JPH0360047B2 - - Google Patents

Info

Publication number
JPH0360047B2
JPH0360047B2 JP7026084A JP7026084A JPH0360047B2 JP H0360047 B2 JPH0360047 B2 JP H0360047B2 JP 7026084 A JP7026084 A JP 7026084A JP 7026084 A JP7026084 A JP 7026084A JP H0360047 B2 JPH0360047 B2 JP H0360047B2
Authority
JP
Japan
Prior art keywords
flow
swirling
flow path
sphere
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7026084A
Other languages
Japanese (ja)
Other versions
JPS60213818A (en
Inventor
Yukinori Ozaki
Shuji Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7026084A priority Critical patent/JPS60213818A/en
Publication of JPS60213818A publication Critical patent/JPS60213818A/en
Publication of JPH0360047B2 publication Critical patent/JPH0360047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量検出装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow rate detection device for measuring the flow rate of fluid.

従来例の構成とその問題点 従来この種の流量検出装置は第1図及び第2図
に示すように構成されている。第1図、第2図に
おいて、1は断面円形状の環状流路でこの流路の
外周に流入通路2、及び流出通路3が開口してい
る。この流入通路2にはノズル4が設けられてい
る。また環状流路1内には球体5が挿入されてい
ると共に、透明窓6,7が構成され、発光素子8
と受光素子9が設けられている。このような構成
において流体が流入通路2のノズル4から環状流
路1内に入ると、流れは環状流路1内を環流しな
がら流入通路2から流出通路3へ流れ、それと共
に球体5も図中実線の矢印の方向に環状流路1内
を周回運動する。この球体の周回回転数は流体の
流量に比例するなど相関があるため、球体5の回
転数を発光素子8と受光素子9によりパルス信号
として検出し制御回路を通して流量を計測する。
この従来例の問題点としては第1に流量抵抗が大
きいことが上げられる。環状流路1を形成してい
るため流路の入口出口が方向変換し、それによる
曲がり損失を生じると共に、環流が流入通路附近
で流入通路2からの流れと交わるため流入抵抗と
なつて損失を生じる。更に球体5の周回が促進す
るように球体を環状流路1の断面積に近い大きさ
で構成されている場合にも大きな流路抵抗とな
る。また流入通路2に球体5の周回を円滑にする
ようノズル4を設けるとさらに大きな流路抵抗と
なる。第2のセンサとしての構造が大きくなりや
すいなど構成上の課題がある。上記のように通路
抵抗が大きくなるためそれを低減するよう通路径
を大きくする必要があり、また直管などに対し、
環状流路1を有しているためその分のスペースが
必要でありセンサ全体として前後の通路に対し大
型になる。加えて流入通路2と流出通路3の方向
がある程度限定されることになり、センサとして
機器などに組込む際に構成上の制約が生じたり、
全体の大型化につながるなどの問題点がある。
Configuration of Conventional Example and its Problems Conventionally, this type of flow rate detection device is configured as shown in FIGS. 1 and 2. In FIGS. 1 and 2, reference numeral 1 denotes an annular flow path having a circular cross section, and an inflow path 2 and an outflow path 3 are opened at the outer periphery of this flow path. This inflow passage 2 is provided with a nozzle 4 . In addition, a sphere 5 is inserted into the annular flow path 1, transparent windows 6 and 7 are formed, and a light emitting element 8 is formed.
and a light receiving element 9 are provided. In such a configuration, when fluid enters the annular channel 1 from the nozzle 4 of the inflow channel 2, the flow flows from the inflow channel 2 to the outflow channel 3 while circulating in the annular channel 1, and the sphere 5 also flows along with it. It moves around inside the annular flow path 1 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 5 is detected as a pulse signal by the light emitting element 8 and the light receiving element 9, and the flow rate is measured through the control circuit.
The first problem with this conventional example is that the flow resistance is large. Since the annular flow path 1 is formed, the inlet and outlet of the flow path change direction, resulting in bending loss, and the circular flow intersects with the flow from the inflow path 2 near the inflow path, resulting in inflow resistance and loss. arise. Furthermore, if the sphere is configured to have a size close to the cross-sectional area of the annular flow path 1 so as to promote the rotation of the sphere 5, a large flow resistance will occur. Further, if a nozzle 4 is provided in the inflow passage 2 so that the sphere 5 circulates smoothly, the flow passage resistance becomes even greater. There are structural issues, such as the structure of the second sensor tends to be large. As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it.
Since it has the annular flow path 1, a corresponding space is required, and the sensor as a whole becomes larger than the front and rear passages. In addition, the directions of the inflow passage 2 and the outflow passage 3 are limited to some extent, which may cause structural restrictions when incorporating it into equipment as a sensor.
There are problems such as increasing the overall size.

