JPS63153430A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPS63153430A
JPS63153430A JP24128087A JP24128087A JPS63153430A JP S63153430 A JPS63153430 A JP S63153430A JP 24128087 A JP24128087 A JP 24128087A JP 24128087 A JP24128087 A JP 24128087A JP S63153430 A JPS63153430 A JP S63153430A
Authority
JP
Japan
Prior art keywords
sphere
flow
flow rate
fluid
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24128087A
Other languages
Japanese (ja)
Other versions
JPH0464010B2 (en
Inventor
Yukinori Ozaki
行則 尾崎
Shuji Yamanochi
山ノ内 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24128087A priority Critical patent/JPS63153430A/en
Publication of JPS63153430A publication Critical patent/JPS63153430A/en
Publication of JPH0464010B2 publication Critical patent/JPH0464010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain an output of two pulses per one rotation of a ball, and to improve the resolution for measuring a flow rate, by executing a detection of turning of the ball by light emitting and light receiving elements provided on the peripheral wall of a housing, in a ball turning type flow rate detector. CONSTITUTION:In a housing 1 for forming a passage of a fluid 2, a fixed impeller 3 for giving a turning flow to the fluid 2 is placed, and on the downstream of this impeller 3, a fluid turning chamber 13 is provided. In the rear part in the fluid turning chamber 13, an outflow preventing means 5 for preventing an outflow of a non-metallic sphere 4, and also, being used as a receiver at the time of turning of the sphere is provided. Also, said housing 1 is provided with a light emitting element 7 and a light receiving element 8 for detecting the turning of the sphere 4. According to such constitution, at the time of turning of the sphere 4, two pulses per one rotation of the sphere 4 are outputted from the light receiving element 8, therefore, a flow rate detection having high resolution can be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量センサの全体構成に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the overall structure of a flow rate sensor for measuring the flow rate of fluid.

従来の技術 流体の流量を計測する手段として所謂計測器としての電
磁流量計など各種流量計を初め様々な形式があるが、流
量計測器としてではな(流体を扱う機器や自動車などの
流量センサとして使用される用途も近年増加してきてお
り、この場合小型で機器等に組込易い形式のものが要求
される。その一方式としてセンサ部の構成が比較的簡易
なボール周回式流量センサの形態があり、その従来例を
第2図、第3図に於いて説明する。両図に於いて101
は断面円形の環状通路でこの通路の外周に102の流入
通路と103の流出通路が開口し、環状通路101内に
は球体104が挿入されている。流体が図中実線の矢印
の方向に環状通路101内を環流しながら流入通路10
2から流出通路103へ流れ、それと共ζこ球体104
も破線の矢3ヘー・ 印の方向へ環状通路内を周回運動する。この球体の周回
の回転数は流体の流量に比例するなど相関がある為、球
体の回転数を図示してない光センサなどでパルス的に検
出し制御回路を通して流量を計測する。第3図は第2図
と同様であるが、流出通路103が環状通路101の中
央から流路面に垂直方向に流出するよう構成された場合
である。
Conventional technology There are various types of flowmeters such as electromagnetic flowmeters that are used as so-called measuring instruments to measure the flow rate of fluids, but they are not used as flowmeters (as flow rate sensors for equipment that handles fluids or automobiles, etc.). The number of applications in which it is used has been increasing in recent years, and in this case, there is a need for a small type that is easy to incorporate into equipment, etc.One type of flow sensor is a ball-circulating flow sensor whose sensor part has a relatively simple configuration. The conventional example is explained in Fig. 2 and Fig. 3. In both figures, 101
An inlet passage 102 and an outflow passage 103 are opened on the outer periphery of the annular passage having a circular cross section, and a sphere 104 is inserted into the annular passage 101 . The fluid flows through the inlet passage 10 while circulating inside the annular passage 101 in the direction of the solid arrow in the figure.
2 to the outflow passage 103, and together with it the ζ sphere 104.
It moves around inside the annular passage in the direction of the dashed arrow 3. Since the rotational speed of this sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere is detected in a pulsed manner by an optical sensor (not shown), and the flow rate is measured through a control circuit. FIG. 3 is similar to FIG. 2, except that the outflow passage 103 is configured to flow out from the center of the annular passage 101 in a direction perpendicular to the flow path surface.

