流れ方向上流側面である当り面5と下流側面6は夫
々液体流れ方向に対して直角をなしている。7は絞り体
3に対して液体流れ方向上流側に位置して装置本体1に
形成された上流側圧力孔、8は絞り体3に対して液体流
れ方向下流側に位置して装置本体1に形成された下流側
圧力孔である。
An adverse effect of the scale on flow rate measurement will be described with reference to FIGS. 4 and 5 (a) and 5 (b), taking a flow rate measuring device using an orifice as a throttle body as an example. In FIG. 4, reference numeral 1 denotes an apparatus main body constituting a passage 2.
The liquid flows in the direction indicated by the arrow. Reference numeral 3 denotes an orifice-type diaphragm. The aperture body 3 is a disk, and has a circular aperture 4 at the center. The contact surface 5 and the downstream side surface 6, which are the upstream surfaces in the liquid flow direction, of the throttle body 3 are each perpendicular to the liquid flow direction. Reference numeral 7 denotes an upstream pressure hole formed in the apparatus main body 1 located on the upstream side in the liquid flow direction with respect to the throttle body 3, and 8 denotes a pressure hole located on the downstream side in the liquid flow direction with respect to the throttle body 3 in the apparatus main body 1. It is a downstream pressure hole formed.

【0006】そして、液体が図示矢印方向へ向けて流れ
ると、液体の一部は直接絞り体3の絞り孔4を直接通過
し、他の部分は当り面5に当たって向きを変えて絞り孔
4を通過する。上流側圧力孔7と下流側圧力孔8が取り
出した絞り体3に対して液体流れ方向上流側および下流
側の液体の圧力差を検出し、この差圧を利用して液体の
流量を求める。
When the liquid flows in the direction of the arrow shown in the figure, a part of the liquid directly passes through the throttle hole 4 of the throttle body 3, and the other part hits the hitting surface 5 and changes its direction. pass. The pressure difference between the liquid on the upstream side and the liquid on the downstream side in the liquid flow direction with respect to the throttle body 3 taken out by the upstream pressure hole 7 and the downstream pressure hole 8 is detected, and the flow rate of the liquid is obtained by using this pressure difference.

【0007】この流量測定装置において、装置本体1の
通路2を流れる液体に含まれる鉄分などの成分により図
4および図5(b)に示すように絞り体3の表面にスケ
ールAが付着する。具体的にはエッジ部(絞り体3の当
り面5の内周面と絞り孔4の上流側開口部まわり)にス
ケールAが付着する。そして、スケールAの付着厚さが
絞り孔径の0.1%を超える程度に達し、しかもそのス
ケールAが上流からの液体の流れに逆らう向きに突き出
してくると、液体が剥離する位置が本来スケールAが無
ければ図5(a)に示すようにエッジ部であるのに対し
て図5(b)に示すようにエッジ部から液体流れ方向上
流側に移動してスケールA先端で液体が剥離するように
なる。そうすると、絞り孔4における液体の剥離による
低速領域Bの乱流が大きくなる。このため、下流側圧力
孔8が取り出す下流側の圧力が変化して、上流側圧力孔
7と下流側圧力孔8が取り出す絞り体3の液体流れ方向
上流側および下流側の圧力の差(差圧)が変化し、最終
的に測定する流量値の測定精度が低下するという問題が
ある。
In this flow rate measuring device, a scale A adheres to the surface of the throttle body 3 as shown in FIGS. 4 and 5 (b) due to components such as iron contained in the liquid flowing through the passage 2 of the device main body 1. Specifically, the scale A adheres to the edge portion (around the inner peripheral surface of the contact surface 5 of the aperture body 3 and the upstream opening of the aperture 4). When the thickness of the scale A reaches about 0.1% of the diameter of the throttle hole and the scale A protrudes in a direction against the flow of the liquid from the upstream, the position where the liquid peels off is originally the scale. If there is no A, the liquid is at the edge as shown in FIG. 5A, whereas the liquid moves upstream from the edge in the liquid flow direction as shown in FIG. Become like Then, the turbulence in the low-speed area B due to the separation of the liquid in the throttle hole 4 increases. For this reason, the downstream pressure taken out by the downstream pressure hole 8 changes, and the pressure difference between the upstream pressure hole 7 and the pressure in the liquid flow direction of the throttle body 3 taken out by the downstream pressure hole 8 (difference). Pressure) changes, and the measurement accuracy of the flow rate value finally measured is reduced.

【0008】そこで、従来流量測定装置においては、絞
り体の表面にめっきやコーティングなどの処理を施して
スケールを付けにくくすることによりスケールの付着を
抑制することが行われている。しかし、この表面処理に
よる対策はフローノズル型の絞り体やベンチェリー管型
の絞り体に対しては比較的効果があるが、オリフィス型
の絞り体に対しては流れの低速領域(滞留部)が存在す
るためにスケールの付着が懸念される。
[0008] Therefore, in the conventional flow rate measuring device, the surface of the drawn body is subjected to a treatment such as plating or coating to make it difficult to attach a scale, thereby suppressing the adhesion of the scale. However, this countermeasure by the surface treatment is relatively effective for a flow nozzle type throttle or a Ventelli tube type throttle, but for an orifice type throttle, a low flow rate region (residence portion). There is a concern about the adhesion of the scale due to the presence of.

【0009】本発明は、簡素な構成により絞り体にスケ
ールが付着することを抑制して測定精度を高めた絞り体
を備えた流量測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a flow rate measuring apparatus provided with a throttle body having a simple structure and suppressing the scale from adhering to the throttle body and improving measurement accuracy.

【0010】[0010]

【課題を解決するための手段】請求項1の発明の絞り体
を有する流量測定装置は、液体が流れる通路を有する装
置本体と、この装置本体の通路に設けられ液体流れ方向
に対して平行な絞り孔を有する絞り体とを具備し、この
絞り体に対して液体流れ方向上流側に位置して前記装置
本体に形成された上流側圧力孔およびこの上流側圧力孔
に対して液体流れ方向下流側に位置する下流側圧力孔と
を有し、前記絞り体は、前記絞り孔に対して液体流れ方
向上流側となる部分に前記絞り孔を囲んで絞り体半径方
向に沿う当り面が形成され、且つこの当り面における前
記絞り孔の上流側開口に連続する内周部には、前記当り
面から前記絞り孔へ近付くに従い液体流れ方向上流側へ
向けて当り面から離れるように傾斜する外周側傾斜面お
よびこの外周側傾斜面に対して絞り体内周側に位置して
前記外周側傾斜面の突出部から絞り孔へ近付くに従い液
体流れ方向下流側へ向けて傾斜して前記絞り孔の上流側
開口ヘ連続する内周側傾斜面を有するマウンド部が形成
されていることを特徴とする。
According to a first aspect of the present invention, there is provided a flow rate measuring apparatus having a throttle body, the apparatus body having a passage through which a liquid flows, and a passage provided in the apparatus body and being parallel to a liquid flow direction. A throttle body having a throttle hole, and an upstream pressure hole formed in the apparatus main body located on the upstream side in the liquid flow direction with respect to the throttle body, and a downstream in the liquid flow direction with respect to the upstream pressure hole. The throttle body has a contact surface formed in a radial direction of the throttle body surrounding the throttle hole in a portion on the upstream side in the liquid flow direction with respect to the throttle hole. An inner peripheral portion of the contact surface that is continuous with the upstream opening of the throttle hole has an outer peripheral side that is inclined away from the contact surface toward the liquid flow direction upstream toward the liquid flow direction as approaching the throttle hole from the contact surface. Inclined surface and outer peripheral side inclination The inner peripheral side which is located on the inner circumferential side of the throttle body with respect to the surface and is inclined toward the downstream side in the liquid flow direction and continues to the upstream opening of the throttle hole as approaching the throttle hole from the protrusion of the outer peripheral side inclined surface. A mound portion having an inclined surface is formed.