発明の目的 本発明はこのような従来の欠点を解消するもの
で流量抵抗の小さい小型コンパクトな流量検出装
置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a small and compact flow rate detection device that eliminates such conventional drawbacks and has low flow resistance.

発明の構成 この目的を達成するために本発明は流路中を流
れる被検出流体を軸流旋回させる旋回手段と、前
記旋回流の中に位置し流れの方向に対し垂直面で
周回する回転体と、この回転体を前記旋回流の範
囲内にとどめる流出防止手段と、前記回転体の周
回回転数を計測する回転検出手段からなり、旋回
手段は、平板が流れ方向に対して同軸でねじられ
た、ねじり板を前記流路に構成したものである。
Structure of the Invention In order to achieve this object, the present invention includes a swirling means for axially swirling a fluid to be detected flowing in a flow path, and a rotating body located in the swirling flow and rotating in a plane perpendicular to the flow direction. , an outflow prevention means for keeping this rotating body within the range of the swirling flow, and a rotation detecting means for measuring the number of revolutions of the rotating body, and the rotating means has a flat plate twisted coaxially with respect to the flow direction. In addition, a torsion plate is arranged in the flow path.

この構成により被検出流体を軸流旋回させ、こ
の旋回流の中で流路断面積に比べ面積の小さい回
転体を周回することにより極めて小さい流量抵抗
を有する小型コンパクトな流量検出装置を得るこ
とができる。
With this configuration, the fluid to be detected is swirled in an axial flow, and in this swirling flow, it revolves around a rotating body whose area is smaller than the cross-sectional area of the flow path, thereby making it possible to obtain a small and compact flow rate detection device with extremely low flow resistance. can.

実施例の説明 本発明の実施例について第3図、第4図に基づ
いて説明する。第3図において10はハウジング
であり、このハウジング10の内部には被検出流
体を軸流旋回させる旋回手段のねじり板11がケ
ーシング12に固定されている。ねじり板11
は、平板状の板を同軸でねじることにより加工さ
せる。このねじり板11の下流には流れの方向に
対し垂直面で周回する流路断面積に比べ一段と小
径な回転体の磁性球体13が設けられている。こ
の磁性球体13の構成としては、鋼球、中空鋼
球、樹脂に磁性メツキをしさらに樹脂モールドを
行なつた球体等が用いられる。前記磁性球体13
の下流にはこの磁性球体13を前記旋回流の範囲
内にとどめる流出防止手段の球体受け14が設け
られている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described based on FIGS. 3 and 4. In FIG. 3, reference numeral 10 denotes a housing, and inside this housing 10, a torsion plate 11 of a swirling means for axially swirling the fluid to be detected is fixed to a casing 12. Twisted plate 11
is processed by coaxially twisting a flat plate. A rotating magnetic sphere 13 is provided downstream of the torsion plate 11 and has a smaller diameter than the cross-sectional area of the flow path that revolves in a plane perpendicular to the flow direction. As the structure of the magnetic sphere 13, a steel ball, a hollow steel ball, a sphere formed by magnetically plating resin and then resin molding is used. The magnetic sphere 13
A ball receiver 14 is provided downstream of the magnetic ball 13 as an outflow prevention means for keeping the magnetic ball 13 within the range of the swirling flow.

ケーシング12はハウジング10に挿入され、
Cリング15により固定されている。またハウジ
ング10の外部には永久磁石16と磁気検出素子
である磁気抵抗素子17で構成された前記磁性球
体13の検出手段の回転検出器18が設けられ流
量検出装置を構成している。
The casing 12 is inserted into the housing 10,
It is fixed by a C ring 15. Further, a rotation detector 18 as a detection means for the magnetic sphere 13 is provided outside the housing 10 and constitutes a flow rate detection device, which is composed of a permanent magnet 16 and a magnetoresistive element 17 which is a magnetic detection element.

19,20は配管接続口であり21は被検出流
体の流れ方向を示す矢印であり22は磁性球体1
3の回転方向を示す矢印である。
19 and 20 are piping connection ports, 21 is an arrow indicating the flow direction of the fluid to be detected, and 22 is a magnetic sphere 1.
This is an arrow indicating the direction of rotation of No. 3.

第4図は球体受け14であるが23は磁性球体
が当接する円錐面であり、24はドーナツツ状に
構成された流路である。
FIG. 4 shows the ball receiver 14, where 23 is a conical surface on which the magnetic sphere comes into contact, and 24 is a donut-shaped flow path.

