JPH0136886B2 - - Google Patents

Info

Publication number
JPH0136886B2
JPH0136886B2 JP58027942A JP2794283A JPH0136886B2 JP H0136886 B2 JPH0136886 B2 JP H0136886B2 JP 58027942 A JP58027942 A JP 58027942A JP 2794283 A JP2794283 A JP 2794283A JP H0136886 B2 JPH0136886 B2 JP H0136886B2
Authority
JP
Japan
Prior art keywords
magnetic
sphere
flow
pipe
magnetic sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58027942A
Other languages
Japanese (ja)
Other versions
JPS59153123A (en
Inventor
Yukinori Ozaki
Shuji Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2794283A priority Critical patent/JPS59153123A/en
Publication of JPS59153123A publication Critical patent/JPS59153123A/en
Publication of JPH0136886B2 publication Critical patent/JPH0136886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量検出装置の
全体構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the overall configuration of a flow rate detection device for measuring the flow rate of fluid.

従来例の構成とその問題点 従来この種の流量検出装置は第1図及び第2図
に示すように構成されている。第1図、第2図に
おいて、1は断面円形状の環状流路でこの流路の
外周に流入通路2、及び流出通路3が開口してい
る。この流入通路2にはノズル4が設けられてい
る。また環状流路1内には球体5が挿入されてい
ると共に、透明窓6,7が構成され、発光素子8
と受光素子9が設けられている。このような構成
において流体が流入通路2のノズル4から環状流
路1内に入ると、流れは環状流路1内を環流しな
がら流入通路2から流出通路3へ流れ、それと共
に球体5も図中実線の矢印の方向に環状流路1内
を周回運動する。この球体の周回回転数は流体の
流量に比例するなど相関があるため、球体5の回
転数を発光素子8と受光素子9によりパルス信号
として検出し制御回路を通して流量を計測する。
この従来例の問題としては、まず第1に長期間使
用時や不透明流体において検出が不能となる。発
光素子8から出た光は透明窓6,7を通過して受
光素子9に入りこの光の中を球体5がさえぎるこ
とにより、回転を検出する構成であるため、長期
間の使用において環状流路1内に水アカやスケー
ルが付着すると光の通過量が減少され検出不能と
なる。また不透明流体においては光の通過が困難
な為、検出が不能となる。第2に流量抵抗が大き
いことが上げられる。環状流路1を形成している
ため流路の入口出口が方向変換し、それによる曲
がり損失を生じると共に、環流が流入通路附近で
流入通路2からの流れと交わるため流入抵抗とな
つて損失を生じる。更に球体5の周回が促進する
ように球体を環状流路1の断面積に近い大きさで
構成されている場合にも大きな流路抵抗となる。
また流入通路2に球体5の周回を円滑にするよう
ノズル4を設けるとさらに大きな流路抵抗とな
る。第3にセンサとしての構造が大きくなりやす
いなど構成の課題がある。上記のように通路抵抗
が大きくなるためそれを低減するよう通路径を大
きくする必要があり、また直管などに対し、環状
流路1を有しているため、その分のスペースが必
要でありセンサ全体として前後の通路に対し大型
になる。加えて流入通路2と流出通路3の方向が
ある程度限定されることになり、センサとして機
器などに組込む際に構成上の制約が生じたり、全
体の大型化につながるなどの問題点がある。
Configuration of Conventional Example and its Problems Conventionally, this type of flow rate detection device is configured as shown in FIGS. 1 and 2. In FIGS. 1 and 2, reference numeral 1 denotes an annular flow path having a circular cross section, and an inflow path 2 and an outflow path 3 are opened at the outer periphery of this flow path. This inflow passage 2 is provided with a nozzle 4 . In addition, a sphere 5 is inserted into the annular flow path 1, transparent windows 6 and 7 are formed, and a light emitting element 8 is formed.
and a light receiving element 9 are provided. In such a configuration, when fluid enters the annular channel 1 from the nozzle 4 of the inflow channel 2, the flow flows from the inflow channel 2 to the outflow channel 3 while circulating in the annular channel 1, and the sphere 5 also flows along with it. It moves around inside the annular flow path 1 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 5 is detected as a pulse signal by the light emitting element 8 and the light receiving element 9, and the flow rate is measured through the control circuit.
The problems with this conventional method include, first, that detection is impossible during long-term use or in opaque fluids. The light emitted from the light emitting element 8 passes through the transparent windows 6 and 7 and enters the light receiving element 9, and the sphere 5 intercepts this light to detect rotation. If water scale or scale adheres to the inside of channel 1, the amount of light passing through is reduced and becomes undetectable. Furthermore, since it is difficult for light to pass through opaque fluids, detection becomes impossible. The second reason is that the flow resistance is large. Since the annular flow path 1 is formed, the inlet and outlet of the flow path change direction, resulting in bending loss, and the circular flow intersects with the flow from the inflow path 2 near the inflow path, resulting in inflow resistance and loss. arise. Furthermore, if the sphere is configured to have a size close to the cross-sectional area of the annular flow path 1 so as to promote the rotation of the sphere 5, a large flow resistance will occur.
Further, if a nozzle 4 is provided in the inflow passage 2 so that the sphere 5 circulates smoothly, the flow passage resistance becomes even greater. Thirdly, there are problems with the structure, such as the sensor structure tends to be large. As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it, and since it has an annular flow passage 1 compared to a straight pipe, more space is required. The sensor as a whole is larger than the front and rear passages. In addition, the directions of the inflow passage 2 and the outflow passage 3 are limited to some extent, which poses problems such as structural restrictions when incorporating the sensor into equipment, etc., and an increase in overall size.