いずれの場合もこれら従来例の問題点として、まず第1
に流量抵抗が大きいことが上げられる。環状通路を形成
している為流路の入口出口が方向変換しそれによる曲が
り損失を生じると共に、環流が流入通路付近で流入の流
れと交錯して流入抵抗となり損失を生じ、更に球体の周
回が促進するように球体が環状通路断面に近い大きさで
形成されている場合にも大きな流路抵抗となる。また流
入通路102に球体の周回を円滑にするようノズルを設
けた場合更に大きな流路抵抗となる。第2にセンサとし
ての構造が大きくなり易いなど構成上の課題がある。
In either case, the problems with these conventional examples are:
The reason for this is that the flow resistance is large. Since the annular passage is formed, the inlet and outlet of the flow passage change direction, causing bending loss, and the circular flow intersects with the inflow flow near the inflow passage, causing inflow resistance and loss, and furthermore, the rotation of the sphere causes loss. If the sphere is formed to have a size close to the cross section of the annular passage, it will also result in a large flow passage resistance. In addition, if a nozzle is provided in the inflow passage 102 to make the rotation of the sphere smooth, the flow resistance becomes even greater. Second, there are structural problems, such as the fact that the sensor structure tends to be large.

上記のように通路抵抗が大きくなる為それを低減するよ
う通路径を大きくする必要があり、また通常の直管など
に対し環状通路を形成しておりその分のスペースが必要
でありセンサ全体として前後の通路に対し大型になる。
As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it.Also, since an annular passage is formed compared to a normal straight pipe, a corresponding space is required, and the sensor as a whole It is larger than the front and rear passages.

加えて流入通路102に対し流出通路103の方向があ
る程度限定されることになり、センサとして機器などに
組込む場合の構成上の制約を生じたり全体の大型化につ
ながり易いなどの問題点がある。第3に、球体が比較的
大きくなり易い環状通路101を周回する為その運動量
も大きく、球体と環状通路外周面とで摩擦する時の騒音
が大きいなど特性上の欠点もあげられる。
In addition, the direction of the outflow passage 103 with respect to the inflow passage 102 is limited to some extent, which poses problems such as constraints on the structure when incorporating it into equipment as a sensor, and the overall size tends to increase. Thirdly, since the sphere revolves around the annular passage 101, which tends to be relatively large, its momentum is large, and there are disadvantages in characteristics such as large noise when the sphere rubs against the outer peripheral surface of the annular passage.

また他の従来例としては特開昭50−51758号公報
、及び実開昭47−3762号公報がある。
Other conventional examples include Japanese Unexamined Patent Application Publication No. 50-51758 and Japanese Utility Model Application No. 47-3762.

しかしながら特開昭50−51758号公報は、ボール
が3点に接触する構成であるため、流量が急変時には遠
心力の変化によりボールの接触点(少なくとも2点)が
変化し、ボールの回転が不安定になると言う問題がある
。またボール回転位置の中心部には中心ボス部を有して
いるため、ボ5ヘ一/ −ルの直径は、中心ボス部の外周と流路の外周の間に入
る直径のボール径に限定される。従って、ボール径を変
えることにより検出範囲等を可変する手段が取りにくい
構成であった。更にボールの下流側には整流用の第2の
スピンナーを設けているため、この整流部における圧損
が大きいと言う問題もあった。
However, in JP-A-50-51758, since the ball is in contact with three points, when the flow rate suddenly changes, the contact points of the ball (at least two points) change due to a change in centrifugal force, and the ball does not rotate. There is a problem with stability. In addition, since there is a central boss at the center of the ball rotation position, the diameter of the ball 5 is limited to the diameter of the ball that fits between the outer periphery of the central boss and the outer periphery of the flow path. be done. Therefore, it is difficult to take measures to vary the detection range by changing the ball diameter. Furthermore, since a second spinner for rectifying the flow is provided on the downstream side of the ball, there is a problem in that the pressure loss in this rectifier is large.

一方実開昭47−3762号公報は、回転する物体を単
に格子により下流へ流れることを止どめる構成であり一
定の軌道を周回することは不可能であると判断される。
On the other hand, Japanese Utility Model Application Publication No. 47-3762 has a structure in which a rotating object is simply stopped from flowing downstream by a grid, and it is judged that it is impossible to orbit a rotating object in a fixed orbit.

(公報においては、物体を同−軌動で周回する技術は何
隻開示されていない。)従って流量検出装置の機能とし
ては不十分な構成であった。また旋回流が格子を通過す
る際には圧損が大きいと言うものであった。
(The publication does not disclose the technology for orbiting an object in the same orbit.) Therefore, the configuration was insufficient as a function of a flow rate detection device. It was also said that when the swirling flow passes through the grid, there is a large pressure drop.

