JPH02287217A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPH02287217A
JPH02287217A JP10930789A JP10930789A JPH02287217A JP H02287217 A JPH02287217 A JP H02287217A JP 10930789 A JP10930789 A JP 10930789A JP 10930789 A JP10930789 A JP 10930789A JP H02287217 A JPH02287217 A JP H02287217A
Authority
JP
Japan
Prior art keywords
flow rate
fluid
sphere
flow
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10930789A
Other languages
Japanese (ja)
Inventor
Shuji Yamanochi
山ノ内 周二
Yukinori Ozaki
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10930789A priority Critical patent/JPH02287217A/en
Publication of JPH02287217A publication Critical patent/JPH02287217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable detection of a flow rate stably for a long time by building up a turning means for turning a fluid in a passage with fixed vanes three in number with an angle thereof of 40-50 deg.. CONSTITUTION:A turning means 6, a magnetic ball body 7 and an anti-spillage receiving means 8 are arranged sequentially from the upstream side within a housing. The means 6 is fixed vanes, which will not turn even with a flow of a fluid, three in number as linear plane vanes with a vane angle alpha of 40-50 deg.. Then, the fluid flows into a housing 4 from the direction of the arrow and the incoming fluid is turned by the means 6 of a passage 5 so that the ball body 7 obtains a kinematic force with a spiral flow of the fluid and circulates through a cylinder 9 vertical to a direction of the passage at a position of contacting an inner wall of the cylinder 9 and the anti-spillage receiving means 8. Revolutions due to the circulation thereof are correlated to a flow rate of the fluid and revolutions of the ball body 7 are detected with a magnetic detec tor 11. Then, with the detector 11, a pulse is outputted and a computation is performed with a control circuit. The results are detected as instantaneous flow rate and integrated flow rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯装置や温水暖房装置の水や湯の流量、ある
いは液体燃料供給装置の燃料流量などを検出する流量検
出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow rate detector that detects the flow rate of water or hot water in a water heater or hot water heater, or the fuel flow rate in a liquid fuel supply device.

従来の技術 流量を計測する手段は各種あり、一般民生機器に適用で
きる簡便な手段として、itに比例したた回転をする羽
根車などの可動体の回転数を電気信号に変換して計測す
るものがある。その−例を第3図において説明する0図
は翼車式の流量センサを示すもので、波路中に軸支持さ
れた羽根車1を設け、羽根車の外周に埋設した永久磁石
2によって管路の外に取付けた磁気検出センサ3を動作
させ、その回転を検出することにより流量に比例した周
波数のパルス出力を得るものである。
Conventional technology There are various methods for measuring flow rate, and a simple method that can be applied to general consumer equipment is one that converts the rotational speed of a movable body such as an impeller that rotates in proportion to IT into an electrical signal and measures it. There is. An example of this is explained in Fig. 3. Fig. 0 shows a vane-wheel type flow sensor, in which an impeller 1 that is axially supported in a wave path is installed, and a permanent magnet 2 embedded in the outer periphery of the impeller is used to guide the pipe. By operating the magnetic detection sensor 3 attached outside the flow rate and detecting its rotation, a pulse output with a frequency proportional to the flow rate is obtained.

発明が解決しようとする課題 しかしながら上記のような構成では、流路中の軸受に対
して異物の侵入で回転数精度が低下したり軸受劣化を生
じる恐れと、流路中の永久磁石に異物が付着し通路内面
にまで及んだ場合、回転精度の劣化や回転停止を生じる
恐れがあるという諜題を有していた。
Problems to be Solved by the Invention However, with the above configuration, there is a risk that foreign matter may enter the bearing in the flow path, resulting in a decrease in rotational speed accuracy or deterioration of the bearing, and there is a risk that foreign matter may enter the permanent magnet in the flow path. If it adheres to the inner surface of the passageway, there is a risk that rotation accuracy may deteriorate or rotation may stop.

本発明はかかる従来の課題を解決するものであり、軸受
を流路中に設けずに異物に対しても強い流量検出器を得
ると共に、長期間使用しても回転安定性の良い高性能小
型コンパクトな流量検出器を提供することである。
The present invention solves these conventional problems, and provides a flow rate detector that is resistant to foreign substances without installing a bearing in the flow path, as well as a high-performance, compact device with good rotational stability even after long-term use. The object of the present invention is to provide a compact flow rate detector.

