JP2638204B2 - Flow detector - Google Patents

Flow detector

Info

Publication number
JP2638204B2
JP2638204B2 JP1145939A JP14593989A JP2638204B2 JP 2638204 B2 JP2638204 B2 JP 2638204B2 JP 1145939 A JP1145939 A JP 1145939A JP 14593989 A JP14593989 A JP 14593989A JP 2638204 B2 JP2638204 B2 JP 2638204B2
Authority
JP
Japan
Prior art keywords
sphere
flow rate
flow
wing
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1145939A
Other languages
Japanese (ja)
Other versions
JPH0310119A (en
Inventor
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1145939A priority Critical patent/JP2638204B2/en
Publication of JPH0310119A publication Critical patent/JPH0310119A/en
Application granted granted Critical
Publication of JP2638204B2 publication Critical patent/JP2638204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯装置や温水暖房装置の水又は湯の流量を
検出したり、液体燃料供給装置の燃料流量を検出する目
的で使用する流体検出器に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid detector used for detecting the flow rate of water or hot water in a hot water supply device or a hot water heating device, or detecting the fuel flow rate of a liquid fuel supply device. Things.

従来の技術 従来この種の流量検出装置としては第10図及び第11図
に示すようなものがある。第10図及び第11図で1はハウ
ジングである。このハウジング1の内部には流体を旋回
流とするための複数の翼部2を有する固定翼3が流路内
壁4に固定されている。前記固定翼3の下流には流路内
を周回する回転体で内部に磁性材料を有する球体5が設
けられ、この球体5の下流には前記球体5が下流側へ流
出するのを防止すると共に前記球体5の周回当接面6を
有する球体受け7が設けられている。又ハウジング1の
外部には、前記球体5の回転を検出する検出器8が設け
られている。尚この検出器8は磁気抵抗素子9とこの磁
気抵抗素子9に磁界を与える永久磁石10と前記磁気抵抗
素子9の出力信号を処理する電子回路11が設けられてい
る。この様に構成された従来例において流体が図中左矢
印側から流入すると、流体が固定翼3により旋回流とな
りこの旋回流の中に位置する球体5は球体受け7の周回
当接面6に当接し流れの方向に対し垂直方向で周回運動
を続ける。この時前記球体5は流量に比例した回転数で
運動する。なぜならば固定翼3部分における流路面積が
一定であるため前記固定翼3を通過する際の流速は流量
に比例する。よって前記固定翼3の下流側に置かれた球
体5も流量に比例した回転数で回転することになる。前
記球体5の回転を検出する手段としては磁気検出により
行なっている。即ち磁気抵抗素子9の近傍に前記磁気抵
抗素子9に一定強さの磁界を与える永久磁石10を設けて
いる。今、内部に磁性材料を有する球体5が前記磁気抵
抗素子9の下方向を通過すると、前記永久磁石10から前
記磁気抵抗素子10へ作用している磁界の方向が前記球体
5側に変化するため前記磁気抵抗素子9の抵抗値が変化
する。この抵抗値の変化を電圧の変化としてとらえ、パ
ルス信号に変換し出力する。従って球体5が1回転する
ごとに1パルスの信号が出力されることになる。この様
な構成における球体回転数特性は第12図に示される様に
流量と球体回転数の関係はリニアな直線12で表わされ
る。また流量と圧力損失の関係は第13図に示されるよう
に2次曲線13で表わされる。
2. Description of the Related Art Conventionally, as this kind of flow rate detecting device, there is one as shown in FIGS. In FIGS. 10 and 11, reference numeral 1 denotes a housing. Inside the housing 1, a fixed blade 3 having a plurality of blades 2 for turning a fluid into a swirling flow is fixed to a channel inner wall 4. A sphere 5 having a magnetic material inside is provided as a rotating body orbiting in the flow path downstream of the fixed wing 3, and the sphere 5 is prevented from flowing downstream to the downstream of the sphere 5. A sphere receiver 7 having a circumferential contact surface 6 of the sphere 5 is provided. Outside the housing 1, a detector 8 for detecting the rotation of the sphere 5 is provided. The detector 8 includes a magnetoresistive element 9, a permanent magnet 10 for applying a magnetic field to the magnetoresistive element 9, and an electronic circuit 11 for processing an output signal of the magnetoresistive element 9. When the fluid flows from the left arrow side in the drawing in the conventional example configured as described above, the fluid becomes a swirling flow by the fixed wings 3, and the sphere 5 located in the swirling flow contacts the orbiting contact surface 6 of the sphere receiver 7. The orbiting motion continues in the direction perpendicular to the direction of the contact flow. At this time, the sphere 5 moves at a rotational speed proportional to the flow rate. Because the flow passage area in the fixed blade 3 is constant, the flow velocity when passing through the fixed blade 3 is proportional to the flow rate. Therefore, the sphere 5 placed on the downstream side of the fixed wing 3 also rotates at a rotation speed proportional to the flow rate. Means for detecting the rotation of the sphere 5 is performed by magnetic detection. That is, a permanent magnet 10 is provided in the vicinity of the magnetoresistive element 9 for applying a magnetic field of a constant strength to the magnetoresistive element 9. Now, when the sphere 5 having a magnetic material therein passes below the magnetoresistive element 9, the direction of the magnetic field acting on the magnetoresistive element 10 from the permanent magnet 10 changes to the sphere 5 side. The resistance value of the magnetoresistive element 9 changes. The change in the resistance value is regarded as a change in the voltage, converted into a pulse signal and output. Therefore, each time the sphere 5 makes one rotation, a signal of one pulse is output. As shown in FIG. 12, the relationship between the flow rate and the rotation speed of the sphere is represented by a linear straight line 12 in the spherical rotation speed characteristics in such a configuration. The relationship between the flow rate and the pressure loss is represented by a quadratic curve 13 as shown in FIG.