【0011】請求項2の発明の絞り体を有する流量測定
装置は、液体が流れる通路を有する装置本体と、この装
置本体の通路に設けられ絞り孔に液体流れ方向に対して
平行な絞り孔を有する絞り体とを具備し、この絞り体に
対して液体流れ方向上流側に位置して前記装置本体に形
成された上流側圧力孔およびこの上流側圧力孔に対して
液体流れ方向下流側に位置する下流側圧力孔を有し、前
記絞り体は、前記絞り孔に対して液体流れ方向上流側部
が液体を液体流れ方向上流側から前記絞り孔へ案内する
案内孔を形作る筒部とされ、且つこの案内孔は、液体流
れ方向上流側部が筒部外周側へ向きつつ筒部外周縁から
筒部内周部へ傾斜する上流側円弧面をなすとともに、液
体流れ方向下流側部が前記上流側円弧面の筒部内周側端
から連続して筒部内周側へ向きつつ筒部内周部へ傾斜し
て前記絞り孔の上流側開口へ連続する下流側円弧面をな
すことを特徴とする。
According to a second aspect of the present invention, there is provided a flow rate measuring apparatus having a throttle body, comprising: a device main body having a passage through which a liquid flows; and a throttle hole provided in the passage of the device main body and parallel to the liquid flow direction. An upstream pressure hole formed in the apparatus main body and located on the upstream side in the liquid flow direction with respect to the throttle body, and located on the downstream side in the liquid flow direction with respect to the upstream pressure hole. The throttle body has a cylindrical portion that forms a guide hole for guiding liquid from the liquid flow direction upstream side to the throttle hole with respect to the throttle hole. The guide hole forms an upstream arc surface inclined from the outer peripheral edge of the cylindrical portion to the inner peripheral portion of the cylindrical portion while the upstream portion in the liquid flow direction is directed to the outer peripheral side of the cylindrical portion, and the downstream portion in the liquid flow direction is the upstream side. Continuously from the inner peripheral end of the arc surface While the direction to the peripheral side is inclined to the cylinder inner peripheral portion, characterized in that forming the downstream arcuate surface contiguous to the upstream opening of the throttle hole.

【0012】請求項3の発明の絞り体を有する流量測定
装置は、液体が流れる通路を有する装置本体と、この装
置本体の通路に設けられ液体流れ方向に対して平行な絞
り孔を有する絞り体とを具備し、この絞り体に対して液
体流れ方向上流側に位置して前記装置本体に形成された
上流側圧力孔およびこの上流側圧力孔に対して液体流れ
方向下流側に位置する下流側圧力孔とを有し、前記絞り
体は、内部に絞り孔軸線方向に対して直角で前記絞り孔
の周方向に対して傾斜した孔が形成され、この孔の一端
は入口として前記絞り孔に対して液体流れ方向上流側と
なる部分に開口し、他端は出口として前記絞り孔の内周
面に開口していることを特徴とする。
According to a third aspect of the present invention, there is provided a flow rate measuring apparatus having a throttle body, which has a device main body having a passage through which a liquid flows, and a throttle body provided in the passage of the device main body and having a throttle hole parallel to the liquid flow direction. An upstream pressure hole formed in the apparatus main body and located on the upstream side in the liquid flow direction with respect to the throttle body, and a downstream side located on the downstream side in the liquid flow direction with respect to the upstream pressure hole. A pressure hole, and the throttle body has a hole formed therein, which is perpendicular to the axial direction of the throttle hole and inclined with respect to the circumferential direction of the throttle hole, and one end of the hole is formed as an inlet to the throttle hole. On the other hand, an opening is provided on a portion on the upstream side in the liquid flow direction, and the other end is provided on the inner peripheral surface of the throttle hole as an outlet.

【0013】請求項4の発明は、請求項1または2に記
載の絞り体を有する流量測定装置において、前記下流側
圧力孔は前記絞り体に形成され、その液体入口が前記絞
り孔の内周面に形成されていることを特徴とする。
According to a fourth aspect of the present invention, in the flow rate measuring apparatus having the throttle body according to the first or second aspect, the downstream pressure hole is formed in the throttle body, and a liquid inlet of the downstream pressure hole is formed in an inner periphery of the throttle hole. It is characterized by being formed on the surface.

【0014】[0014]

【発明の実施の形態】本発明における第1の実施の形態
について図1を参照して説明する。この実施の形態はオ
リフィス型の絞り体を備えた流量測定装置に適用したも
ので、図1はこの実施の形態における流量測定装置を模
式的に示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. This embodiment is applied to a flow measuring device provided with an orifice-type restrictor, and FIG. 1 is a sectional view schematically showing the flow measuring device in this embodiment.

【0015】図1において11は装置本体で、この装置
本体11は両端が開放された断面円形をなす通路12を
構成している。この装置本体11は検定時には検定用、
プラント設置時にはプラント用の管路101に同中心軸
線上に位置して組込まれる。液体の流れ方向は図示左側
から右側である。
In FIG. 1, reference numeral 11 denotes an apparatus main body, and the apparatus main body 11 constitutes a passage 12 having a circular cross section open at both ends. This device body 11 is used for verification at the time of verification,
When the plant is installed, it is incorporated into the pipeline 101 for the plant so as to be located on the same central axis. The liquid flows from left to right in the drawing.

【0016】21はオリフィス型の絞り体で、この絞り
体21は装置本体11の通路12より大きな直径を有す
る円板からなるもので、その中心軸線上には両側の面2
3、24間を貫通する円形の絞り孔22が形成されてい
る。そして、この絞り体21は、その中心軸線が通路1
2の中心軸線Oと一致し且つ両側の面23、24が中心
軸線Oに対して直角に位置するようにして装置本体11
の通路12に配置され、その周縁部が装置本体11に保
持固定されている。
Reference numeral 21 denotes an orifice-type aperture member. The aperture member 21 is formed of a disk having a diameter larger than the diameter of the passage 12 of the apparatus body 11, and has two surfaces 2 on its center axis.
A circular throttle hole 22 penetrating between 3 and 24 is formed. The aperture body 21 has a central axis line corresponding to the passage 1.
2 so that the surfaces 23 and 24 on both sides thereof are aligned with the central axis O at right angles to the central axis O.
The peripheral edge portion is held and fixed to the apparatus main body 11.

【0017】ここで、絞り孔22は通路12の中心軸線
上に位置して通路12と平行に位置する。絞り体21に
おいて液体流れ方向上流側(図示左側)に位置する(絞
り体半径方向に沿う)面23が流れる液体が直角に当た
る当り面となり、他の面24は液体流れ方向下流側面
(図示右側面)となる。
Here, the throttle hole 22 is located on the center axis of the passage 12 and in parallel with the passage 12. A surface 23 located on the upstream side (left side in the drawing) of the throttle body 21 in the liquid flow direction (along the radial direction of the throttle body) serves as a contact surface at which the flowing liquid makes a right angle. ).

【0018】また、絞り体21には当り面23における
絞り孔22の内周面に連続する内周部には、絞り孔22
の周方向全体を囲むように環状をなすマウンド部25が
形成されている。このマウンド部25は、当り面23か
ら絞り孔22へ近付くに従い液体流れ方向上流側へ向け
て当り面23から離れるように傾斜する円環状をなす外
周側傾斜面25aと、この外周側傾斜面25aに対して
絞り体21内周側に位置して外周側傾斜面25aの突出
部から絞り孔22へ近付くに従い液体流れ方向下流側へ
向けて傾斜して絞り孔22の上流側開口へ連続する内側
傾斜面25bとを有している。
The diaphragm 21 has a contact hole 23 on its inner peripheral portion which is continuous with the inner peripheral surface of the diaphragm hole 22 on the contact surface 23.
An annular mound portion 25 is formed so as to surround the entirety in the circumferential direction. The mound portion 25 has an annular outer peripheral side inclined surface 25a which is inclined away from the contact surface 23 toward the upstream side in the liquid flow direction as approaching from the contact surface 23 to the throttle hole 22, and an outer peripheral side inclined surface 25a. The inner side which is located on the inner peripheral side of the throttle body 21 and is inclined toward the downstream side in the liquid flow direction as it approaches the throttle hole 22 from the projection of the outer peripheral inclined surface 25 a and continues to the upstream opening of the throttle hole 22. And an inclined surface 25b.

【0019】このマウンド部25は、後述するように装
置本体11の通路12を流れて絞り体21の当り面23
に当たった液体を円滑に絞り孔22へ向けて案内して迅
速に流すとともに、液体が絞り孔22を通過する際に絞
り孔22の内周面からの剥離を抑えるものである。この
実施の形態では、外周側傾斜面25aおよび内側傾斜面
25bは夫々絞り体21の内側に中心点を置いて所定の
曲率で描いた円弧(絞り体外側へ突出する円弧)をなし
ている。
The mound portion 25 flows through the passage 12 of the apparatus main body 11 as will be described later, and
In addition to smoothly guiding the liquid striking toward the throttle hole 22 and quickly flowing the liquid, the separation of the liquid from the inner peripheral surface of the throttle hole 22 when the liquid passes through the throttle hole 22 is suppressed. In this embodiment, the outer peripheral side inclined surface 25a and the inner inclined surface 25b each form an arc drawn at a predetermined curvature with the center point inside the diaphragm 21 (an arc protruding outward from the diaphragm).