発明が解決しようとする問題点 本発明は球体の回転を不安定にせず、しかもできる限り
1回転当たりのパルス発生数をなくして流量検出精度の
向上を図るものである。
Problems to be Solved by the Invention The present invention aims to improve the accuracy of flow rate detection by eliminating the number of pulses per revolution as much as possible without making the rotation of the sphere unstable.

問題点を解決するための手段 6へ−7 上記目的を達成する為に本発明は、流路中に設けた流体
の旋回手段により流体を前記流路断面範囲内で旋回させ
、その旋回流により非金属球体を流れの方向に対し垂直
方向に周回させて、その非金属球体の回転数を前記非金
属球体の周回軌道面の径方向に設けられた発光素子と受
光素子で検出する機構により流量検出装置を構成するも
のである。
Means for Solving Problems 6-7 In order to achieve the above object, the present invention swirls the fluid within the cross-sectional range of the flow channel by means of a fluid swirling means provided in the flow channel, and the swirling flow causes The flow rate is determined by a mechanism in which a nonmetallic sphere is orbited in a direction perpendicular to the flow direction, and the rotational speed of the nonmetallic sphere is detected by a light emitting element and a light receiving element provided in the radial direction of the orbital surface of the nonmetallic sphere. This constitutes a detection device.

作  用 上記構成により一定間隔のパルスを流量信号としてとり
出すことができる。
Operation With the above configuration, pulses at regular intervals can be extracted as a flow rate signal.

実施例 以下、本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図で、1は流路2を形成するためのハウジングで、
ハウジング内の上流側には流体に旋回流を与えるための
回転しない固定羽根車3が圧入等により固定されている
。羽根車3の下流側には流体の旋回流により流路内を周
回する不透明樹脂の球体4と、球体4が下流側に流出す
るのを防止す7ヘー・ ると共に球体4が周回するための受けとなる流出防止部
材5がある。球体4と流出防止部材5も前記ハウジング
1内に収納されており、流出防止部材5はハウジング1
に圧入等により固定されている。尚流出防止部材5は球
体4が接触し周回する部分の断面が流路内壁とで上流側
に拡大したテーパ状のドーナツ型で形成しており、球体
4が周回しうる固定羽根車3との適当な距離に位置して
いる。
In FIG. 1, 1 is a housing for forming a flow path 2;
A fixed impeller 3, which does not rotate, is fixed to the upstream side of the housing by press fitting or the like to give a swirling flow to the fluid. On the downstream side of the impeller 3, there is a sphere 4 made of opaque resin that circulates in the flow path due to the swirling flow of the fluid, and a 7-hole for preventing the sphere 4 from flowing downstream and for the sphere 4 to circulate. There is an outflow prevention member 5 that serves as a receiver. A sphere 4 and an outflow prevention member 5 are also housed in the housing 1, and the outflow prevention member 5 is housed in the housing 1.
It is fixed by press-fitting, etc. The outflow prevention member 5 has a tapered donut shape in which the cross section of the part where the sphere 4 comes into contact and revolves is enlarged toward the upstream side with the inner wall of the flow path, and the cross section of the part where the sphere 4 comes in contact with and revolves is formed in a tapered donut shape, and the part where the sphere 4 comes into contact with the fixed impeller 3 is formed. Located at an appropriate distance.

また固定羽根車3と流出防止部材5の間に設けられた球
体周回室13は流路中心から流路内壁までの全域にわた
り旋回流が生じる構成であり、この旋回流の中で球体4
が周回する。更に球体4の周回の回転数を検出するため
に、球体の周回部外層のハウジングに流路1を横断する
貫通孔6が設けられ、発光素子7とそれに対抗する位置
に受光素子8があり、其々の素子は頭部が流路に突出し
ないよう望むと共にゴムパツキン等のシール部材9.9
′でシールされ接着材等によりハウジング1に固定され
、外部に素子の端子及びリード線10゜10’が引き出
されている。以上が流量検出装置  。
In addition, the spherical rotating chamber 13 provided between the fixed impeller 3 and the outflow prevention member 5 is configured to generate a swirling flow over the entire area from the center of the channel to the inner wall of the channel.
goes around. Furthermore, in order to detect the number of revolutions of the orbit of the sphere 4, a through hole 6 is provided in the outer layer of the housing of the orbiting part of the sphere, and a through hole 6 that crosses the flow path 1 is provided, and a light emitting element 7 and a light receiving element 8 are provided at a position opposite to the light emitting element 7. It is desired that the head of each element does not protrude into the flow path, and a sealing member such as a rubber gasket 9.9
' and fixed to the housing 1 with an adhesive or the like, and terminals and lead wires 10° and 10' of the element are drawn out to the outside. The above is the flow rate detection device.