発明が解決しようとする課題 しかしこの様な流量検出装置は大流量域における圧力
損失が大きくなると言う課題があった。即ち固定翼3部
分における流路面積が一定であるため前述のごとく圧力
損失は流量に対して2次曲線で表わされるため大流量に
おいて大圧損となっていた。大圧損となった場合、例え
ば給湯機に内蔵すると大流量時の圧損が大きいため、給
水圧力が低い場合には給湯量が十分に得られないと言う
課題を有していた。
Problems to be Solved by the Invention However, such a flow rate detection device has a problem that the pressure loss in a large flow rate region is large. That is, since the flow passage area in the portion of the fixed blade 3 is constant, the pressure loss is represented by a quadratic curve with respect to the flow rate as described above. In the case of a large pressure loss, for example, when incorporated in a water heater, the pressure loss at the time of a large flow rate is large. Therefore, when the water supply pressure is low, there is a problem that a sufficient amount of hot water cannot be obtained.

そこで本発明は流量検出器の大きさを変えることなく
大流量次の圧力損失を小さくすることを第1の目的とし
ている。
Accordingly, a first object of the present invention is to reduce the pressure loss at a large flow rate without changing the size of the flow rate detector.

第2の目的は大流量時の圧損を小さくすると共に少流
量検出も可能にすることにある。
A second object is to reduce pressure loss at the time of a large flow rate and to enable detection of a small flow rate.

課題を解決するための手段 上記第1の目的を達成するために本発明は、流路中を
流れる被検出流体を軸流旋回させる翼部を有する旋回手
段と、前記旋回手段による旋回流の中に位置し流れの方
向に対し垂直面で周回する球体と、前記球体と、前記球
体の下流に位置し前記球体の周回当接面を有する球体受
けと、前記球体の周回回転数を計測する回転検出手段と
を備え、前記旋回手段は前記翼部と前記流路内壁の固着
部の一部分に間隙を設けた構成としたものである。
Means for Solving the Problems In order to achieve the first object, the present invention provides a swirl means having a wing part for axially swirling a detected fluid flowing in a flow path, and a swirl flow generated by the swirl means. And a sphere that orbits in a plane perpendicular to the direction of flow, the sphere, a sphere receiver that is located downstream of the sphere and has a circulating abutment surface of the sphere, and a rotation that measures the number of revolutions of the sphere Detecting means, wherein the swirling means has a structure in which a gap is provided in a part of a fixed portion between the wing portion and the inner wall of the flow passage.