【0020】なお、絞り体21の表面全体には液体に含
まれる成分によるスケールが付着することを抑えるため
に、めっきやコーティングを施している。
Incidentally, plating or coating is applied to the entire surface of the throttle body 21 in order to prevent the scale due to the components contained in the liquid from adhering.

【0021】装置本体11には絞り体21に対して液体
流れ方向上流側に位置して上流側圧力孔26が形成さ
れ、この上流側圧力孔26は一端が液体取入口として通
路12に面して開口しているとともに他端が装置本体1
1の外周面で開口している。絞り体21には上流側圧力
孔26に対して液体流れ方向下流側に位置する下流側圧
力孔27が形成されている。この下流側圧力孔27は絞
り体21の半径方向に沿って形成され、一端が液体入口
として絞り孔22における液体流れ方向下流側開口に近
い位置で絞り孔22の内周面で開口され、他端が絞り体
21の外周面で開口している。なお、下流側圧力孔27
は装置本体11にもわたって形成されて装置本体11の
外周面で開口している。
An upstream pressure hole 26 is formed in the apparatus main body 11 at a position upstream of the throttle body 21 in the liquid flow direction. The upstream pressure hole 26 has one end facing the passage 12 as a liquid inlet. And the other end is the device body 1
1 is open on the outer peripheral surface. The throttle body 21 has a downstream pressure hole 27 located downstream of the upstream pressure hole 26 in the liquid flow direction. This downstream pressure hole 27 is formed along the radial direction of the throttle body 21, and one end is opened as a liquid inlet on the inner peripheral surface of the throttle hole 22 at a position close to the liquid flow direction downstream opening in the throttle hole 22. The end is open on the outer peripheral surface of the diaphragm 21. The downstream pressure hole 27
Is formed over the apparatus main body 11 and opens on the outer peripheral surface of the apparatus main body 11.

【0022】これら上流側圧力孔26の他端開口と下流
側圧力孔27の他端開口は、装置本体11の外側に設け
た差圧伝送器51に接続されている。この差圧伝送器5
1は両方の圧力孔26,27からの液体を受け、夫々の
液体の圧力の差を検出して電気信号として取り出すもの
である。この差圧伝送器51は流量測定器52に接続さ
れている。この流量測定器52は差圧伝送器51からの
信号を受けて流れる液体の流量を測定するものである。
The other end opening of the upstream pressure hole 26 and the other end opening of the downstream pressure hole 27 are connected to a differential pressure transmitter 51 provided outside the apparatus main body 11. This differential pressure transmitter 5
Numeral 1 is for receiving the liquid from both the pressure holes 26 and 27, detecting the difference between the pressures of the respective liquids, and extracting it as an electric signal. The differential pressure transmitter 51 is connected to a flow meter 52. The flow rate measuring device 52 measures the flow rate of the liquid flowing in response to the signal from the differential pressure transmitter 51.

【0023】なお、装置本体11の通路12の直径D、
絞り体21の絞り孔22の直径dおよび長さは規格に基
づいて設定される。例えば絞り孔22の直径d/通路1
2の内径Dで示される絞り比を0.7程度である。
The diameter D of the passage 12 of the apparatus body 11
The diameter d and the length of the aperture 22 of the aperture body 21 are set based on the standard. For example, the diameter d of the throttle hole 22 / the passage 1
The aperture ratio indicated by the inner diameter D of 2 is about 0.7.

【0024】このように構成された流量測定装置の作用
について説明する。この流量測定装置は、実流量検定を
行なってその装置の流量係数を求め、その後にプラント
の管路101に設置する。図1では流量測定装置を管路
101と管路101に挟まれた箇所に設置した形態を示
している。
The operation of the thus configured flow rate measuring device will be described. This flow rate measuring device performs an actual flow rate test to determine a flow rate coefficient of the device, and then is installed in a pipe 101 of a plant. FIG. 1 shows a form in which the flow rate measuring device is installed at a location between the pipes 101 and 101.

【0025】プラントの管路101に設置した流量測定
装置が流量測定をする場合について説明する。図1の矢
印で示すように液体流れ方向上流側(左側)の管路10
1を流れてきた液体は装置本体11における開口から通
路12の液体流れ方向上流側(左側)の部分に入り、次
いで絞り体21の絞り孔22を通過して通路12の液体
流れ方向下流側(右側)の部分を通って開口から液体流
れ方向下流側(右側)の管路101を流れる。
The case where the flow measuring device installed in the pipe 101 of the plant measures the flow will be described. As shown by the arrow in FIG. 1, the pipeline 10 on the upstream side (left side) in the liquid flow direction.
1 flows from the opening in the apparatus main body 11 into the portion of the passage 12 on the upstream side (left side) in the liquid flow direction, and then passes through the throttle hole 22 of the throttle body 21 to the downstream side of the passage 12 in the liquid flow direction ( The liquid flows through the pipe 101 on the downstream side (right side) in the liquid flow direction from the opening through the portion (right side).

【0026】液体が絞り体21の絞り孔22を通過して
絞られることにより、通路12における絞り体21に対
して液体流れ方向上流側の液体圧力が高く、液体流れ方
向下流側(右側)の液体の圧力が低くなる。通路12に
おける絞り体21に対して液体流れ方向上流側の液体は
上流側圧力孔26にその入口から取り入れられ、絞り体
21に対して液体流れ方向下流側の液体は下流側圧力孔
27にその入口から取り入れられる。差圧伝送器51は
両方の圧力孔26,26からの液体を受け、夫々の液体
の圧力差を検出して電気信号として取り出し、この信号
を流量測定器52に出力する。流量測定器52は差圧伝
送器51からの信号を受けて管路101を流れる液体の
流量を測定する。
As the liquid passes through the throttle hole 22 of the throttle body 21 and is throttled, the liquid pressure on the upstream side in the liquid flow direction of the throttle body 21 in the passage 12 is high, and the liquid pressure on the downstream side (right side) in the liquid flow direction is high. The liquid pressure decreases. The liquid on the upstream side in the liquid flow direction with respect to the throttle body 21 in the passage 12 is taken into the upstream pressure hole 26 from the inlet thereof, and the liquid on the downstream side in the liquid flow direction with respect to the throttle body 21 flows into the downstream pressure hole 27. It is taken in from the entrance. The differential pressure transmitter 51 receives the liquid from both of the pressure holes 26, 26, detects the pressure difference between the respective liquids, extracts it as an electric signal, and outputs this signal to the flow rate measuring device 52. The flow meter 52 receives the signal from the differential pressure transmitter 51 and measures the flow rate of the liquid flowing through the pipe 101.

【0027】ここで、絞り体21における液体の流れに
ついて説明する。装置本体11の通路12における液体
流れ方向上流側部分を流れてきた液体の中心部は直接絞
り孔22を通過して通路12における液体流れ方向上流
側部分へ流れる。通路12の断面積のなかで多くの部分
を占める液体の絞り孔を囲む外周部分は、絞り体21に
おける上流側面で絞り孔22を囲む当り面23に直角な
方向で当接する。当り面23に当たった液体は、(装置
本体11の通路12により外周側への拡散を規制されて
いるために)絞り体21の絞り孔22へ向けて集中する
ように向きを変えて流れる。絞り体21の絞り孔22へ
向けて流れる液体は,当り面23において絞り孔22の
開口に連続する内周部に絞り孔22の周方向全体を囲む
ように環状に形成されたマウンド部25の外周側傾斜面
25aに達し、この外周側傾斜面25aに沿って当り面
23から絞り体21の絞り孔へ近付くに従い液体流れ方
向上流側へ向けて当り面23から離れるように案内され
て安定した流れとなる。液体は外周側傾斜面25aの突
出部から続いて内周側傾斜面25bに達し、内周側傾斜
面25bに沿って絞り孔22へ近付くに従い液体流れ方
向下流側へ向けて絞り孔22の内周面へ向かうように円
滑に案内されて勢い良く流れる。これにより液体は絞り
体21のマウンド部25の外周側傾斜面25aおよび内
周側傾斜面25bに案内され、絞り孔22の内部を勢い
良く迅速に流れて下流側開口を通って通路12の下流側
部分へ流れ出る。
Here, the flow of the liquid in the throttle body 21 will be described. The central portion of the liquid flowing in the upstream portion of the passage 12 of the apparatus main body 11 in the liquid flow direction passes directly through the throttle hole 22 and flows to the upstream portion of the passage 12 in the liquid flow direction. The outer peripheral portion surrounding the throttle hole of the liquid, which occupies a large part of the cross-sectional area of the passage 12, abuts on the upstream side surface of the throttle body 21 in a direction perpendicular to the contact surface 23 surrounding the throttle hole 22. The liquid that has hit the contact surface 23 changes its direction so as to concentrate toward the throttle hole 22 of the throttle body 21 (because diffusion to the outer peripheral side is restricted by the passage 12 of the apparatus main body 11). The liquid flowing toward the throttle hole 22 of the throttle body 21 has a mound portion 25 formed in an annular shape around the entire circumferential direction of the throttle hole 22 on the inner surface of the contact surface 23 that is continuous with the opening of the throttle hole 22. It reaches the outer peripheral side inclined surface 25a and is guided along the outer peripheral side inclined surface 25a so as to move away from the contact surface 23 toward the upstream side in the liquid flow direction as it approaches the restriction hole of the restrictor 21 from the contact surface 23 and becomes stable. It becomes a flow. The liquid continuously reaches the inner peripheral side inclined surface 25b from the projecting portion of the outer peripheral side inclined surface 25a. As the liquid approaches the restricting hole 22 along the inner peripheral side inclined surface 25b, the liquid flows into the throttle hole 22 toward the downstream side in the liquid flow direction. It is smoothly guided toward the periphery and flows vigorously. As a result, the liquid is guided by the outer peripheral side inclined surface 25a and the inner peripheral side inclined surface 25b of the mound portion 25 of the throttle body 21, flows quickly and vigorously inside the throttle hole 22, passes through the downstream opening, and flows downstream of the passage 12. Runs out to the side part.