また他の従来例としては、特開昭50−67674号
公報に記載の例がある。しかしながら、この従来
例においては、渦流室の接線方向から測定流体を
流入し、前記渦流室で旋回流を生じさせ、この中
で磁性材からなる回転体を前記渦流室の内壁に衝
突することなく回転させ、外側に設けた検知装置
(例えば磁束変化により検知するもの)により検
出するため、流路の拡大・縮少があり圧損が大き
い。そして渦流室を設けるため大型化となる。渦
流室内壁に衝突しない構成であるが、回転体の
径・体積は一定であり流量変化による遠心力の変
化で回転体の軌跡は一定ではなく、出力信号は不
安定である等の課題があつた。
Another conventional example is described in Japanese Patent Laid-Open No. 50-67674. However, in this conventional example, the fluid to be measured is introduced from the tangential direction of the vortex chamber to generate a swirling flow in the vortex chamber, and the rotating body made of a magnetic material is prevented from colliding with the inner wall of the vortex chamber. Since it is rotated and detected by a detection device (for example, one that detects changes in magnetic flux) provided on the outside, the flow path expands and contracts, resulting in a large pressure loss. In addition, the provision of a vortex chamber increases the size. Although the structure is such that the rotating body does not collide with the wall of the vortex chamber, the diameter and volume of the rotating body are constant, and the trajectory of the rotating body is not constant due to changes in centrifugal force due to changes in flow rate, resulting in problems such as unstable output signals. Ta.

また他の従来例としては特開昭50−51758号公
報、特開昭52−113760号公報がある。前者は流路
中を周回するボールの下流側に羽根を有するた
め、逆流時にボールが逆回転する構成であり、逆
流時にパルス出力する課題があつた。一方、後者
はホール素子と磁石の間を物体が移動することに
よりパルス出力するものであるが、前記ホール素
子と磁石と物体の位置関係では、パイプ中を周回
する球体を検出することは実用上困難であると言
う課題があつた。
Other conventional examples include JP-A-50-51758 and JP-A-52-113760. The former has a blade on the downstream side of the ball circulating in the flow path, so the ball rotates in the opposite direction when the flow is reversed, and there was a problem in that it outputs pulses during the reverse flow. On the other hand, the latter outputs pulses when an object moves between a Hall element and a magnet, but due to the positional relationship between the Hall element, magnet, and object, it is practically impossible to detect a sphere orbiting inside a pipe. I was faced with a difficult task.

発明の目的 本発明は、このような従来の欠点を解消するも
ので流路内のスケール付着状態や不透明流体にお
いても使用可能な、小型低圧損で、且つ検出信号
の出力が安定し、流体中を流れる鉄粉にも強い流
量検出装置を提供することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned drawbacks of the conventional technology.The present invention has a small size, low pressure loss, and can be used even in the condition of scale adhesion in the flow path or in opaque fluids, and the output of the detection signal is stable. The purpose of this invention is to provide a flow rate detection device that is resistant to iron powder flowing through.