上記構成における動作を第3図、第4図に基づ
いて説明する。被検出流体が矢印21の方向から
流入すると、被検出流体はねじり板11に沿つて
流れることにより軸流旋回される。この結果旋回
流の中に置かれた磁性球体13は、旋回流により
運動力を得て矢印22の方向に周回する。このと
き磁性球体13は球体受け14の円錐面23とケ
ーシング12の2点に接触しながら周回する。磁
性球体13の周回回転数は流量に比例するためこ
の磁性球体13の回転数を計測することにより流
量を測定することができる。その方法としては、
磁気抵抗素子17に永久磁石16により一定強さ
の磁界を与えておき、磁性球体13がこの磁界中
を通過した際に生じる磁気抵抗素子17の抵抗変
化を電圧変化として取り出し制御回路(図示せ
ず)を介して計測するものである。なおねじり板
11で構成された流路1つの面積を磁性球体13
の投影面積より小さく設計することにより、磁性
球体13が配管接続口19側に抜け出ることはな
い。また磁性球体13の周回回転数は、ねじり板
11のねじり回数やねじり角度を変えることによ
り認意に設計することが可能となる。
The operation of the above configuration will be explained based on FIGS. 3 and 4. When the fluid to be detected flows in from the direction of the arrow 21, the fluid to be detected flows along the torsion plate 11 and is rotated in an axial flow. As a result, the magnetic sphere 13 placed in the swirling flow gains a kinetic force from the swirling flow and rotates in the direction of the arrow 22. At this time, the magnetic sphere 13 rotates while contacting two points, the conical surface 23 of the sphere receiver 14 and the casing 12. Since the number of rotations of the magnetic sphere 13 is proportional to the flow rate, the flow rate can be measured by measuring the number of rotations of the magnetic sphere 13. The method is as follows:
A magnetic field of constant strength is applied to the magnetoresistive element 17 by the permanent magnet 16, and the resistance change of the magnetoresistive element 17 that occurs when the magnetic sphere 13 passes through this magnetic field is extracted as a voltage change and is output to a control circuit (not shown). ). Note that the area of one flow path made up of the torsion plate 11 is defined as the magnetic sphere 13.
By designing the projected area to be smaller than the projected area of , the magnetic sphere 13 will not escape to the piping connection port 19 side. Further, the number of rotations of the magnetic sphere 13 can be designed as desired by changing the number of twists and the twist angle of the torsion plate 11.

本実施例においては、回転体を磁性球体で構成
することにより周回時の接触面積が少ないため接
触抵抗が小さくなり低流量域においても安定回転
を得ることができる。球体であるため周回時の抵
抗が小さい。また磁気センサで検出するため不透
明流体においても検出可能である。
In this embodiment, since the rotating body is composed of a magnetic sphere, the contact area during rotation is small, so the contact resistance is small, and stable rotation can be obtained even in a low flow rate range. Since it is a sphere, there is little resistance when orbiting. Furthermore, since it is detected using a magnetic sensor, it can be detected even in opaque fluids.

発明の効果 以上の説明から明らかなように本発明の流量検
出装置は流路中を流れる被検出流体を軸流旋回さ
れる旋回手段と、前記旋回手段による旋回流の中
で周回する回転体と、この回転体を前記旋回流の
範囲内にとどめる流出防止手段と、前記回転体の
周回回転数を計測する回転検出手段からなり、旋
回手段を前記流路に固定したねじり板で構成する
ことにより下記の効果を有する。
Effects of the Invention As is clear from the above description, the flow rate detection device of the present invention includes a swirling means that axially swirls the fluid to be detected flowing in a flow path, and a rotating body that revolves in the swirling flow caused by the swirling means. , consisting of an outflow prevention means for keeping the rotating body within the range of the swirling flow, and a rotation detecting means for measuring the number of revolutions of the rotating body, and the swirling means is constituted by a torsion plate fixed to the flow path. It has the following effects.

(1) 流量抵抗が小さい。被検出流体は軸流旋回さ
れるとともに、回転体も流路断面積に比べ一段
と小径に構成されている。また従来のボール式
流量センサとの比較においても流路の極端な変
化がないとともに流体自体の干渉がないなど流
量抵抗は極めて小さくなる。
(1) Low flow resistance. The fluid to be detected is axially swirled, and the rotating body is also configured to have a smaller diameter than the cross-sectional area of the flow path. Furthermore, in comparison with conventional ball-type flow rate sensors, the flow resistance is extremely small, as there is no extreme change in the flow path and no interference from the fluid itself.

(2) 流量検出装置の構造が小型コンパクトとな
る。流路自体が環状流路を形成するものと異な
り、直管部に軸流旋回を生じさせて回転体を周
回させることに特長があり、流路構造が最もシ
ンプルで流路流さも短く構成できる。
(2) The structure of the flow rate detection device is small and compact. Unlike those in which the flow path itself forms an annular flow path, the feature is that an axial flow is generated in the straight pipe section and a rotating body is circulated, and the flow path structure is the simplest and the flow path can be configured to be short. .