更に第2の目的を達成するために本発明は翼部と流路
内壁の固着部の一部分に設けられた間隙を前記翼部の上
流側で閉塞した構成としたものである。
Further, in order to achieve the second object, the present invention is configured such that a gap provided at a part of a fixed portion between the wing portion and the inner wall of the flow passage is closed on the upstream side of the wing portion.

作用 本発明の流量検出装置は上記構成により流路中を流れ
翼部で旋回される被検出流体の一部を、流路の内壁に固
着されていない翼部の間隙部分から下流側へ流すと共
に、流れにより翼部を変形させ大流量時の圧力損失を低
減したものである。
The flow rate detection device of the present invention flows a part of the fluid to be detected flowing through the flow path and swirling at the wing portion from the gap portion of the wing portion which is not fixed to the inner wall of the flow path to the downstream side, with the above configuration. In this case, the blades are deformed by the flow to reduce the pressure loss at a large flow rate.

そして本発明は間隙を翼部の上流側で閉塞することに
より、前記間隙部からの洩れ量を減少することにより少
流量検出を可能としたものである。
In the present invention, a small flow rate can be detected by closing the gap on the upstream side of the wing, thereby reducing the amount of leakage from the gap.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明
する。第1図、第2図において14はハウジングでありこ
のハウジング14の内部には被検出流体を旋回流とするた
めの複数の翼部15を有する固定翼16が流路内壁17に固着
部17Aによって固定されている。前記固定翼16の翼部15
と前記流路内壁17は一部分に間隙部18が設けられた構成
となっている。前記固定翼16は樹脂で作られており、前
記翼部15の下流側端部19は波線のごとく容易に曲がる構
成となっている。前記固定翼16の下流には流路内を周回
する回転体で内部に磁性材料を有する球体20が設けら
れ、この球体20の下流には前記球体20が下流側へ流出す
るのを防止すると共に前記球体20の周回当接面21を有す
る球体受け22が設けられている。又ハウジング14の外部
には前記球体20の回転検出を行なう検出器23が設けられ
ている。この検出器23には磁気抵抗素子24とこの磁気抵
抗素子24に磁界を与える永久磁石25と前記磁気抵抗素子
24の出力信号を処理してパルス出力する電子回路26が内
蔵されている。この様に構成された本発明において被検
出流体が図中左矢印側から流入すると、被検出流体は固
定翼16により旋回流となりこの旋回流の中に位置する球
体20は球体受け22の周回当接面21に当接し流れの方向に
対し垂直方向で周回運動を続ける。少流量が流れる際被
検出流体の一部が間隙部18を流れるため球体20が回転を
はじめる始動流量は第7図のAのごとく従来に比べ大き
くなる。更に流量が増加するの球体20の回転数は比例的
に増加する。その後流量が増加すると翼部15の下流側端
部19は第1図の波線で示したごとく変形状態となる。従
って球体20の回転数は第3図に示すごとく、ある一定流
量まではほぼリニアに変化し大流量になり前記翼部15の
下流側端部19が変形すると球体20の回転数は前記リニア
な線上から外れ回転数の変化率が小さくなる。また圧力
損失は第4図に示すごとく少流量域の特性と大流量域の
特性が異なり変曲点を持つ特性となる。この様に本実施
例においては大流量時に翼部15の下流側先端部19が変形
し前記翼部15の流路面積が大きくなるため旋回流速の変
化割合も小さくなり、大流量時における旋回流速の絶対
値も小さく出来る結果圧力損失が小さくなる。次に本発
明における他の実施例について第5図、第6図を用いて
説明する。27は固定翼28の翼部であり、この翼部27と流
路内壁29とは間隙部30を有して固着部17Aによって固着
されている。31は前記翼部28の下流側面に設けられた溝
部でありこの溝31を設けることにより大流量時において
翼部28の下流側端部32が変形し易くなり圧損を下げる効
果を大きくすることが出来るものである。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. 1 and 2, reference numeral 14 denotes a housing. Inside the housing 14, fixed wings 16 having a plurality of wings 15 for turning the fluid to be detected into a swirling flow are fixed to an inner wall 17 of the flow passage by a fixing portion 17A. Fixed. Wing part 15 of the fixed wing 16
The flow path inner wall 17 has a configuration in which a gap 18 is provided in a part. The fixed wing 16 is made of resin, and the downstream end 19 of the wing 15 is easily bent like a wavy line. Downstream of the fixed wings 16, a sphere 20 having a magnetic material therein is provided as a rotating body orbiting in the flow path, and at the downstream of the sphere 20, the sphere 20 is prevented from flowing out downstream. A sphere receiver 22 having a circumferential contact surface 21 of the sphere 20 is provided. A detector 23 for detecting rotation of the sphere 20 is provided outside the housing 14. The detector 23 includes a magnetoresistive element 24, a permanent magnet 25 for applying a magnetic field to the magnetoresistive element 24, and the magnetoresistive element.
An electronic circuit 26 for processing the 24 output signals and outputting pulses is built in. In the present invention thus configured, when the fluid to be detected flows in from the left arrow side in the drawing, the fluid to be detected becomes a swirling flow by the fixed wings 16, and the sphere 20 located in the swirling flow corresponds to the orbit of the sphere receiver 22. The abutment surface 21 abuts on the contact surface 21 and continues the orbiting motion in the direction perpendicular to the flow direction. When a small flow rate flows, a part of the fluid to be detected flows through the gap 18, so that the starting flow rate at which the sphere 20 starts to rotate is larger than the conventional one as shown in FIG. 7A. As the flow rate further increases, the rotational speed of the sphere 20 increases proportionately. Thereafter, when the flow rate increases, the downstream end portion 19 of the wing portion 15 is deformed as shown by a dashed line in FIG. Accordingly, as shown in FIG. 3, the rotational speed of the sphere 20 changes substantially linearly up to a certain flow rate, becomes a large flow rate, and when the downstream end portion 19 of the wing portion 15 is deformed, the rotational speed of the sphere 20 becomes the linear speed. The deviation from the line is reduced, and the rate of change of the rotation speed is reduced. As shown in FIG. 4, the pressure loss is different from the characteristic in the small flow rate region and the characteristic in the large flow rate region, and has a characteristic having an inflection point. As described above, in the present embodiment, at the time of a large flow rate, the downstream end portion 19 of the wing portion 15 is deformed, and the flow area of the wing portion 15 is increased. Can also be reduced, resulting in a reduced pressure loss. Next, another embodiment of the present invention will be described with reference to FIGS. Reference numeral 27 denotes a wing portion of a fixed wing 28, and the wing portion 27 and the flow path inner wall 29 are fixed to each other with a gap portion 30 by a fixing portion 17A. Numeral 31 is a groove provided on the downstream side surface of the wing portion 28.By providing the groove 31, the downstream end portion 32 of the wing portion 28 is easily deformed at a large flow rate, and the effect of reducing the pressure loss can be increased. You can do it.