発明の構成 この目的を達成するために本発明はパイプの中
に設けられ被検出流体を軸流旋回させ旋回流を発
生させる固定翼と、前記旋回流の中に位置し流れ
の方向に対し垂直方向に前記パイプの内壁に当接
して周回する磁性球体と、前記磁性球体を旋回流
の範囲内にとどめる流出防止手段と、前記磁性球
体の周回回転数を検出する回転検出装置からな
り、前記回転検出装置は前記パイプの外で且つ前
記磁性球体が周回する周回面の延長線上の範囲で
前記被検出流体に非接触な位置に設けられた磁気
検出素子と、前記パイプの外で且つ前記磁性球体
の周回面の延長線上の範囲から外れ前記被検出流
体に非接触な位置に永久磁石を設けたものであ
り、この構成により流路内壁に鉄粉等が付着して
も、周回面と永久磁石の位置がずれているため鉄
粉の影響を受けることなく安定した出力信号を得
ることができる。また、磁性球体と磁気検出素子
との距離を一定に保つことにより安定した検出信
号出力が確保できるものである。
Structure of the Invention In order to achieve this object, the present invention includes a fixed vane that is provided in a pipe and generates a swirling flow by axially swirling the fluid to be detected, and a fixed vane that is located in the swirling flow and is perpendicular to the direction of the flow. A magnetic sphere that rotates in contact with the inner wall of the pipe in a direction, an outflow prevention means that keeps the magnetic sphere within the range of the swirling flow, and a rotation detection device that detects the number of revolutions of the magnetic sphere, and the rotation The detection device includes a magnetic detection element provided outside the pipe and at a position not in contact with the fluid to be detected within an extension of the circumferential surface around which the magnetic sphere revolves; A permanent magnet is installed at a position that is out of the extension of the circumferential surface of the fluid and does not come into contact with the fluid to be detected.With this configuration, even if iron powder or the like adheres to the inner wall of the flow path, the circumferential surface and the permanent magnet Because the positions of the two are shifted, a stable output signal can be obtained without being affected by iron powder. Further, by keeping the distance between the magnetic sphere and the magnetic detection element constant, stable detection signal output can be ensured.

実施例の説明 次に本発明の実施例について、第3図、第4図
に基づいて説明する。11は流路12を形成する
ためのハウジング等のパイプで、パイプ11内に
は被検出流体を軸流旋回させる旋回手段である固
定翼13が設けられリング14により抜け防止さ
れている。また前記固定翼13と一体に構成され
た流出防止手段である中心軸15は流れの方向に
対して流路を拡大するテーパ面16と流路を縮少
するテーパ面17を前記固定翼13の近傍に有し
ている。18は磁性回転体である磁性球体であ
り、前記テーパ面16と周回面である流路側壁1
9で構成された上流側の周回溝20に設けられて
いる。また前記テーパ面17と流路側壁19で下
流側の周回溝21を構成している。尚テーパ面1
7は磁性球体18の流出を防止している。前記磁
性球体18が周回する周回面である流路側壁19
近傍で被検出流体に非接触な位置であるパイプ1
1の外部には、前記磁性球体18の回転検出装置
である磁気抵抗素子22と、この磁気抵抗素子2
2に磁界を与える永久磁石23が前記磁性球体1
8の位置より下流側に設けられている。24,2
5はパイプ11の入口及び出口を示している。2
6は流れ方向を示す矢印である。第5図は固定翼
13を示した図であるが、中心軸15と外枠27
の間には翼板28が一定の傾斜で複数枚設けられ
ている。この固定翼13は樹脂成形されている。
尚磁性球体18の種類としては、磁性鋼球、磁性
の中空鋼球、磁性鋼球をモールドした樹脂球、表
面に磁性メツキされた樹脂球等が考えられる。ま
た永久磁石23の種類としては希土類磁石やフエ
ライト磁石、更に、磁気検出素子22としては磁
気抵抗素子の他のホール素子が使用される。
DESCRIPTION OF EMBODIMENTS Next, embodiments of the present invention will be described based on FIGS. 3 and 4. Reference numeral 11 denotes a pipe such as a housing for forming a flow path 12. Fixed blades 13, which are swirling means for axially swirling the fluid to be detected, are provided inside the pipe 11, and are prevented from coming off by a ring 14. The central shaft 15, which is an outflow prevention means integrally constructed with the fixed blade 13, has a tapered surface 16 that expands the flow path and a tapered surface 17 that reduces the flow path in the flow direction. It has nearby. 18 is a magnetic sphere which is a magnetic rotating body, and the tapered surface 16 and the channel side wall 1 which is a circumferential surface
9 is provided in the upstream circumferential groove 20. Further, the tapered surface 17 and the channel side wall 19 constitute a downstream circumferential groove 21 . Note that tapered surface 1
7 prevents the magnetic sphere 18 from flowing out. A channel side wall 19 that is a circumferential surface around which the magnetic sphere 18 circulates.
Pipe 1 located nearby and not in contact with the fluid to be detected
1 includes a magnetoresistive element 22, which is a rotation detection device for the magnetic sphere 18, and a magnetoresistive element 22, which is a rotation detection device for the magnetic sphere 18.
A permanent magnet 23 that applies a magnetic field to the magnetic sphere 1
It is provided downstream from the position 8. 24,2
5 indicates the inlet and outlet of the pipe 11. 2
6 is an arrow indicating the flow direction. FIG. 5 is a diagram showing the fixed wing 13, and shows the central axis 15 and the outer frame 27.
A plurality of blade plates 28 are provided between them at a constant inclination. This fixed wing 13 is resin molded.
Possible types of the magnetic sphere 18 include a magnetic steel ball, a magnetic hollow steel ball, a resin ball molded with a magnetic steel ball, and a resin ball whose surface is magnetically plated. Further, as the permanent magnet 23, a rare earth magnet or a ferrite magnet is used, and as the magnetic detection element 22, a Hall element other than a magnetoresistive element is used.