【0028】このように液体は絞り体21の絞り孔22
を剥離を生じることなく速く流れて通過する。このた
め、これにより当り面23と絞り孔22の開口とが交叉
する角部に液体に含まれる成分によりスケールが付着し
ようしても速く流れる液体に押されて流されてスケール
の付着を抑えることができ、スケールの付着により液体
の剥離点が上流側へ移動すること、およびこの液体の剥
離点の移動による液体の流れが極端に遅い部分の発生を
夫々抑えることができる。また、液体が絞り体21の絞
り孔22を速く流れることにより、絞り孔22の壁面部
分に液体の流れが極端に遅い部分が発生することを抑え
ることができる。さらに、下流側圧力孔27は一端が液
体入口として絞り孔22における液体流れ方向下流側開
口に近い位置で絞り孔22に面して開口されているの
で、液体の流れが速い箇所で下流側の液体の圧力を取り
入れることができる。
As described above, the liquid is supplied to the throttle hole 22 of the throttle body 21.
Flow fast without delamination. For this reason, even if the scale is attached by the component contained in the liquid at the corner where the contact surface 23 and the opening of the throttle hole 22 intersect, the scale is suppressed by being pushed by the flowing liquid and flowing away. Thus, the separation point of the liquid moves to the upstream side due to the adhesion of the scale, and the generation of the portion where the flow of the liquid is extremely slow due to the movement of the separation point of the liquid can be suppressed. Further, since the liquid flows through the throttle hole 22 of the throttle body 21 at a high speed, it is possible to suppress the occurrence of a portion where the flow of the liquid is extremely slow on the wall surface of the throttle hole 22. Further, the downstream pressure hole 27 is open at one end as a liquid inlet facing the throttle hole 22 at a position close to the downstream opening in the liquid flow direction in the throttle hole 22, so that the downstream pressure hole 27 is located at a location where the liquid flow is fast. Liquid pressure can be introduced.

【0029】これらのことから下流側圧力孔27が取り
出す下流側の液体圧力が変化することが無く、この結果
上流側圧力孔26と下流側圧力孔27が取り出す絞り体
21の液体流れ方向上流側および下流側の圧力の差(差
圧)が変化することが無く、差圧伝送器51を経て流量
測定器52により液体の流量を正確に測定することがで
き高い測定精度を得ることができる。従って、簡素な構
成の絞り体を用いて液体の流量を正確に測定することが
でき高い測定精度を得ることができる。
Due to these facts, the liquid pressure on the downstream side taken out by the downstream pressure hole 27 does not change, and as a result, the upstream side in the liquid flow direction of the throttle body 21 taken out by the upstream pressure hole 26 and the downstream pressure hole 27. and can be the difference between the pressure at the downstream side (the differential pressure) is not able to change to obtain a high measurement accuracy can be accurately measuring the flow rate of liquid through the flow meter 52 through the differential pressure transmitter 51. Therefore, it is possible to accurately measure the flow rate of the liquid using the throttle body having a simple configuration, and to obtain high measurement accuracy.

【0030】なお、絞り体21に形成するマウンド部2
5の当り面23から液体流れ方向上流側へ向けて突出す
る高さは、絞り体21における絞り孔径dに対して例え
ば10ないし20%程度である。マウンド部25におけ
る外周側傾斜面25aおよび内周側傾斜面25bは、マ
ウンド部25の作用を効果的に行わせる上ではこの実施
の形態のように絞り体外側へ向けて突出する円弧面が好
ましい。しかし、これに限定されず外周側傾斜面25a
は例えば絞り体内部へ向けて凹入する円弧面、あるいは
あるいは直線でも良い。
The mound portion 2 formed on the aperture body 21
The height protruding from the contact surface 23 toward the upstream side in the liquid flow direction is, for example, about 10 to 20% with respect to the diameter d of the throttle hole in the throttle body 21. The outer peripheral side inclined surface 25a and the inner peripheral side inclined surface 25b of the mound portion 25 are preferably arcuate surfaces protruding toward the outside of the drawing body as in this embodiment in order to effectively perform the operation of the mound portion 25. . However, the present invention is not limited to this.
May be, for example, an arc-shaped surface which is concave toward the inside of the drawing body, or a straight line.

【0031】この実施の形態は、絞り体21が円板形を
なすために流量測定装置の厚さを薄くできるために、液
体流れ方向のスペースが制限されている管路に設置する
場合に適している。
This embodiment is suitable for installation in a pipe where space in the liquid flow direction is restricted because the thickness of the flow measuring device can be reduced because the throttle body 21 has a disk shape. ing.

【0032】第2の実施の形態について図2を参照して
説明する。この実施の形態はオリフィス型とフローノズ
ルノズル型とを組み合せた型式の絞り体を備えた流量測
定装置に適用したものである。図2はこの実施の形態に
おける流量測定装置を模式的に示す断面図で、図1と同
じ部分は同じ符号を付して示している。
A second embodiment will be described with reference to FIG. This embodiment is applied to a flow measuring device provided with a throttle body of a type combining an orifice type and a flow nozzle type. FIG. 2 is a cross-sectional view schematically showing a flow rate measuring apparatus according to this embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.

【0033】図2において31は円形をなす絞り体で、
この絞り体31の形状中心には円形の絞り孔32が形成
されている。絞り体31における絞り孔32に対して液
体流れ方向上流側部となる部分は液体を液体流れ方向上
流側から絞り孔32へ案内する断面円形をなす案内孔3
4を形作る円筒形の筒部33とされている。この案内孔
34は、液体流れ方向上流側部分が筒部33外周側へ向
きつつ筒部33の外周縁から筒部33内周側へ向けて傾
斜する上流側円弧面35をなすとともに、液体流れ方向
下流側部分が上流側円弧面35の内周側端から連続して
筒部33内周側へ向きつつ筒部33内周側へ向けて傾斜
して絞り孔32の上流側開口へ連続する下流側円弧面3
6をなして孔を構成している。案内孔34は液体を円滑
に絞り孔32へ向けて案内して、絞り孔32を通過する
際に絞り孔32の内周面からの剥離を抑えるとともに勢
い良く流して通過させるものである。この案内孔34に
おける上流側円弧面35は、装置本体11の通路12を
流れる液体を案内孔34の中心部に円滑に集めて勢いを
与え、下流側円弧面36は続いて液体を円滑に絞り孔3
2へ向けて案内しつつ勢いを与える。
In FIG. 2, reference numeral 31 denotes a circular aperture member.
A circular aperture 32 is formed at the center of the shape of the aperture body 31. A portion of the throttle body 31 which is on the upstream side in the liquid flow direction with respect to the throttle hole 32 is a guide hole 3 having a circular cross section for guiding the liquid from the upstream side in the liquid flow direction to the throttle hole 32.
4 is formed as a cylindrical tubular portion 33. The guide hole 34 forms an upstream arc surface 35 that is inclined from the outer peripheral edge of the cylindrical portion 33 toward the inner peripheral side of the cylindrical portion 33 while the upstream portion in the liquid flow direction is directed to the outer peripheral side of the cylindrical portion 33. The downstream portion in the direction is continuously inclined from the inner peripheral end of the upstream circular arc surface 35 toward the inner peripheral side of the cylindrical portion 33 toward the inner peripheral side of the cylindrical portion 33 to be continuous with the upstream opening of the throttle hole 32. Downstream arc surface 3
6 to form a hole. The guide hole 34 guides the liquid smoothly toward the throttle hole 32, suppresses the separation of the liquid from the inner peripheral surface of the throttle hole 32 when passing through the throttle hole 32, and allows the liquid to flow vigorously. The upstream arc surface 35 of the guide hole 34 smoothly collects the liquid flowing through the passage 12 of the apparatus main body 11 at the center of the guide hole 34 to give momentum, and the downstream arc surface 36 subsequently squeezes the liquid smoothly. Hole 3
Give momentum while guiding you to 2.