次に本発明おける他の実施例について第7図、第8
図、第9図により説明する。33は固定翼34の翼部であ
り、この翼部33と流路内壁35とは間隙部36を有して固着
部17Aによって固着されている。更に翼部33の上流側に
は前記間隙部36を閉塞する様にブッシュ37が挿入されて
いる。このブッシュ37は円筒形状でこのブッシュ37の内
径は前記間隙部36を閉塞する様に流路内壁35に比べ小径
となっている。また前記ブッシュ37の前記翼部33との接
触端部38は前記翼部33に沿って密着した形状に構成され
ている。この様な構成に於いては図中左矢印側から被検
出流体が流れた時、前記被検出流体が間隙部36から洩れ
る量が極めて少ないため第9図のB点で示すように、球
体は少流量から回転する結果、少流量検出が可能とな
る。当然大流量においては翼部33が変形することにより
圧力損失を小さくすることが出来るものである。
Next, another embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIGS. Reference numeral 33 denotes a wing portion of the fixed wing 34, and the wing portion 33 and the flow path inner wall 35 are fixed by a fixing portion 17A with a gap portion 36. Further, a bush 37 is inserted upstream of the wing 33 so as to close the gap 36. The bush 37 has a cylindrical shape, and the inner diameter of the bush 37 is smaller than the inner wall 35 of the flow passage so as to close the gap 36. The contact end 38 of the bush 37 with the wing 33 is formed in a shape closely contacting the wing 33. In such a configuration, when the fluid to be detected flows from the left arrow side in the figure, the amount of the fluid to be detected leaks from the gap 36 is extremely small, and as shown by the point B in FIG. As a result of rotation from a small flow rate, a small flow rate can be detected. Naturally, at a large flow rate, the pressure loss can be reduced by deforming the wing portion 33.