次に上記構成における動作を第3図、第4図に
おいて説明する。流量検出装置は図に示したよう
に入口24、出口25が上下方向となるように設
置される。このような状態にあつて、矢印26の
方向からパイプ11内に流体が流れると、周回溝
20に設けられている磁性球体18は、固定翼1
3で軸流旋回された旋回流により運動力を得て流
体の流れ方向に対し垂直方向に流路12内を周回
する。この磁性球体18の周回回転数は流体の流
量に比例する特性をもつている。今流量が少ない
場合には磁性球体18は周回溝20を周回する
が、流量が大きい場合には第4図に示すように磁
性球体18は周回溝21で周回するようになる。
流量の計測には流量に比例して周回する磁性球体
18の回転数を計測すればよく、本実施例では、
磁性球体18の周回面の延長線上を外れた下流側
に位置するパイプ11の外側に永久磁石23を設
け、その磁界が通る位置でパイプ11の外側に磁
気抵抗素子22が設けられている。この永久磁石
23からの磁界は前記磁性球体18が前記磁気抵
抗素子22に近接した時に、前記磁性球体18及
び前記磁気抵抗素子22に磁界を与えるよう構成
されている。このような位置関係にあつて、磁性
球体18が磁気抵抗素子22側を通過すると、永
久磁石23から前記磁気抵抗素子22に作用して
いた磁界の方向が、前記磁性球体18の方向に曲
げられる。その結果前記磁気抵抗素子22に作用
する磁界の強さが変化し、前記磁気抵抗素子22
の内部抵抗が変化する。この内部抵抗の変化を電
圧の変化として取り出し、パルス信号として出力
するものである。このパルス信号を制御回路(図
示せず)で計算処理することにより流量を測定す
ることができる。
Next, the operation of the above configuration will be explained with reference to FIGS. 3 and 4. The flow rate detection device is installed so that the inlet 24 and outlet 25 are in the vertical direction as shown in the figure. In such a state, when fluid flows into the pipe 11 from the direction of the arrow 26, the magnetic sphere 18 provided in the circumferential groove 20 moves towards the fixed blade 1.
3, the axially swirled swirling flow obtains a kinetic force and circulates in the flow path 12 in a direction perpendicular to the flow direction of the fluid. The number of rotations of the magnetic sphere 18 has a characteristic that it is proportional to the flow rate of the fluid. When the flow rate is low, the magnetic sphere 18 revolves around the circumferential groove 20, but when the flow rate is large, the magnetic sphere 18 circles around the circumferential groove 21, as shown in FIG.
To measure the flow rate, it is sufficient to measure the number of revolutions of the magnetic sphere 18 that circulates in proportion to the flow rate, and in this embodiment,
A permanent magnet 23 is provided on the outside of the pipe 11 located on the downstream side away from the extension of the circumferential surface of the magnetic sphere 18, and a magnetic resistance element 22 is provided on the outside of the pipe 11 at a position through which the magnetic field passes. The magnetic field from the permanent magnet 23 is configured to apply a magnetic field to the magnetic sphere 18 and the magnetic resistance element 22 when the magnetic sphere 18 approaches the magnetic resistance element 22. In such a positional relationship, when the magnetic sphere 18 passes by the magnetic resistance element 22 side, the direction of the magnetic field acting on the magnetic resistance element 22 from the permanent magnet 23 is bent in the direction of the magnetic sphere 18. . As a result, the strength of the magnetic field acting on the magnetoresistive element 22 changes, and the magnetoresistive element 22
The internal resistance of changes. This change in internal resistance is extracted as a change in voltage and output as a pulse signal. The flow rate can be measured by calculating and processing this pulse signal using a control circuit (not shown).