【0034】上流側圧力孔26は絞り体31に対して液
体流れ方向上流側の位置で装置本体11に形成され、下
流側圧力孔27は絞り体31の液体流れ方向下流側部に
形成され、この下流側圧力孔27は一端が液体入口とし
て絞り孔22における液体流れ方向下流側開口に近い位
置で絞り孔32に面して開口され、この開口から絞り体
31半径方向に沿って延びて他端が絞り体31の外周面
で開口している。
The upstream pressure hole 26 is formed in the apparatus main body 11 at a position upstream of the throttle body 31 in the liquid flow direction, and the downstream pressure hole 27 is formed in a downstream portion of the throttle body 31 in the liquid flow direction. One end of the downstream pressure hole 27 faces the throttle hole 32 at a position close to the downstream opening in the liquid flow direction in the throttle hole 22 as a liquid inlet. The downstream pressure hole 27 extends in the radial direction of the throttle body 31 from this opening. The end is open on the outer peripheral surface of the diaphragm 31.

【0035】絞り体31における液体の流れについて説
明する。装置本体11の通路12における液体流れ方向
上流側部を流れてきた液体は、絞り体31の案内孔34
に入り案内孔34における上流側円弧面35によって案
内孔34の中心部に円滑に集められて勢いを与えられて
流れる。続いて液体は下流側円弧面36によってさらに
集められて絞り孔32の上流側開口へ向けて円滑に案内
されて勢い良く流れる。このため、液体は絞り孔32の
内部を剥離を抑えられて勢い良く迅速に流れて通過し、
その下流側口を通って通路12における下流側部分へ流
れ出る。
The flow of the liquid in the throttle body 31 will be described. The liquid flowing on the upstream side in the liquid flow direction in the passage 12 of the apparatus main body 11 is supplied to the guide hole 34 of the throttle body 31.
It is smoothly collected at the center of the guide hole 34 by the upstream arcuate surface 35 in the guide hole 34, and is supplied with momentum and flows. Subsequently, the liquid is further collected by the downstream circular arc surface 36, smoothly guided toward the upstream opening of the throttle hole 32, and flows vigorously. For this reason, the liquid flows quickly and vigorously through the inside of the throttle hole 32 with the separation being suppressed,
It flows out through the downstream port to the downstream portion of the passage 12.

【0036】このため、絞り孔32の内周面に液体に含
まれる成分によりスケールが付着しようしても速く流れ
る液体に押されて流されてスケールの付着を抑えること
ができ、スケールに付着により液体の剥離点が上流側へ
移動することおよびこの液体の剥離点の移動による液体
の流れが極端に遅い部分の発生を夫々抑えることができ
る。また、液体が絞り体31の絞り孔32を速く流れる
ことにより、絞り孔32の下流側部分と、絞り体31の
下流側面24付近に液体の流れが極端に遅い部分が発生
することを抑えることができる。さらに、下流側圧力孔
27は一端が絞り孔22における液体流れ方向下流側開
口に近い位置で開口されているので、液体の流れが速い
箇所で下流側の液体の圧力を取り入れることができる。
これらのことから下流側圧力孔27が取り出す下流側の
液体圧力が変化して絞り体31に対して液体流れ方向上
流側および下流側の圧力の差が変化することが無く、液
体の流量を正確に測定することができ高い測定精度を得
ることができる。従って、簡素な構成の絞り体を用いて
液体の流量を正確に測定することができ高い測定精度を
得ることができる。
For this reason, even if the scale contained in the liquid adheres to the inner peripheral surface of the throttle hole 32, the scale can be pressed and flown by the flowing liquid to suppress the adhesion of the scale. It is possible to suppress the movement of the liquid peeling point to the upstream side and the occurrence of the portion where the liquid flow is extremely slow due to the movement of the liquid peeling point. Further, since the liquid quickly flows through the throttle hole 32 of the throttle body 31, it is possible to prevent the downstream portion of the throttle hole 32 and the vicinity of the downstream side surface 24 of the throttle body 31 from generating an extremely slow flow portion of the liquid. Can be. Further, the downstream pressure hole 27 has one end opened at a position close to the downstream opening of the throttle hole 22 in the liquid flow direction, so that the pressure of the liquid on the downstream side can be taken in a place where the flow of the liquid is fast.
From these facts, the liquid pressure on the downstream side taken out by the downstream pressure hole 27 does not change, and the difference between the pressure on the upstream side and the pressure on the downstream side in the liquid flow direction with respect to the throttle body 31 does not change. And high measurement accuracy can be obtained. Therefore, it is possible to accurately measure the flow rate of the liquid using the throttle body having a simple configuration, and to obtain high measurement accuracy.

【0037】この実施の形態は、絞り体31の軸線方向
長さが大きくなるために管路101に軸線方向のスペー
スに余裕がある場合に適している。
This embodiment is suitable for the case where the axial length of the throttle body 31 is large and thus there is room in the pipe line 101 in the axial direction.

【0038】第3の実施の形態について図3を参照して
説明する。この実施の形態はオリフィス型の絞り体を備
えた流量測定装置に適用したものである。図3(a)は
この実施の形態における流量測定装置を模式的に示す断
面図,図3(b)は図3(a)のC―C線に沿う断面図
であり、図1と同じ部分は同じ符号を付して示してい
る。
[0038] With reference to FIG. 3 illustrating a third embodiment. This embodiment is applied to a flow measuring device provided with an orifice type throttle body. FIG. 3A is a cross-sectional view schematically showing a flow rate measuring apparatus according to this embodiment, and FIG. 3B is a cross-sectional view taken along the line CC of FIG. Are denoted by the same reference numerals.

【0039】図3において41はオリフィス型の絞り体
で、この絞り体41の中心軸線上には両側の面43、4
4間を貫通する円形の絞り孔42が形成されている。絞
り体41において液体流れ方向上流側(図示左側)に位
置する(絞り体半径方向に沿う)面43が流れる液体が
直角に当たる当り面となり、他の面44は液体流れ方向
下流側面(図示右側面)となる。絞り体41の内部には
絞り孔42を囲むようにして複数の孔45がその周方向
に等間隔を存して形成されている。これら孔45は絞り
孔42軸線方向に対して直角で且つ絞り孔42の周方向
に対して傾斜したものである。これらの孔45における
絞り体41外周側に位置する一端部は液体流れ方向上流
側へ向けて絞り孔42軸線方向に沿って形成され、その
先端(一端)が液体入口として絞り体41の当り面43
で開口し、他端は液体出口として絞り孔42の内周面で
開口している。これら孔45は流れる液体を導いて絞り
孔42の内部へ傾斜して噴出することにより、絞り孔4
2の内部を流れる液体に力を加えて旋回する流れを形成
する。絞り孔42の液体流れ方向下流側開口と他の面4
4とが交叉する部分は逃げ部41aとして、液体流れ方
向下流側へ向かうに従い直径が所定の逃げ角度で拡大す
るテーパ部として形成されている。
In FIG. 3, reference numeral 41 denotes an orifice-type aperture member.
A circular throttle hole 42 penetrating between four spaces is formed. The surface 43 (along the radial direction of the throttle body) located on the upstream side (in the drawing, on the left side) in the liquid flow direction of the throttle body 41 is a contact surface at which the liquid flowing at right angles is contacted. ). A plurality of holes 45 are formed inside the aperture body 41 at equal intervals in the circumferential direction so as to surround the aperture hole 42. These holes 45 are perpendicular to the axial direction of the throttle hole 42 and inclined with respect to the circumferential direction of the throttle hole 42. One end of each of the holes 45 located on the outer peripheral side of the throttle body 41 is formed along the axial direction of the throttle hole 42 toward the upstream side in the liquid flow direction, and the tip (one end) serves as a liquid inlet and is a contact surface of the throttle body 41. 43
And the other end is opened at the inner peripheral surface of the throttle hole 42 as a liquid outlet. These holes 45 guide the flowing liquid and eject it obliquely into the throttle hole 42, thereby forming the throttle hole 4.
A force is applied to the liquid flowing inside 2 to form a swirling flow. The downstream opening of the throttle hole 42 in the liquid flow direction and the other surface 4
4 is formed as a relief portion 41a as a tapered portion whose diameter increases at a predetermined clearance angle toward the downstream side in the liquid flow direction.