発明の効果 以上のように本発明の流量検出装置は流路中を流れる
被検出流体を軸流旋回させる翼部を有する旋回手段と、
前記旋回手段による旋回流の中に位置し流れの方向に対
し垂直面で周回する球体と、前記球体の下流に位置し前
記球体の周回当接面を有する球体受けと、前記球体の周
回回転数を計測する回転検出手段とを備え、前記旋回手
段は前記翼部と前記流路内壁の固着部の一部分に間隙を
設けることにより、前記翼部は変形可能な構成となり、
大流量に流れの抗力の作用で翼部が変形し、翼部での流
路面積が少流量時の面積に比べ大きくなるため圧力損失
を低減することが出来る。また流路面積を大きくするこ
とにより流速を小さくし球体回転数が少なくなるため球
体の摩耗耐久性に対して有利に作用する。更に本構成と
することにより流路内壁の径を大きくすることなく圧損
を低減出来るため小型コンパクトに流量検出装置を構成
することが可能となる。
Effect of the Invention As described above, the flow rate detection device of the present invention is a swirling unit having a wing portion that axially swirls the fluid to be detected flowing in the flow path,
A sphere positioned in the swirling flow of the swirling means and orbiting in a plane perpendicular to the direction of flow, a sphere receiver positioned downstream of the sphere and having a circulating abutment surface of the sphere, and a rotational speed of the sphere The rotation unit is provided with a gap in a part of the fixed portion of the wing portion and the inner wall of the flow path, the wing portion has a deformable configuration,
The blade portion is deformed by the action of the drag of the flow at a large flow rate, and the flow path area at the blade portion is larger than the area at a small flow rate, so that the pressure loss can be reduced. In addition, by increasing the flow path area, the flow velocity is reduced and the number of revolutions of the sphere is reduced, which has an advantageous effect on the wear durability of the sphere. Furthermore, by adopting this configuration, the pressure loss can be reduced without increasing the diameter of the inner wall of the flow path, so that the flow rate detection device can be configured to be small and compact.