以上のように本実施例においては、永久磁石2
3を磁性球体18よりも下流側に位置するパイプ
11の外側に設けてあるため、流路12中を流れ
てくる鉄片やサビ等が永久磁石23の磁力により
流路側壁19に付着されても、磁性球体18の下
流側であるため磁性球体18の周囲に影響を与え
ることはなく、長期にわたり安定した周回動作が
得られるものである。
As described above, in this embodiment, the permanent magnet 2
3 is provided on the outside of the pipe 11 located on the downstream side of the magnetic sphere 18, so even if iron pieces, rust, etc. flowing through the flow path 12 are attached to the flow path side wall 19 due to the magnetic force of the permanent magnet 23, Since it is on the downstream side of the magnetic sphere 18, it does not affect the surroundings of the magnetic sphere 18, and stable orbiting operation can be obtained over a long period of time.

また磁性回転体は磁性球体で構成されているた
め、他の形状に比べ周回時の機械的抵抗や流体抵
抗を小さくすることができる。
Furthermore, since the magnetic rotating body is composed of magnetic spheres, mechanical resistance and fluid resistance during rotation can be reduced compared to other shapes.

発明の効果 以上の説明から明らかなように本発明の流量検
出装置は、パイプの中に設けられ被検出流体を軸
流旋回させ旋回流を発生させる固定翼と、前記旋
回流の中に位置し流れの方向に対し垂直方向に前
記パイプの内壁に当接して周回する磁性球体と、
前記磁性球体を旋回流の範囲内ととどめる流出防
止手段と、前記磁性球体の周回回転数を検出する
回転検出装置からなり、前記回転検出装置は前記
パイプの外で且つ前記磁性球体が周回する周回面
の延長線上の範囲で前記被検出流体に非接触な位
置に設けられた磁気検出素子と、前記パイプの外
で且つ前記磁性球体の周回面の延長線上の範囲か
ら外れ前記被検出流体に非接触な位置に永久磁石
を設けることにより下記の効果を有するものであ
る。
Effects of the Invention As is clear from the above description, the flow rate detection device of the present invention includes a fixed vane that is provided in a pipe and generates a swirling flow by axially swirling the fluid to be detected; a magnetic sphere that orbits in contact with the inner wall of the pipe in a direction perpendicular to the flow direction;
It consists of an outflow prevention means that keeps the magnetic sphere within the range of the swirling flow, and a rotation detection device that detects the number of revolutions of the magnetic sphere, and the rotation detection device is arranged outside the pipe and within the orbit of the magnetic sphere. A magnetic sensing element is provided at a position that is not in contact with the fluid to be detected within an extension of the surface, and a magnetic sensing element is provided at a position that is outside the pipe and is outside the extension of the circumferential surface of the magnetic sphere and is not in contact with the fluid to be detected. By providing a permanent magnet at a contact position, the following effects can be obtained.

(1) 永久磁石を磁性球体の周回面の延長線上の範
囲から外すことにより、永久磁石付近の流路内
壁に流体中の鉄粉等が付着しても磁性球体の周
回に影響を与えることはなく、安定して周回運
動を得、精度よく検出が可能である。当然のこ
とながら磁気検出方法であるため、流路内の水
垢やスケールに対して影響されることはない。
また不透明流体においても計測可能である。
(1) By removing the permanent magnet from the extension of the orbiting surface of the magnetic sphere, even if iron particles in the fluid adhere to the inner wall of the flow channel near the permanent magnet, it will not affect the orbiting of the magnetic sphere. It is possible to obtain stable orbiting motion and detect with high accuracy. Naturally, since it is a magnetic detection method, it is not affected by limescale or scale within the flow path.
It is also possible to measure opaque fluids.