(3) 周回時の騒音が小さい。球体は流路の垂直方
向で流路範囲内を周回するので、その回転径も
小さくケーシングとの遠心摩擦力も小さくな
り、従来の大きく周回するボール式センサとの
比較においても球体が周回することによるケー
シングとで発生する騒音は極めて小さい。
(3) Low noise during orbiting. Since the sphere orbits within the flow path in the vertical direction of the flow path, its rotation diameter is small and the centrifugal frictional force with the casing is small. The noise generated by the casing is extremely small.

(4) 回転体の周回回転数の設計が容易にできる。
旋回手段がねじり板で構成されており、ねじり
回数やねじり角度を認意に変化することにより
周回回転数の設計が容易にできる。
(4) The number of revolutions of the rotating body can be easily designed.
The turning means is composed of a torsion plate, and the number of rotations can be easily designed by changing the number of twists and the twist angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例における流量検出装置
の流路水平断面図および垂直断面図、第3図は本
発明の一実施例を示す流量検出装置の垂直断面
図、第4図は球体受けの斜視図である。 11……旋回手段(ねじり板)、13……回転
体(磁性球体)、14……流出防止手段(球体受
け)、18……回転検出手段(回転検出器)。
1 and 2 are a horizontal cross-sectional view and a vertical cross-sectional view of a flow path of a conventional flow rate detection device, FIG. 3 is a vertical cross-sectional view of a flow rate detection device showing an embodiment of the present invention, and FIG. 4 is a spherical shape. It is a perspective view of a receiver. 11... Rotating means (twisting plate), 13... Rotating body (magnetic sphere), 14... Outflow prevention means (sphere receiver), 18... Rotation detection means (rotation detector).

Claims (1)

【特許請求の範囲】[Claims] 1 流路中を流れる被検出流体を軸流旋回させる
旋回手段と、前記旋回手段による旋回流の中に位
置し流れ方向に対し垂直面で周回する回転体と、
この回転体を前記旋回流の範囲内にとどめる流出
防止手段と、前記回転体の周回回転数を計測する
回転検出手段からなり、前記旋回手段は、平板が
流れ方向に対して同軸でねじられたねじり板を前
記流路に固定してなる流量検出装置。
1. a swirling means for axially swirling the fluid to be detected flowing in a flow path; a rotating body located in the swirling flow caused by the swirling means and rotating in a plane perpendicular to the flow direction;
It consists of an outflow prevention means for keeping this rotating body within the range of the swirling flow, and a rotation detecting means for measuring the number of rotations of the rotating body, and the rotating means has a flat plate twisted coaxially with respect to the flow direction. A flow rate detection device comprising a torsion plate fixed to the flow path.
JP7026084A 1984-04-09 1984-04-09 Flow-rate detector Granted JPS60213818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026084A JPS60213818A (en) 1984-04-09 1984-04-09 Flow-rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026084A JPS60213818A (en) 1984-04-09 1984-04-09 Flow-rate detector

Publications (2)

Publication Number Publication Date
JPS60213818A JPS60213818A (en) 1985-10-26
JPH0360047B2 true JPH0360047B2 (en) 1991-09-12

Family

ID=13426389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026084A Granted JPS60213818A (en) 1984-04-09 1984-04-09 Flow-rate detector

Country Status (1)

Country Link
JP (1) JPS60213818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789669B2 (en) * 1989-05-09 1998-08-20 松下電器産業株式会社 Flow detector

Also Published As

Publication number Publication date
JPS60213818A (en) 1985-10-26

Similar Documents

Publication Publication Date Title
JPH0360047B2 (en)
JPS6326845B2 (en)
JPS59133428A (en) Flow rate detector
JPH0140297B2 (en)
JPH0140298B2 (en)
JPS6013217A (en) Flow-rate detecting device
JPS60164217A (en) Flow rate detecting device
JPS63153429A (en) Flow rate detecting device
JPS6013215A (en) Flow-rate detecting device
JPS608716A (en) Detector for flow rate
JPH0136886B2 (en)
JPH0472175B2 (en)
JPS603519A (en) Flow rate detecting device
JPH08105772A (en) Flow rate sensor
JPS603520A (en) Flow rate detecting device
JPS60135721A (en) Flow rate detector
JPH0468568B2 (en)
JPH0464010B2 (en)
JPS6159213A (en) Flow rate detecting device
JPS6015517A (en) Flow rate detector
JP2638204B2 (en) Flow detector
JPH01265121A (en) Flow rate detector
JPH01308920A (en) Flow rate detector
JPH0464412B2 (en)
JPS61138124A (en) Flow rate detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term