また本発明は、翼部と流路内壁の固着部の一部分に設
けられた間隙を前記翼部の上流側で閉塞することによ
り、少流量が流れた状態において前記間隙からの洩れ量
が極減するため、少流量検出が可能となる。
Further, according to the present invention, by closing a gap provided at a part of the fixed portion between the wing and the inner wall of the flow passage on the upstream side of the wing, the amount of leakage from the gap is extremely reduced when a small flow rate flows. Therefore, a small flow rate can be detected.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す流量検出装置のハウジ
ング断面における固定翼及び球体の外観図、第2図は第
1図の左側断面図、第3図、第4図は本発明の特性図、
第5図は本発明の他の実施例を示すハウジング断面にお
ける固定翼及び球体の外観図、第6図は第5図の左側断
面図、第7図は本発明における第3の実施例を示す流量
検出装置のハウジング断面における固定翼及び球体の外
観図、第8図は第7図の左側断面図、第9図は本発明の
第3の実施例における特性図、第10図は従来の流量検出
装置のハウジング断面における固定翼及び球体の外観
図、第11図は第10図の左側断面図、第12図、第13図は従
来例の特性図である。 15……翼部、16……旋回手段(固定翼)、17……流路内
壁、18……間隙(間隙部)、20……球体、21……周回当
接面、22……球体受け、23……回転検出手段(検出
器)。
FIG. 1 is an external view of a fixed wing and a sphere in a cross section of a housing of a flow detecting device showing an embodiment of the present invention, FIG. 2 is a left sectional view of FIG. 1, FIG. 3 and FIG. Characteristic diagram,
FIG. 5 is an external view of a fixed wing and a sphere in a cross section of a housing showing another embodiment of the present invention, FIG. 6 is a left sectional view of FIG. 5, and FIG. 7 shows a third embodiment of the present invention. FIG. 8 is a left side sectional view of FIG. 7, FIG. 9 is a characteristic diagram of the third embodiment of the present invention, and FIG. FIG. 11 is an external view of a fixed wing and a sphere in a cross section of a housing of the detection device, FIG. 11 is a left side cross-sectional view of FIG. 10, and FIGS. 12 and 13 are characteristic diagrams of a conventional example. 15 wing part, 16 circling means (fixed wing), 17 channel inner wall, 18 gap (gap part), 20 sphere, 21 circulating abutment surface, 22 sphere receiver , 23 ... rotation detecting means (detector).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流路中を流れる被検出流体を軸流旋回させ
る翼部を有する旋回手段と、前記旋回手段による旋回流
の中に位置し流れの方向に対し垂直面で周回する球体
と、前記球体の下流に位置し前記球体の周回当接面を有
する球体受けと、前記球体の周回回転数を計測する回転
検出手段とを備え、前記旋回手段は前記翼部と前記流路
内壁とを固着している固着部の下流側の一部分に間隙を
設けた流量検出装置。
1. A swirling means having wings for axially swirling a fluid to be detected flowing in a flow path, a sphere positioned in a swirling flow of the swirling means and orbiting in a plane perpendicular to the flow direction, A sphere receiver which is located downstream of the sphere and has a circling contact surface of the sphere, and rotation detection means for measuring the number of revolutions of the sphere, wherein the turning means includes the wing portion and the inner wall of the flow path. A flow rate detection device in which a gap is provided in a part of the downstream side of the fixed portion where the fixed portion is fixed.
JP1145939A 1989-06-08 1989-06-08 Flow detector Expired - Lifetime JP2638204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145939A JP2638204B2 (en) 1989-06-08 1989-06-08 Flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145939A JP2638204B2 (en) 1989-06-08 1989-06-08 Flow detector

Publications (2)

Publication Number Publication Date
JPH0310119A JPH0310119A (en) 1991-01-17
JP2638204B2 true JP2638204B2 (en) 1997-08-06

Family

ID=15396554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145939A Expired - Lifetime JP2638204B2 (en) 1989-06-08 1989-06-08 Flow detector

Country Status (1)

Country Link
JP (1) JP2638204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2019555B1 (en) * 2016-09-16 2019-10-07 Leonardus Josephus Petrus Peters Marcel Flow meter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608716A (en) * 1983-06-29 1985-01-17 Matsushita Electric Ind Co Ltd Detector for flow rate
JPS62168022A (en) * 1986-01-20 1987-07-24 Matsushita Electric Ind Co Ltd Flow rate sensor

Also Published As

Publication number Publication date
JPH0310119A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
EP0031629A1 (en) Flow rate meter
JP2638204B2 (en) Flow detector
CA1280296C (en) Flowmeter
US3927564A (en) Vortex type flowmeter
JPS608446B2 (en) Flowmeter with rotating body
JPH0737906B2 (en) Flow sensor
JPS5987320A (en) Flow rate detector
JPH0140297B2 (en)
JPH0136886B2 (en)
KR102042345B1 (en) Rotary magnetic flowmeter
JPH0139529B2 (en)
JP3286055B2 (en) Flow sensor
JPH0360047B2 (en)
JPH0327846B2 (en)
JPS63153429A (en) Flow rate detecting device
JPH0472175B2 (en)
JPH01178819A (en) Flow rate sensor
JPS61138124A (en) Flow rate detector
JPH0468568B2 (en)
JPH0139530B2 (en)
JPS59109814A (en) Flow rate detector
JPH02287217A (en) Flow rate detector
JPS60164217A (en) Flow rate detecting device
JP3347500B2 (en) Flow sensor
JPS608716A (en) Detector for flow rate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13