【0040】この実施の形態では、絞り体41に対して
液体流れ方向上流側に位置する装置本体11の部分に通
路12で開口する上流側圧力孔46が形成され、液体流
れ方向下流側に位置する装置本体11の部分に通路12
で開口する下流側圧力孔47が形成されている。
In this embodiment, an upstream pressure hole 46 opened in the passage 12 is formed in a portion of the apparatus main body 11 located on the upstream side in the liquid flow direction with respect to the throttle body 41, and is located on the downstream side in the liquid flow direction. Passage 12
A downstream pressure hole 47 that opens at the opening is formed.

【0041】絞り体41における液体の流れについて説
明する。装置本体11の通路12における液体流れ方向
上流側部分を流れてきた液体は絞り体41の絞り孔42
を通過して通路12における液体流れ方向下流側部分へ
流れる。ここで、通路12における液体流れ方向上流側
部分を流れてきた液体の一部は絞り体41の当り面43
で開口する各孔45の一端開口からこれら孔45の内部
へ流れ込み、これら孔45の内部を流れて絞り孔42の
内周面に形成された他端開口から絞り孔42へ噴出され
る。この場合、各孔45から噴出される液体はこれら孔
45の形態に応じて、絞り孔42の周方向全体で等間隔
を存した数箇所から絞り孔42軸線方向に対して直角で
且つ絞り孔42の周方向に対して傾斜した向きで噴出さ
れる。このため、絞り孔42の上流側入口から絞り孔4
2に入ってきた液体は、各孔45から噴出される液体に
より力を受けて絞り孔42の中心軸線を中心としてその
周囲を勢い良く旋回しながら流れて流れる。液体はこの
ように旋回流に形成されて絞り孔42の内部を勢い良く
迅速に流れて下流側開口から装置本体11の通路12の
液体流れ方向下流側部に流れ出る。
The flow of the liquid in the throttle body 41 will be described. The liquid flowing in the upstream portion of the passage 12 of the apparatus main body 11 in the liquid flow direction is supplied to the throttle hole 42 of the throttle body 41.
And flows to the downstream portion of the passage 12 in the liquid flow direction. Here, a part of the liquid flowing in the upstream portion of the passage 12 in the liquid flow direction is applied to a contact surface 43 of the throttle body 41.
Then, the gas flows into the holes 45 from one end openings of the holes 45, and flows through the inside of the holes 45, and is ejected from the other end openings formed on the inner peripheral surface of the stop hole 42 to the stop hole 42. In this case, the liquid ejected from each of the holes 45 is perpendicular to the axial direction of the orifice 42 and at several points at equal intervals throughout the circumferential direction of the orifice 42, depending on the form of the orifices 45. 42 is ejected in a direction inclined with respect to the circumferential direction. For this reason, from the upstream entrance of the throttle hole 42, the throttle hole 4
The liquid that has entered 2 flows and flows while vibrating around the central axis of the throttle hole 42 under the force of the liquid ejected from each hole 45. The liquid is thus formed into a swirling flow, quickly and vigorously flows through the inside of the throttle hole 42, and flows out from the downstream opening to the downstream side of the passage 12 of the apparatus main body 11 in the liquid flow direction.

【0042】このため、絞り孔42の内周面に液体に含
まれる成分によりスケールが付着しようしても速く流れ
る液体に押されて流されてスケールの付着を抑えること
ができ、スケールの付着により液体の剥離点が上流側へ
移動することおよびこの液体の剥離点の移動による液体
の流れが極端に遅い部分の発生を夫々抑えることができ
る。また、液体が絞り体41の絞り孔42を速く流れる
ことにより、絞り孔42の下流側部分と、絞り体41の
下流側面44付近に液体の流れが極端に遅い部分が発生
することを抑えることができる。これらのことから下流
側圧力孔47が取り出す下流側の液体圧力が変化して絞
り体31の液体流れ方向上流側および下流側の圧力の差
が変化することが無く、液体の流量を正確に測定するこ
とができ高い測定精度を得ることができる。従って、簡
素な構成の絞り体を用いて液体の流量を正確に測定する
ことができ高い測定精度を得ることができる。
For this reason, even if the scale adheres to the inner peripheral surface of the throttle hole 42 due to the components contained in the liquid, the scale is pushed by the flowing liquid and is prevented from adhering to the scale. It is possible to suppress the movement of the liquid peeling point to the upstream side and the occurrence of the portion where the liquid flow is extremely slow due to the movement of the liquid peeling point. Further, since the liquid quickly flows through the throttle hole 42 of the throttle body 41, it is possible to prevent the downstream portion of the throttle hole 42 and the vicinity of the downstream side surface 44 of the throttle body 41 from generating an extremely slow liquid flow portion. Can be. From these facts, the liquid pressure on the downstream side taken out by the downstream pressure hole 47 does not change and the difference between the pressure on the upstream side and the pressure on the downstream side in the liquid flow direction of the throttle body 31 does not change, and the flow rate of the liquid is accurately measured. And high measurement accuracy can be obtained. Therefore, it is possible to accurately measure the flow rate of the liquid using the throttle body having a simple configuration, and to obtain high measurement accuracy.

【0043】なお、本発明は前述した実施の実施の形態
に限定されず、種々変形して実施することができる。
The present invention is not limited to the above-described embodiment, but can be implemented in various modifications.

【0044】[0044]

【発明の効果】請求項1の発明の絞り体を有する流量測
定装置によれば、絞り体は、絞り孔に対して液体流れ方
向上流側となる部分に絞り体半径方向に沿う当り面を形
成し、この当り面における絞り孔の上流側開口に連続す
る内周部に、この当り面から絞り体の絞り孔へ近付くに
従い液体流れ方向上流側へ向けて当り面から離れる外周
側傾斜面およびこの外周側傾斜面の突出部から絞り孔へ
近付くに従い液体流れ方向下流側へ向けて絞り孔の開口
ヘ連続する内側傾斜面を有するマウンド部を形成したの
で、液体は絞り体の絞り孔を剥離を生じることなく速く
流れて通過する。これにより絞り体にスケールが付着す
ることを抑え、スケールに付着により液体の剥離点が上
流側へ移動して液体の流れが極端に遅い部分が発生する
こと抑えることができる。また、液体が絞り体の絞り孔
を速く流れることにより、絞り孔の下流側部分と絞り体
の下流側面付近に液体の流れが極端に遅い部分が発生す
ることを抑えることができる。従って、絞り体の液体流
れ方向上流側および下流側の差圧が変化することが無
く、簡素な構成の絞り体で液体の流量を正確に測定する
ことができ高い測定精度を得ることができる。
According to the flow rate measuring apparatus having the throttle body according to the first aspect of the present invention, the throttle body forms a contact surface along the radial direction of the throttle body at a portion upstream of the throttle hole in the liquid flow direction. In the inner peripheral portion of the contact surface, which is continuous with the upstream opening of the throttle hole, the outer peripheral side inclined surface separated from the contact surface toward the liquid flow direction upstream toward the liquid flow direction as approaching the restrictor hole from the contact surface, and As the mound portion having an inner inclined surface that is continuous to the opening of the throttle hole toward the liquid flow direction downstream as it approaches the throttle hole from the protrusion of the outer peripheral slope is formed, the liquid peels off the throttle hole of the throttle body. It flows fast without passing. Thus, it is possible to prevent the scale from adhering to the throttle body, and to suppress the occurrence of a portion where the flow of the liquid is extremely slow due to the separation point of the liquid moving upstream due to the adhesion to the scale. Further, since the liquid quickly flows through the throttle hole of the throttle body, it is possible to suppress the generation of a part where the flow of the liquid is extremely slow near the downstream side of the throttle hole and near the downstream side surface of the throttle body. Therefore, the pressure difference between the upstream side and the downstream side in the liquid flow direction of the throttle body does not change, and the flow rate of the liquid can be accurately measured with a simple configuration of the throttle body, so that high measurement accuracy can be obtained.