課題を解決するための手段 そこでこの目的を達成するために本発明は、波路中の流
体を旋回させる旋回手段と、旋回流の中で回転運動を行
う球体と、球体の流出防止受手段と、回転数を検出する
検出器から構成され、旋回手段は翼角度が40〜50度
、翼枚数3枚の固定翼からなるものである。
Means for Solving the Problems To achieve this object, the present invention provides a swirling means for swirling fluid in a wave path, a sphere that rotates in the swirling flow, a receiving means for preventing outflow of the sphere, It is composed of a detector that detects the rotational speed, and the rotating means is composed of fixed blades having a blade angle of 40 to 50 degrees and three blades.

作用 上記構成により、旋回手段で流体に旋回流を生じさせ、
球体を適宜な回転数で安定よく回転させ、長期間安定し
て流量を検出することができる。
Effect With the above configuration, the swirling means generates a swirling flow in the fluid,
The sphere can be stably rotated at an appropriate rotational speed, and the flow rate can be detected stably for a long period of time.

実施例 以下、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図において、4は流路5を形成するハウジングで、
ハウジング4内には上流側から順に旋回手段6と磁性球
体7と流出防止受手段8が適宜な間隔で設けられている
。旋回手段6は外周と中心の間に周方向にひねられた翼
を複数枚有している回転しない固定羽根車で流体に旋回
流を与える。
In FIG. 1, 4 is a housing forming a flow path 5;
Inside the housing 4, a rotating means 6, a magnetic sphere 7, and an outflow prevention receiving means 8 are provided at appropriate intervals in order from the upstream side. The swirling means 6 is a fixed impeller that does not rotate and has a plurality of blades twisted in the circumferential direction between the outer periphery and the center, and gives a swirling flow to the fluid.

磁性球体7はそれ自体では磁石作用はなく、内部に磁性
金属等を挿入した樹脂球体である。流出防止受手段8は
中央孔14と周囲に弧状穴を有し、上流側端部は平坦面
で流れの方向に円環状をなし、球体7が流出せず周回す
るための接触受けとなる。
The magnetic sphere 7 does not have a magnetic effect by itself, but is a resin sphere with a magnetic metal or the like inserted inside. The outflow prevention receiving means 8 has a central hole 14 and an arcuate hole around the periphery, and the upstream end has a flat surface and an annular shape in the direction of flow, and serves as a contact receiving means for the sphere 7 to circulate without flowing out.

球体7は、旋回手段6や流出防止受手段8と一体に形成
されている筒体9の内周面と、上記流出防止受手段8の
上流側平坦部10に接触しつつ回転運動を行う、 11
は磁気検出器で、磁気抵抗素子またはホール素子とアン
プ回路からなり、磁気検出器11の近傍あるいは接触す
る位置に設けた永久磁石12でバイアス磁界を与えて、
磁性球体7の回転数をパルス出力として検出するもので
あり、モールド材13で樹脂モールドされ、球体7の回
転軌道外周のハウジング4の外側に固定されている。
The sphere 7 rotates while contacting the inner circumferential surface of a cylinder 9 that is integrally formed with the turning means 6 and the outflow prevention receiving means 8, and the upstream flat portion 10 of the outflow prevention receiving means 8. 11
is a magnetic detector, which is composed of a magnetic resistance element or a Hall element and an amplifier circuit, and a bias magnetic field is applied by a permanent magnet 12 installed near or in contact with the magnetic detector 11.
The rotation speed of the magnetic sphere 7 is detected as a pulse output, and is molded with resin using a molding material 13 and fixed to the outside of the housing 4 on the outer periphery of the rotation orbit of the sphere 7.