11の全体構成であり、ハウジング1は通常の配管部材
と類似の形態で形成されており、通常配管に直接接続可
能とするため流路の出入口はメスネジ12 、12’で
構成されている。以上が構成であり次に動作について述
べる。
11, the housing 1 is formed in a form similar to a normal piping member, and the inlet/outlet of the flow path is configured with female threads 12, 12' to enable direct connection to normal piping. The above is the configuration, and the operation will be described next.

流量検出装置11は流体が図中矢印の方向からハウジン
グ1内に流入し、流入流体は固定羽根車3で旋回し、そ
の流体の旋回流により球体4が運動力を得て、流出防止
部材5とハウジング内壁に接触する位置で流体の流れの
方向に対し垂直方向に流路2内を周回することになる。
In the flow rate detection device 11, fluid flows into the housing 1 from the direction of the arrow in the figure, the inflowing fluid is swirled by the fixed impeller 3, and the swirling flow of the fluid gives the sphere 4 a motion force, and the outflow prevention member 5 It circulates within the flow path 2 in a direction perpendicular to the direction of fluid flow at a position where it contacts the inner wall of the housing.

その周回による回転数は流体の流量に相関し、本構成の
場合比例関係となり、球体の回転数を発光素子7と受光
素子8で光学的に検出することにより流体の流量が測定
される。球体は不透明体であり発光素子と受光素子の間
の光を遮断するものは球体のみであり、球体1回転当り
2パルスが出力され、リード線10 、10’が接続さ
れる図示してない制御回路により流量として検出される
ことになる。球体49へ−・ の材質は流体の種数によって変えるなど、特に特定され
るものではないが、樹脂など非金属材料の軽量な材質を
使うことにより流体の最少検出流量を下げられるなどの
点で有利となる。流体に旋回流を起こさせる手段として
実施例では固定羽根車を使用しているが、平板ねじり部
材や数個の斜孔がある円筒部材など手段は各種あり、更
に球体の流出防止手段も球体が通孔できない程度の多数
の孔のあいた平板等でも可能である。実施例で示した構
成は、流体旋回手段としての羽根車は抵抗が少なくてよ
り強力な旋回流を発生させるのに有効であり、流出防止
手段としての断面テーパ形状は球体を同軌道で安定して
周回させるのに有効であるなど、其々有利な構成である
が、流体の種類や要求検出性能レベルに応じて前記のよ
うに其々の手段は多数あり、特に実施例の構成に限定さ
れるものではない。更に流路は球体の周回部を除き断面
円形に限定されるものではない。尚、流量検出装置11
は湯沸器の水やガス及び空気など、自動車のガソリンや
水及び空気など具々の流量センサ10ヘー。
The number of rotations caused by the rotation is correlated with the flow rate of the fluid, and in the case of this configuration, there is a proportional relationship, and the flow rate of the fluid is measured by optically detecting the number of rotations of the sphere using the light emitting element 7 and the light receiving element 8. The sphere is an opaque body, and the only thing that blocks light between the light emitting element and the light receiving element is the sphere, and two pulses are output per one rotation of the sphere, and a control (not shown) to which lead wires 10 and 10' are connected. This will be detected as a flow rate by the circuit. The material of the sphere 49 is not particularly specified, such as changing depending on the type of fluid, but the minimum detectable flow rate of the fluid can be lowered by using a lightweight material such as a non-metallic material such as resin. It will be advantageous. Although a fixed impeller is used in the embodiment as a means for causing a swirling flow in the fluid, there are various other means such as a flat plate torsion member and a cylindrical member with several diagonal holes. It is also possible to use a flat plate with a large number of holes that cannot be passed through. In the configuration shown in the example, the impeller as the fluid swirling means has less resistance and is effective in generating a stronger swirling flow, and the tapered cross-sectional shape as the outflow prevention means stabilizes the sphere in the same orbit. Each of these configurations is advantageous, such as being effective for circulating the fluid, but as described above, there are many different means depending on the type of fluid and the required detection performance level, and the configuration is particularly limited to the configuration of the embodiment. It's not something you can do. Furthermore, the flow path is not limited to a circular cross section except for the circumferential portion of the sphere. In addition, the flow rate detection device 11
Flow rate sensor 10 for water, gas, and air in water heaters, gasoline, water, and air in automobiles, etc.