【0045】請求項2の発明の絞り体を有する流量測定
装置によれば、絞り体は、絞り孔に対して液体流れ方向
上流側部となる部分を液体を絞り孔へ案内する案内孔を
形作る筒部とし、この案内孔が液体流れ方向上流側部分
に筒部外周側へ向きつつ筒部外周縁から筒部内周側へ向
けて傾斜する上流側円弧面と、液体流れ方向下流側部分
に筒部内周側へ向きつつ筒部内周側へ向けて傾斜して絞
り孔の上流側開口へ連続する下流側円弧面を有するの
で、液体が絞り孔を剥離を生じることなく速く流れる。
これにより絞り体にスケールが付着することを抑え、ス
ケールの付着により液体の流れが極端に遅い部分が発生
すること抑えることができる。また、液体が絞り体の絞
り孔を速く流れることにより、絞り孔の下流側部分と絞
り体の下流側面付近に液体の流れが極端に遅い部分が発
生することを抑えることができる。従って、絞り体の液
体流れ方向上流側および下流側の差圧が変化することが
無く、簡素な構成の絞り体で液体の流量を正確に測定す
ることができ高い測定精度を得ることができる。
According to the flow rate measuring apparatus having the throttle body according to the second aspect of the present invention, the throttle body forms a guide hole for guiding the liquid to the throttle hole at a portion on the upstream side in the liquid flow direction with respect to the throttle hole. An upstream circular arc surface inclined from the outer peripheral edge of the cylindrical portion toward the inner peripheral side of the cylindrical portion while the guide hole faces the outer peripheral side of the cylindrical portion in the upstream portion in the liquid flow direction, and a cylindrical portion in the downstream portion in the liquid flow direction. since having a downstream arcuate surface contiguous to the upstream opening of the inclined with throttle hole toward while orientation to the inner peripheral side to the cylinder inner peripheral side, flows faster without causing the peeling of the liquid throttle hole.
Thus, it is possible to prevent the scale from adhering to the throttle body, and to suppress the occurrence of a portion where the flow of the liquid is extremely slow due to the adhesion of the scale. Further, since the liquid quickly flows through the throttle hole of the throttle body, it is possible to suppress the generation of a part where the flow of the liquid is extremely slow near the downstream side of the throttle hole and near the downstream side surface of the throttle body. Therefore, the pressure difference between the upstream side and the downstream side in the liquid flow direction of the throttle body does not change, and the flow rate of the liquid can be accurately measured with a simple configuration of the throttle body, so that high measurement accuracy can be obtained.

【0046】請求項3の発明の絞り体を有する流量測定
装置によれば、絞り体は絞り体の内部に絞り孔軸線方向
に対して直角で絞り孔の周方向に対して傾斜した孔を形
成し、この孔の一端を入口として絞り体上流側面に開口
し、他端を出口として絞り孔の内周面に開口したので、
液体は絞り体の絞り孔を通過する時に孔から噴出される
液体により旋回流とされて絞り孔を剥離を生じることな
く速く流れて通過する。これにより絞り体にスケールが
付着することを抑えてスケールの付着により液体の流れ
が極端に遅い部分が発生することを抑えることができ
る。また、液体が絞り体の絞り孔を速く流れることによ
り、絞り孔の下流側部分と、絞り体の下流側面付近に液
体の流れが極端に遅い部分が発生することを抑えること
ができる。従って、絞り体の液体流れ方向上流側および
下流側の差圧が変化することが無く、簡素な構成の絞り
体で液体の流量を正確に測定することができ高い測定精
度を得ることができる。
According to the flow rate measuring apparatus having the throttle body according to the third aspect of the present invention, the throttle body forms a hole inside the throttle body perpendicular to the axial direction of the throttle hole and inclined with respect to the circumferential direction of the throttle hole. Since one end of this hole was opened as an inlet to the upstream side of the throttle body and the other end was opened to the inner peripheral surface of the throttle hole as an outlet,
The liquid is swirled by the liquid ejected from the hole when passing through the throttle hole of the throttle body, and flows quickly through the throttle hole without causing separation. Accordingly, it is possible to suppress the scale from adhering to the throttle body, and to suppress the occurrence of a portion where the flow of the liquid is extremely slow due to the adhesion of the scale. In addition, since the liquid flows quickly through the throttle hole of the throttle body, it is possible to suppress the generation of a part where the flow of the liquid is extremely slow near the downstream side of the throttle hole and near the downstream side surface of the throttle body. Therefore, the pressure difference between the upstream side and the downstream side in the liquid flow direction of the throttle body does not change, and the flow rate of the liquid can be accurately measured with a simple configuration of the throttle body, so that high measurement accuracy can be obtained.

【0047】請求項4の発明によれば、請求項1または
2に記載の絞り体を有する流量測定装置において、下流
側圧力孔を絞り体に形成して、その液体入口を絞り孔の
周面に形成したので、液体の流れが速い箇所で下流側の
液体の圧力を取り入れることができて絞り体の液体流れ
方向上流側および下流側の差圧が変化することを抑えて
液体の流量を正確に測定することに寄与する。
According to a fourth aspect of the present invention, in the flow rate measuring apparatus having the throttle body according to the first or second aspect, the downstream pressure hole is formed in the throttle body, and the liquid inlet is formed on the peripheral surface of the throttle hole. As a result, the pressure of the liquid on the downstream side can be taken in at places where the flow of liquid is fast, and the differential pressure on the upstream and downstream sides of the restrictor in the liquid flow direction is prevented from changing, and the flow rate of the liquid is accurately adjusted. Contributes to the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における流量測定装
置を模式的に示す図。
FIG. 1 is a diagram schematically showing a flow rate measuring device according to a first embodiment of the present invention.

【図2】第2の実施の形態における流量測定装置を模式
的に示す図。
FIG. 2 is a diagram schematically showing a flow measurement device according to a second embodiment.

【図3】第3の実施の形態における流量測定装置を模式
的に示す図。
FIG. 3 is a diagram schematically showing a flow measurement device according to a third embodiment.

【図4】従来の形態における流量測定装置を模式的に示
す図。
FIG. 4 is a diagram schematically showing a flow measurement device according to a conventional embodiment.

【図5】従来の形態における流量測定装置の作用を模式
的に示す図。
FIG. 5 is a diagram schematically showing the operation of a flow measurement device according to a conventional embodiment.

【符号の説明】[Explanation of symbols]