次に旋回手段6の詳細について述べる。旋回手段6は流
体の流れによっても回転しない固定翼であり、翼角度α
が40〜50度の直線平面質、翼枚数3枚で形成されて
いる。翼角度は角度が小さい場合は流体の旋回回転数が
少なく、大きくなると旋回回転数が多くなり、それに伴
って球体の回転数レベルも変わってくる0球体の回転数
が少ない場合は検出可能な流量が高くなりやすく、且つ
流量検出器としての精度が低くなってしまう、また−方
、回転数が多くなり過ぎると、球体の摩耗や回転に伴う
騒音発生の問題も考えられ、流量検出器としての適度な
回転数、即ち適切な翼角度αが存在し、それが上記40
〜50度の値となる。また翼枚数に関しては多くなると
翼の波路方向の長さが取れなくなり、同じ角度でも流体
を旋回させるエネルギが小さくなり、同角度同通水抵抗
の翼として考えた場合、流体を旋回させる効率として悪
くなる。従って円滑で効率的な回転が得られる3枚翼が
適切となる。さらに第2図に示すように、翼が流体の力
によって回転しない固定翼とするために、外周に流路5
の内径よりやや径大の突起部15が3ケ所に等間隔で設
けられている。この構成により流路への挿入、取り外し
が容易で固定用の別部品を用いることなく容易に固定翼
として形成されるものとなる。
Next, details of the turning means 6 will be described. The rotating means 6 is a fixed blade that does not rotate even with the flow of fluid, and has a blade angle α
It is formed with a straight plane of 40 to 50 degrees and three blades. When the blade angle is small, the rotational speed of the fluid is low, and when the angle is large, the rotational speed of the fluid increases, and the level of rotational speed of the sphere changes accordingly.0 If the rotational speed of the sphere is low, the flow rate is detectable. On the other hand, if the rotation speed becomes too high, there may be problems with the wear of the sphere and the generation of noise due to rotation, making it difficult to use as a flow rate detector. There is an appropriate rotational speed, that is, an appropriate blade angle α, which is the above 40
The value is ~50 degrees. In addition, when the number of blades increases, the length of the blade in the wave path direction becomes impossible, and even at the same angle, the energy to swirl the fluid decreases, and when considered as a blade with the same water flow resistance at the same angle, the efficiency of swirling the fluid becomes poor. Become. Therefore, a three-blade blade that provides smooth and efficient rotation is appropriate. Furthermore, as shown in Fig. 2, in order to make the blade a fixed blade that does not rotate due to the force of the fluid, there are flow channels on the outer periphery.
Three protrusions 15 having a diameter slightly larger than the inner diameter are provided at equal intervals. With this configuration, insertion into and removal from the flow path is easy, and the wing can be easily formed as a fixed wing without using separate parts for fixation.

次に磁性球体7はその外形が流路の筒体9の内径の乙よ
りやや径大になっている。即ち旋回手段6の径は通水抵
抗と流体に旋回力を与える関係とから、効率的、有効的
前記翼角度において最小の径が選択される。その中にあ
って球体7も大きな通水抵抗にならない程度の径が選択
される。これは球体7が可動体となり、筒体9の内面と
流出防止受手段8の上流側平坦部10に接触して回転す
る際、流体に硬質の微細な異物等が含まれている場合、
長期間に渡ると球体の削れが発生する場合があり、球体
が相対的に小さいと、翼に噛み込んだり流出防止受手段
8の中央孔14を通過して流出する恐れが生じる。この
点を考慮し且つ通水抵抗にも影響ない程度として、球体
は筒体9の内径の2よりやや径大に設けられている。
Next, the outer diameter of the magnetic sphere 7 is slightly larger than the inner diameter B of the cylindrical body 9 of the flow path. That is, the diameter of the swirling means 6 is selected to be the minimum diameter at the efficient and effective blade angle, taking into account the water flow resistance and the relationship that imparts swirling force to the fluid. Among them, the diameter of the sphere 7 is selected so as not to cause a large water flow resistance. This is because when the sphere 7 becomes a movable body and rotates in contact with the inner surface of the cylindrical body 9 and the upstream flat part 10 of the outflow prevention receiving means 8, if the fluid contains hard, minute foreign matter, etc.
Over a long period of time, the sphere may become scratched, and if the sphere is relatively small, there is a risk that it will get caught in the wing or flow out through the central hole 14 of the outflow prevention receiving means 8. In consideration of this point and to the extent that it does not affect water flow resistance, the sphere is provided with a diameter slightly larger than 2 of the inner diameter of the cylindrical body 9.

次に流出防止受手段8の中央孔14は球体7の径の2以
下に設けている。これは球体7の径が前記のように流路
に対しある程度の大きさを占めてくると、流出防止受手
段8の中央孔14の径の大きさが流体の流量を旋回流に
よる球体の回転数の関係に影響をもつようになる。中央
品14の内径が大きいとそこを通過する流量も増加し、
流路中央付近を流れる流体が増え、向心力により球体7
を回転させる力も増加し、結果的に流量と回転数のリニ
アな特性関係がそこなわれることになる。従ってこの関
係を満足する中央孔14の内径が存在し、それが上記の
構成になるものである。
Next, the center hole 14 of the outflow prevention receiving means 8 is provided at a diameter of two or less of the diameter of the sphere 7. This is because when the diameter of the sphere 7 occupies a certain size with respect to the flow path as described above, the diameter of the central hole 14 of the outflow prevention receiving means 8 changes the flow rate of the fluid by rotation of the sphere due to the swirling flow. It comes to have an influence on the relationship between numbers. If the inner diameter of the central part 14 is large, the flow rate passing through it will also increase,
The fluid flowing near the center of the channel increases, and the centripetal force causes the sphere 7 to
The force to rotate the engine also increases, and as a result, the linear characteristic relationship between flow rate and rotational speed is disrupted. Therefore, there is an inner diameter of the central hole 14 that satisfies this relationship, and this is the inner diameter of the center hole 14 that satisfies this relationship.