(2) 磁性球体は流量の大小に関係なく周回面であ
る流路側壁に当接して周回するため、磁性球体
が磁気検出素子に近接した時、前記磁性球体と
前記磁気検出素子との距離は常に一定である。
この結果極めて安定した出力の信号で回転検出
が可能である。
(2) Regardless of the magnitude of the flow rate, the magnetic sphere orbits in contact with the side wall of the flow path, which is the circumferential surface, so when the magnetic sphere approaches the magnetic sensing element, the distance between the magnetic sphere and the magnetic sensing element is Always constant.
As a result, rotation can be detected using extremely stable output signals.

(3) 磁性回転体自体は永久磁石機能を有していな
いため、流路中の鉄粉等がこの磁性回転体に附
着して、周回回転数の変化や耐久性に悪影響を
及ぼす欠点はない。
(3) Since the magnetic rotating body itself does not have a permanent magnet function, there is no drawback that iron particles in the flow path may adhere to the magnetic rotating body and adversely affect the rotation speed or durability. .

(4) 流路内は、流体に対して旋回流を与える固定
翼は低抵抗であり、磁性球体も流路内で軸流に
対し周回する構成で流路径に比べ一段と小径で
あり全体として流量抵抗が極めて小さくなる。
又従来のボール式流量センサとの比較において
も流路の極端な曲がりがない、流れ自体の干渉
がない、球体の大きさは流路に対し小径に設け
られるなど流量抵抗は極めて小さくなる。
(4) Inside the flow path, the fixed blades that give swirling flow to the fluid have low resistance, and the magnetic spheres also rotate in the flow path against the axial flow, so their diameter is much smaller than the flow path diameter, and the overall flow rate is low. Resistance becomes extremely small.
Also, in comparison with conventional ball-type flow rate sensors, the flow resistance is extremely small, as there is no extreme bend in the flow path, there is no interference with the flow itself, and the size of the sphere is small in diameter with respect to the flow path.

(5) 従来の流路自体が環状流路を形成するものと
異なり、直管部に軸流旋回を生じさせて磁性回
転体を回転させることに特長があるため、流路
が最もシンプルであり、流路長さも短く形成で
き、流量検出装置として構造が簡単で極めて小
型コンパクトである。
(5) Unlike the conventional flow path itself, which forms an annular flow path, the flow path is the simplest because it has the feature of creating an axial flow swirl in the straight pipe section and rotating the magnetic rotating body. The flow path length can be shortened, and the structure is simple and extremely small and compact as a flow rate detection device.

(6) 固定翼が球体の上流側のみに設けられている
ため、逆流時には球体の回転がなく逆流検出の
誤動作をしないと言う効果を有している。
(6) Since the fixed blades are provided only on the upstream side of the sphere, the sphere does not rotate during reverse flow, which has the effect of preventing malfunction of reverse flow detection.

(7) 磁気検出素子、磁石をパイプの外に設けてパ
イプ内を周回する球体の回転を検出する構成で
あり、前記磁気検出素子、磁石と流体との電気
絶縁が容易であり、又流体の温度が直接前記磁
気検出素子、磁石に作用しない等、極めて実用
性に優れた構成を得ることができるものであ
る。
(7) The magnetic detection element is configured to detect the rotation of a sphere orbiting inside the pipe by installing a magnet outside the pipe, and it is easy to electrically insulate the magnetic detection element and the magnet from the fluid. It is possible to obtain a highly practical configuration in which temperature does not directly act on the magnetic detection element or magnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来例における流量検出
装置の流路水平断面及び垂直断面、第3図および
第4図は本発明の一実施例を示す流量検出装置の
断面図、第5図は固定翼の外観斜視図である。 13……旋回手段(固定翼)、15……流出防
止手段(中心軸)、18……磁性回転体(磁性球
体)、22……磁気検出素子、23……永久磁石。
1 and 2 are a horizontal section and a vertical section of a flow path of a conventional flow rate detection device, FIGS. 3 and 4 are sectional views of a flow rate detection device according to an embodiment of the present invention, and FIG. 5 is a sectional view of a flow rate detection device according to an embodiment of the present invention. FIG. 3 is an external perspective view of a fixed wing. 13... Rotating means (fixed wing), 15... Outflow prevention means (center axis), 18... Magnetic rotating body (magnetic sphere), 22... Magnetic detection element, 23... Permanent magnet.