11…装置本体 12…通路 21…絞り体 22…絞り孔 23…当り面 24…面 25…マウンド部 25a…外側傾斜面 25b…内側傾斜面 26…上流側圧力孔 27…下流側圧力孔 31…絞り体 32…絞り孔 33…筒部 34…案内孔 35…上流側円弧面 36…下流側円弧面 41…絞り体 42…絞り孔 45…孔、 46…上流側圧力孔 47…下流側圧力孔。 DESCRIPTION OF SYMBOLS 11 ... Device main body 12 ... Passage 21 ... Restrictor 22 ... Restrictor hole 23 ... Contact surface 24 ... Surface 25 ... Mound part 25a ... Outer inclined surface 25b ... Inner inclined surface 26 ... Upstream pressure hole 27 ... Downstream pressure hole 31 ... Aperture body 32 ... Aperture hole 33 ... Cylinder 34 ... Guide hole 35 ... Upstream arc surface 36 ... Downstream arc surface 41 ... Aperture body 42 ... Aperture hole 45 ... Hole, 46 ... Upstream pressure hole 47 ... Downstream pressure hole .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液体が流れる通路を有する装置本体と、
この装置本体の通路に設けられ液体流れ方向に対して平
行な絞り孔を有する絞り体とを具備し、この絞り体に対
して液体流れ方向上流側に位置して前記装置本体に形成
された上流側圧力孔およびこの上流側圧力孔に対して液
体流れ方向下流側に位置する下流側圧力孔とを有し、 前記絞り体は、前記絞り孔に対して液体流れ方向上流側
となる部分に前記絞り孔を囲んで絞り体半径方向に沿う
当り面が形成され、且つこの当り面における前記絞り孔
の上流側開口に連続する内周部には、前記当り面から前
記絞り孔へ近付くに従い液体流れ方向上流側へ向けて当
り面から離れるように傾斜する外周側傾斜面およびこの
外周側傾斜面に対して絞り体内周側に位置して前記外周
側傾斜面の突出部から絞り孔へ近付くに従い液体流れ方
向下流側へ向けて傾斜して前記絞り孔の上流側開口ヘ連
続する内周側傾斜面を有するマウンド部が形成されてい
ることを特徴とする絞り体を有する流量測定装置。
An apparatus main body having a passage through which a liquid flows;
A restrictor provided in a passage of the apparatus main body and having a restrictor hole parallel to the liquid flow direction, wherein an upstream formed in the apparatus main body is positioned on the upstream side in the liquid flow direction with respect to the restrictor. A side pressure hole and a downstream pressure hole located on the downstream side in the liquid flow direction with respect to the upstream side pressure hole. A contact surface is formed around the throttle hole and extends in the radial direction of the throttle body, and an inner peripheral portion of the contact surface that is continuous with the upstream opening of the throttle hole has a liquid flow as the contact surface approaches the throttle hole. Outer peripheral side inclined surface that is inclined away from the contact surface toward the upstream side in the direction, and the liquid is located closer to the restrictor hole from the protruding portion of the outer peripheral side inclined surface that is located on the inner peripheral side of the diaphragm with respect to the outer peripheral side inclined surface. Tilt toward downstream in the flow direction A flow measuring device having a throttle body, wherein a mound portion having an inner peripheral side inclined surface which is inclined and continues to an upstream opening of the throttle hole is formed.
【請求項2】 液体が流れる通路を有する装置本体と、
この装置本体の通路に設けられ絞り孔に液体流れ方向に
対して平行な絞り孔を有する絞り体とを具備し、この絞
り体に対して液体流れ方向上流側に位置して前記装置本
体に形成された上流側圧力孔およびこの上流側圧力孔に
対して液体流れ方向下流側に位置する下流側圧力孔を有
し、 前記絞り体は、前記絞り孔に対して液体流れ方向上流側
部が液体を液体流れ方向上流側から前記絞り孔へ案内す
る案内孔を形作る筒部とされ、且つこの案内孔は、液体
流れ方向上流側部が筒部外周側へ向きつつ筒部外周縁か
ら筒部内周部へ傾斜する上流側円弧面をなすとともに、
液体流れ方向下流側部が前記上流側円弧面の筒部内周側
端から連続して筒部内周側へ向きつつ筒部内周部へ傾斜
して前記絞り孔の上流側開口へ連続する下流側円弧面を
なすことを特徴とする絞り体を有する流量測定装置。
2. An apparatus body having a passage through which a liquid flows,
A restrictor provided in a passage of the apparatus main body and having a restrictor hole in the restrictor hole in parallel with the liquid flow direction, wherein the restrictor is located on the upstream side in the liquid flow direction with respect to the restrictor and formed in the apparatus main body. And a downstream pressure hole located on the downstream side in the liquid flow direction with respect to the upstream pressure hole. The throttle body has a liquid upstream side in the liquid flow direction with respect to the throttle hole. Is formed into a guide hole for guiding the liquid from the upstream side in the liquid flow direction to the throttle hole, and the guide hole extends from the outer peripheral edge of the cylindrical portion to the inner circumferential portion of the cylindrical portion with the upstream portion in the liquid flow direction facing the outer circumferential side of the cylindrical portion. While forming an upstream arc surface that slopes to the
The downstream arc in which the downstream portion in the liquid flow direction is continuously directed from the inner peripheral side end of the upstream arc surface to the inner peripheral side of the cylindrical portion and is inclined toward the inner peripheral portion of the cylindrical portion to be continuous with the upstream opening of the throttle hole. A flow measuring device having a restrictor, which forms a surface.
【請求項3】 液体が流れる通路を有する装置本体と、
この装置本体の通路に設けられ液体流れ方向に対して平
行な絞り孔を有する絞り体とを具備し、この絞り体に対
して液体流れ方向上流側に位置して前記装置本体に形成
された上流側圧力孔およびこの上流側圧力孔に対して液
体流れ方向下流側に位置する下流側圧力孔とを有し、 前記絞り体は、内部に絞り孔軸線方向に対して直角で前
記絞り孔の周方向に対して傾斜した孔が形成され、この
孔の一端は入口として前記絞り孔に対して液体流れ方向
上流側となる部分に開口し、他端は出口として前記絞り
孔の内周面に開口していることを特徴とする絞り体を有
する流量測定装置。
3. An apparatus body having a passage through which a liquid flows,
A restrictor provided in a passage of the apparatus main body and having a restrictor hole parallel to the liquid flow direction, wherein an upstream formed in the apparatus main body is positioned on the upstream side in the liquid flow direction with respect to the restrictor. A downstream pressure hole located downstream of the upstream pressure hole in the liquid flow direction with respect to the upstream pressure hole. The throttle body has a peripheral portion around the throttle hole at right angles to the axial direction of the throttle hole. inclined hole is formed with respect to the direction, one end of the hole opens into the portion to be the liquid flow upstream side with respect to the throttle hole as an inlet and the other end opened to the inner peripheral surface of the throttle hole as an outlet A flow rate measuring device having a throttle body characterized in that the flow rate is measured.
【請求項4】 前記下流側圧力孔は前記絞り体に形成さ
れ、その液体入口が前記絞り孔の内周面に形成されてい
ることを特徴とする請求項1または2に記載の絞り体を
有する流量測定装置。
4. The throttle body according to claim 1, wherein the downstream pressure hole is formed in the throttle body, and a liquid inlet thereof is formed in an inner peripheral surface of the throttle hole. Flow measurement device.
JP2000387469A 2000-12-20 2000-12-20 Flow measuring device having restrictor Withdrawn JP2002188944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387469A JP2002188944A (en) 2000-12-20 2000-12-20 Flow measuring device having restrictor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000387469A JP2002188944A (en) 2000-12-20 2000-12-20 Flow measuring device having restrictor

Publications (1)

Publication Number Publication Date
JP2002188944A true JP2002188944A (en) 2002-07-05

Family

ID=18854396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387469A Withdrawn JP2002188944A (en) 2000-12-20 2000-12-20 Flow measuring device having restrictor

Country Status (1)

Country Link
JP (1) JP2002188944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614160A (en) * 2015-01-07 2015-05-13 东南大学 Simple device for grouping, selecting and matching static bearing restrictor
KR20160003055A (en) 2013-07-05 2016-01-08 가부시키가이샤 아이에이치아이 Flow volume measurement device for turbo compressor, and turbo compressor
CN107764344A (en) * 2016-08-16 2018-03-06 王子平 For measuring the rectangle flowmeter of gas flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003055A (en) 2013-07-05 2016-01-08 가부시키가이샤 아이에이치아이 Flow volume measurement device for turbo compressor, and turbo compressor
US10087943B2 (en) 2013-07-05 2018-10-02 Ihi Rotating Machinery Engineering Co., Ltd. Flow volume measurement device for turbo compressor, and turbo compressor
CN104614160A (en) * 2015-01-07 2015-05-13 东南大学 Simple device for grouping, selecting and matching static bearing restrictor
CN107764344A (en) * 2016-08-16 2018-03-06 王子平 For measuring the rectangle flowmeter of gas flow

Similar Documents

Publication Publication Date Title
JP4979197B2 (en) High recovery sonic gas valve
US6463810B1 (en) Method and device for bi-directional low-velocity flow measurement
JP3475853B2 (en) Flow measurement device
CN100437038C (en) Apparatus for measuring flow characteristics
JPH06241854A (en) Vortex flowmeter
CN108844673A (en) A kind of rectification type Venturi tube pressure difference measuring device
JP2006162417A (en) Total pressure/static pressure measuring venturi system flow measuring device
JP3100926B2 (en) Eddy current sensor with turbulent grid
JP2002188944A (en) Flow measuring device having restrictor
CN207379563U (en) A kind of gas flow surveying instrument
JPS6047973B2 (en) Flowmeter
Nastase et al. Passive control of jet flows using lobed nozzle geometries
JPH05223109A (en) Rectifying duct
JP6134899B2 (en) Flow measurement unit
CN116952312A (en) High pressure-bearing type gas turbine flowmeter
JPH11173896A (en) Flowmeter
JP4984348B2 (en) Flow measuring device
JP2003075380A (en) Instrument for measuring dryness
JPS62159016A (en) Flow rate detector
SU1117448A1 (en) Ball-type flowmeter
CN218673764U (en) Ultrasonic gas flow metering device
MX2013014046A (en) Apparatus for measuring the flow rate of a fluid.
JPH0210417Y2 (en)
JP2005140672A (en) Air intake duct device
RU2114397C1 (en) Gas flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304