上記構成において、第1図で流体が矢印の方向からハウ
ジング4内に流入し、流入流体は流路5の旋回手段6で
旋回し、流体の旋回流により球体7が運動力を得て、筒
体9の内壁と流出防止受手段8に接触する位置で流路方
向に対し垂直方向に筒体9内を周回することになる。そ
の周回による回転数は流体の流量に相関し、本構成では
比例関係となり、磁性球体7の回転数を磁気検出器11
で検出する。磁気検出器ではパルスが出力され、図示し
てない制御回路で演算されて瞬時流量や積算流量として
検出されることになる。
In the above configuration, fluid flows into the housing 4 from the direction of the arrow in FIG. It goes around inside the cylindrical body 9 in a direction perpendicular to the direction of the flow path at a position where it contacts the inner wall of the body 9 and the outflow prevention receiving means 8 . The number of rotations due to the rotation is correlated with the flow rate of the fluid, and in this configuration, there is a proportional relationship, and the number of rotations of the magnetic sphere 7 is detected by the magnetic detector 11.
Detect with. The magnetic detector outputs a pulse, which is calculated by a control circuit (not shown) and detected as an instantaneous flow rate or an integrated flow rate.

発明の効果 以上のように本発明によれば、軸受を流路中に設けずに
異物に対しても強い流量検出器であり、さらに次の効果
が得られる。
Effects of the Invention As described above, the present invention provides a flow rate detector that is resistant to foreign matter without providing a bearing in the flow path, and further provides the following effects.

(1)  翼角度と翼枚数が適切に選定されており、円
滑で効率的回転数が得られ、さらに長期使用にも安定し
た特性が保たれるものである。
(1) The blade angle and number of blades are appropriately selected to provide smooth and efficient rotation speed, and to maintain stable characteristics even during long-term use.

〔2〕固定翼とするための構成が、翼の外周に数ケ所に
突起部を設けるのみで、極めて簡便で、且つ装着、取り
外しも容易な固定翼を形成できる。
[2] The configuration for forming a fixed wing is extremely simple, and a fixed wing that is easy to install and remove can be formed by simply providing protrusions at several locations on the outer periphery of the wing.

(3)流路径に対する球体の外径、球体の外径に対する
流出防止受手段の中央孔の内径の関係が適切に選定され
ており、異物が含まれる流体にも耐久的にも強く、また
特性安定性も良好となる。
(3) The relationship between the outer diameter of the sphere with respect to the flow path diameter and the inner diameter of the central hole of the outflow prevention receiving means with respect to the outer diameter of the sphere is appropriately selected, and it is durable and strong against fluids containing foreign matter, and has characteristics. Stability is also improved.

即ち、流体の質にもよらず、良好な流量回転数特性を有
し、長期間使用しても回転安定性の良い、高性能小型コ
ンパクトな流量検出器を提供するものである。
That is, the present invention provides a high-performance, small and compact flow rate detector that has good flow rate rotational speed characteristics regardless of the quality of the fluid, and has good rotational stability even when used for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における流量検出器の流路断面
図、第2図は旋回手段である固定翼の流路方向の正面図
、第3図は従来の流量検出器を示す流路断面図である。 5・・・・・・流路、6・・・・・・旋回手段、7・・
・・・・球体、8・・・・・・流出防止受手段、11・
・・・・・検出器、14・・・・・・中央孔、15・・
・・・・突起部。 代理人の氏名 弁理士 粟野重孝 はか1名区 ◇ aフ 城
Fig. 1 is a cross-sectional view of the flow path of a flow rate detector according to an embodiment of the present invention, Fig. 2 is a front view of the fixed blade, which is the rotating means, in the flow path direction, and Fig. 3 is a flow path showing a conventional flow rate detector. FIG. 5...Flow path, 6...Swivel means, 7...
... Sphere, 8... Outflow prevention receiving means, 11.
...Detector, 14...Central hole, 15...
····protrusion. Name of agent: Patent attorney Shigetaka Awano

Claims (4)