Claims (1)

【特許請求の範囲】 1 パイプの中に設けられ被検出流体を軸流旋回
させ旋回流を発生させる固定翼と、前記旋回流の
中に位置し流れの方向に対し垂直方向に前記パイ
プの内壁に当接して周回する磁性球体と、前記磁
性球体を旋回流の範囲内にとどめる流出防止手段
と、前記磁性球体の周回回転数を検出する回転検
出装置からなり、前記回転検出装置は前記パイプ
の外で且つ前記磁性球体が周回する周回面の延長
線上の範囲で前記被検出流体に非接触な位置に設
けられた磁気検出素子と、前記パイプの外で且つ
前記磁性球体の周回面の延長線上の範囲から外れ
前記被検出流体に非接触な位置に設けられ前記磁
気検出素子に磁界を与える永久磁石とで構成され
た流量検出装置。 2 永久磁石は磁性回転体の周回面より下流側に
設けた特許請求の範囲第1項記載の流量検出装
置。
[Scope of Claims] 1. A fixed vane provided in a pipe to axially swirl the fluid to be detected to generate a swirling flow, and an inner wall of the pipe located in the swirling flow in a direction perpendicular to the flow direction. It consists of a magnetic sphere that rotates in contact with the pipe, an outflow prevention means that keeps the magnetic sphere within the range of the swirling flow, and a rotation detection device that detects the rotational speed of the magnetic sphere. a magnetic detection element provided outside the pipe and on an extension line of the circumferential surface of the magnetic sphere, and outside the pipe and on an extension line of the circumferential surface of the magnetic sphere; a permanent magnet that is provided at a position outside of the range and out of contact with the fluid to be detected and applies a magnetic field to the magnetic detection element. 2. The flow rate detection device according to claim 1, wherein the permanent magnet is provided downstream of the circumferential surface of the magnetic rotating body.
JP2794283A 1983-02-22 1983-02-22 Flow rate detecting device Granted JPS59153123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2794283A JPS59153123A (en) 1983-02-22 1983-02-22 Flow rate detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2794283A JPS59153123A (en) 1983-02-22 1983-02-22 Flow rate detecting device

Publications (2)

Publication Number Publication Date
JPS59153123A JPS59153123A (en) 1984-09-01
JPH0136886B2 true JPH0136886B2 (en) 1989-08-03

Family

ID=12234940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2794283A Granted JPS59153123A (en) 1983-02-22 1983-02-22 Flow rate detecting device

Country Status (1)

Country Link
JP (1) JPS59153123A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782707A (en) * 1986-11-05 1988-11-08 Matsushita Electric Industrial Co., Ltd. Apparatus for detecting flow amount of fluid in passage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08
JPS52113760A (en) * 1976-03-22 1977-09-24 Toshiba Corp Magnetic-electric converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08
JPS52113760A (en) * 1976-03-22 1977-09-24 Toshiba Corp Magnetic-electric converter

Also Published As

Publication number Publication date
JPS59153123A (en) 1984-09-01

Similar Documents

Publication Publication Date Title
JPH0136886B2 (en)
JPS6326845B2 (en)
JPH0139529B2 (en)
JPH0140297B2 (en)
JPS608716A (en) Detector for flow rate
JPS6337326B2 (en)
JPH0472173B2 (en)
JPH0468568B2 (en)
JPS60164217A (en) Flow rate detecting device
JPH0472175B2 (en)
JPS6013215A (en) Flow-rate detecting device
JPS6337327B2 (en)
JPH0140298B2 (en)
JPH0360047B2 (en)
JP3347500B2 (en) Flow sensor
JPS603520A (en) Flow rate detecting device
JPH08105772A (en) Flow rate sensor
JPH0139530B2 (en)
JPH0554044B2 (en)
JPS60135721A (en) Flow rate detector
JPH01178819A (en) Flow rate sensor
JPS59171802A (en) Detecting device for moving body
JPH0464412B2 (en)
JPS63153429A (en) Flow rate detecting device
JPH01265121A (en) Flow rate detector