として、各種機器・機械に適用されるもので、出入口は
配管ネジ構成にしてあり流体の通路の一部として構成で
きる。
It is applied to various devices and machines, and the inlet/outlet has a piping screw structure, so it can be configured as part of the fluid passage.

発明の効果 以上が本発明の構成であり次に効果を述べる。Effect of the invention The above is the configuration of the present invention, and the effects will be described next.

(I)  従来の流路自体が環状流路を形成する必要も
なく、直管など一般流路に前記流路の中心から内壁まで
の全域にわたり軸流を生じさせ球体を回転させると共に
、前記球体の周回軌道面の径方向に光をさえぎる物が前
記球体のみであるごとく設けられた発光素子と受光素子
で前記球体の回転を検出することにより、球体の軽量化
で最小検出流量を下げられると言う効果を有すると共に
、球体1回転当り2パルスの出力が得られるため流量計
測における分解能を向上することができる。特に球体の
使用や一対の素子で2パルスの出力が得られることは、
コスト的にも有利である効果を持つものである。
(I) There is no need for the conventional flow path itself to form an annular flow path, and an axial flow is generated in a general flow path such as a straight pipe over the entire area from the center of the flow path to the inner wall to rotate the sphere. By detecting the rotation of the sphere using a light-emitting element and a light-receiving element that are arranged so that the sphere is the only thing blocking light in the radial direction of the orbital surface of the sphere, the minimum detected flow rate can be lowered by reducing the weight of the sphere. In addition to this effect, since two pulses of output can be obtained per one rotation of the sphere, the resolution in flow rate measurement can be improved. In particular, the use of a sphere and the ability to obtain two pulses of output with a pair of elements are
This has an advantageous effect in terms of cost.

in)  センサ部としては羽根車などの旋回手段と球
体と流出防止手段であり、羽根車など軸流で流体′  
に旋回を生じさせる手段は流路径に対し低抵抗であり、
球体も流路内で軸流に対し周回する構成で流路径よりも
一段と径小であり、また流出防止手段も、旋回流を防げ
ないドーナツ形状であるため全体として流量抵抗が極め
て小さい。又従来のボール式流量センサとの比較におい
ても、流路の極端な曲がりがない、流動自体の干渉がな
い、球体の大きさは流路に対しより径小に設けられるな
ど流体の流量抵抗は極めて小さくなる。
in) The sensor part consists of a rotating means such as an impeller, a sphere, and an outflow prevention means.
The means for causing swirling has low resistance relative to the flow path diameter,
The sphere also revolves around the axial flow within the flow path and has a much smaller diameter than the flow path diameter, and the outflow prevention means also has a donut shape that does not prevent swirling flow, so the flow resistance as a whole is extremely small. Also, in comparison with conventional ball-type flow sensors, there is no extreme bend in the flow path, there is no interference with the flow itself, and the size of the sphere is smaller in diameter than the flow path, resulting in lower fluid flow resistance. becomes extremely small.

(2)流出防止手段は流路断面が上流側に拡大したドー
ナツ型で構成することにより、球体は流出防止手段の軌
道面を常に2点で接触しながら同一軌道を周回するため
検出精度が高い。また流量計測時に流量が急変した時に
おいても球体は流体の下流側への力を受けることにより
、常に流出防止手段の軌道面に2点で当接され球体の軌
道は変わら、ないため過度状態においても検出精度が確
保されると言う効果を有している。
(2) By constructing the outflow prevention means in a donut shape with a cross-section of the flow path expanding toward the upstream side, the sphere orbits the same orbit while always touching the raceway surface of the outflow prevention means at two points, resulting in high detection accuracy. . In addition, even when the flow rate changes suddenly during flow rate measurement, the sphere is always in contact with the raceway surface of the outflow prevention means at two points due to the force applied to the downstream side of the fluid, and the trajectory of the sphere does not change. This also has the effect of ensuring detection accuracy.