【特許請求の範囲】[Claims] (1)流路中の流体を旋回させる旋回手段と、前記旋回
流の中に位置し回転運動を行う球体と、前記球体を前記
旋回流の範囲内に止どめる流出防止受手段と、前記球体
の回転数を検出する検出器から構成され、前記旋回手段
は翼角度が40〜50度、翼枚数が3枚の固定翼で形成
した流量検出器。
(1) A swirling means for swirling the fluid in the flow path, a sphere located in the swirling flow and performing rotational movement, and an outflow prevention receiving means for keeping the sphere within the range of the swirling flow; The flow rate detector is composed of a detector that detects the rotational speed of the sphere, and the rotating means is formed by three fixed blades with a blade angle of 40 to 50 degrees.
(2)固定翼の外周に、流路内径よりやや径大で、かつ
数ヶ所に突起部を設けた請求項1記載の流量検出器。
(2) The flow rate detector according to claim 1, wherein the fixed vane has a diameter slightly larger than the inner diameter of the flow path and is provided with protrusions at several locations on the outer periphery of the fixed blade.
(3)球体は流路計の1/2より径大にした請求項1記
載の流量検出器。
(3) The flow rate detector according to claim 1, wherein the sphere has a diameter larger than 1/2 of the flow meter.
(4)流出防止受手段は流路内の外側と内側に流路をも
ち、内側中央孔は球体径の1/2以下にした請求項1記
載の流量検出器。
(4) The flow rate detector according to claim 1, wherein the outflow prevention receiving means has a flow path on the outside and inside of the flow path, and the inside center hole has a diameter of 1/2 or less of the diameter of the sphere.
JP10930789A 1989-04-28 1989-04-28 Flow rate detector Pending JPH02287217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930789A JPH02287217A (en) 1989-04-28 1989-04-28 Flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930789A JPH02287217A (en) 1989-04-28 1989-04-28 Flow rate detector

Publications (1)

Publication Number Publication Date
JPH02287217A true JPH02287217A (en) 1990-11-27

Family

ID=14506882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930789A Pending JPH02287217A (en) 1989-04-28 1989-04-28 Flow rate detector

Country Status (1)

Country Link
JP (1) JPH02287217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534268A (en) * 2004-04-23 2007-11-22 ストレームバック,ラッシュ Acoustic element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104858A (en) * 1975-03-13 1976-09-17 Cordis Corp RYURYOKEI
JPS5987320A (en) * 1982-11-10 1984-05-19 Matsushita Electric Ind Co Ltd Flow rate detector
JPS62168022A (en) * 1986-01-20 1987-07-24 Matsushita Electric Ind Co Ltd Flow rate sensor
JPS63228026A (en) * 1986-12-15 1988-09-22 Matsushita Electric Ind Co Ltd Flow rate detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104858A (en) * 1975-03-13 1976-09-17 Cordis Corp RYURYOKEI
JPS5987320A (en) * 1982-11-10 1984-05-19 Matsushita Electric Ind Co Ltd Flow rate detector
JPS62168022A (en) * 1986-01-20 1987-07-24 Matsushita Electric Ind Co Ltd Flow rate sensor
JPS63228026A (en) * 1986-12-15 1988-09-22 Matsushita Electric Ind Co Ltd Flow rate detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534268A (en) * 2004-04-23 2007-11-22 ストレームバック,ラッシュ Acoustic element
US9654862B2 (en) 2004-04-23 2017-05-16 Lars Strömbäck Acoustic element

Similar Documents

Publication Publication Date Title
JP2006317233A (en) Flow sensor and piping unit
JP2013170912A (en) Flow sensor
JPH02287217A (en) Flow rate detector
JPS6326845B2 (en)
KR20020076418A (en) A turbine flow meter
JP2005257309A (en) Turbine flowmeter and fluid rotary machine
EP1464927A2 (en) A flowmeter with magnetic sensor
JPH09196715A (en) Flow rate sensor
CN220206749U (en) Rotor device and flow sensor and ball valve with same
JPH0384422A (en) Flow rate sensor
CN218724432U (en) Pulse counter and water purifier
JPH0139529B2 (en)
JPH01265121A (en) Flow rate detector
JPS59153124A (en) Flow rate detecting device
JPS59153123A (en) Flow rate detecting device
JPH02107921A (en) Flow rate detector
JPS6013217A (en) Flow-rate detecting device
JPH0472175B2 (en)
JPS6082810A (en) Flow-rate detecting device
JPH0749386Y2 (en) Flowmeter
JPS603520A (en) Flow rate detecting device
JPH0472173B2 (en)
JPS608716A (en) Detector for flow rate
JPH08193855A (en) Flow-rate detector
JPH0139530B2 (en)