以上のような効果を有し、従って本発明の流量検出装置
は機器等への適用性が大幅に図れるものである。
Having the above-mentioned effects, the flow rate detection device of the present invention can be greatly applied to equipment and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流量検出装置の流路断面図
、第2図、第3図は従来例のボール周回式流量センサの
流路断面図である。 2・・・・・・流路、3・・・・・・固定羽根車、4・
・・・・・球体、5・・・・・・流出防止部材、7・・
・・・・発光素子、8・・・・・・受光素子、11・・
・・・・流量検出装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名\ 
               Cリ  \(Q ミ \                   −NO) 較
FIG. 1 is a cross-sectional view of a flow path of a flow rate detection device according to an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views of a flow path of a conventional ball-circulating flow rate sensor. 2...Flow path, 3...Fixed impeller, 4.
... Sphere, 5 ... Outflow prevention member, 7 ...
...Light emitting element, 8... Light receiving element, 11...
...Flow rate detection device. Name of agent: Patent attorney Toshio Nakao and one other person
C li \(Q Mi \ -NO) comparison

Claims (3)

【特許請求の範囲】[Claims] (1)流路中に設けられた流体を軸流旋回させる旋回手
段と、前記旋回流の中に位置し流れの方向に対し垂直方
向に周回する球体と、前記球体を前記旋回流の範囲内に
止どめる流出防止手段と、前記球体の周回の回転数を検
出する検出手段と、前記旋回手段と前記流出防止手段の
間に設けられ前記流路の中心から前記流路の内壁までの
全域にわたり旋回流を生じさせる球体周回室とからなり
、前記検出手段は、前記球体の周回軌道面の径方向に設
けられた発光素子と受光素子とからなる流量検出装置。
(1) A swirling means for axially swirling the fluid provided in a flow path, a sphere located in the swirling flow and circulating in a direction perpendicular to the flow direction, and a sphere that is placed within the range of the swirling flow. a detection means for detecting the number of rotations of the spherical body; and a detection means for detecting the number of rotations of the sphere; A flow rate detection device comprising a spherical orbiting chamber that generates a swirling flow over the entire area, and the detection means comprising a light emitting element and a light receiving element provided in the radial direction of the orbital surface of the sphere.
(2)流出防止手段は、流路断面が上流側に拡大したド
ーナツ型とした特許請求の範囲第1項記載の流量検出装
置。
(2) The flow rate detection device according to claim 1, wherein the outflow prevention means has a donut shape with a cross section of the flow path expanded toward the upstream side.
(3)球体が非金属材料からなる特許請求の範囲第1項
記載の流量検出装置。
(3) The flow rate detection device according to claim 1, wherein the sphere is made of a non-metallic material.
JP24128087A 1987-09-25 1987-09-25 Flow rate detector Granted JPS63153430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24128087A JPS63153430A (en) 1987-09-25 1987-09-25 Flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24128087A JPS63153430A (en) 1987-09-25 1987-09-25 Flow rate detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19700682A Division JPS5987320A (en) 1982-11-10 1982-11-10 Flow rate detector

Publications (2)

Publication Number Publication Date
JPS63153430A true JPS63153430A (en) 1988-06-25
JPH0464010B2 JPH0464010B2 (en) 1992-10-13

Family

ID=17071910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24128087A Granted JPS63153430A (en) 1987-09-25 1987-09-25 Flow rate detector

Country Status (1)

Country Link
JP (1) JPS63153430A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326845A (en) * 1986-07-18 1988-02-04 Matsushita Electric Ind Co Ltd Optical head rocking device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326845A (en) * 1986-07-18 1988-02-04 Matsushita Electric Ind Co Ltd Optical head rocking device

Also Published As

Publication number Publication date
JPH0464010B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
JPS6326845B2 (en)
JPS63153430A (en) Flow rate detector
JPS59133428A (en) Flow rate detector
JPS63153429A (en) Flow rate detecting device
JPH0140297B2 (en)
JPH0384422A (en) Flow rate sensor
JPS60213818A (en) Flow-rate detector
JPS6013215A (en) Flow-rate detecting device
JPS608716A (en) Detector for flow rate
JPH0140298B2 (en)
JP2005257309A (en) Turbine flowmeter and fluid rotary machine
JPH0136886B2 (en)
JPH0468568B2 (en)
JPH0472175B2 (en)
JPH0210417Y2 (en)
JP2574401B2 (en) Flow detector
JP2002188944A (en) Flow measuring device having restrictor
JPS6013217A (en) Flow-rate detecting device
JPH08105772A (en) Flow rate sensor
JPS6146418Y2 (en)
JPH01265121A (en) Flow rate detector
JPS603520A (en) Flow rate detecting device
JPS60135721A (en) Flow rate detector
JPH07174595A (en) Vane wheel-type flowmeter of branched structure
JPH06323879A (en) Flowmeter