JP2013170912A - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP2013170912A
JP2013170912A JP2012034603A JP2012034603A JP2013170912A JP 2013170912 A JP2013170912 A JP 2013170912A JP 2012034603 A JP2012034603 A JP 2012034603A JP 2012034603 A JP2012034603 A JP 2012034603A JP 2013170912 A JP2013170912 A JP 2013170912A
Authority
JP
Japan
Prior art keywords
impeller
measuring chamber
flow
peripheral surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034603A
Other languages
Japanese (ja)
Other versions
JP5043245B1 (en
Inventor
Naoki Akaike
直紀 赤池
Tomohisa Naito
智久 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahata Prec R & D Ct Co Ltd
Takahata Precision R&d Center
TAKAHATA PRECISION R&D CENTER CO Ltd
Original Assignee
Takahata Prec R & D Ct Co Ltd
Takahata Precision R&d Center
TAKAHATA PRECISION R&D CENTER CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahata Prec R & D Ct Co Ltd, Takahata Precision R&d Center, TAKAHATA PRECISION R&D CENTER CO Ltd filed Critical Takahata Prec R & D Ct Co Ltd
Priority to JP2012034603A priority Critical patent/JP5043245B1/en
Application granted granted Critical
Publication of JP5043245B1 publication Critical patent/JP5043245B1/en
Publication of JP2013170912A publication Critical patent/JP2013170912A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flow sensor which is capable of accurately measuring a minute flow change or an instantaneous flow fluctuation without mitigating reduction in size.SOLUTION: A flow sensor comprises a circular measuring chamber 11 which includes an inflow port 15 and an outflow port 16 and in which a fluid is circulated, an impeller 30 which is axially supported within the measuring chamber and rotated by receiving a pressure of the fluid circulating within the measuring chamber on the blade parts thereof, and a detector which detects a frequency of a magnetic flux change caused by the rotation of the impeller. Inside of the measuring chamber, between the inflow port and the outflow port, a virtual space is formed as a flow passage 18 of the fluid from an inner circumferential surface of the measuring chamber and a rotation track of distal ends of the blade parts of the impeller and inside of the flow passage, the inner circumferential surface of the measuring chamber is bent outer than inner wall surfaces of the inflow port and the outflow ports.

Description

本発明は配管内を流れる被測定流体の流量を測定する流量センサに関する。詳しくは、流路内に設けた羽根車の回転数を計数して流量を求める羽根車流量センサに関する。 The present invention relates to a flow sensor for measuring a flow rate of a fluid to be measured flowing in a pipe. Specifically, the present invention relates to an impeller flow rate sensor that calculates the flow rate by counting the number of rotations of an impeller provided in a flow path.

従来から、複数の羽根を有する羽根車を流量センサ本体の流路内に回転自在に収容し、流体の流れによって回転する羽根車の回転数を信号として出力し、被計測流体の流量を計測する羽根車流量センサが知られている。羽根車流量センサは、流入口から流出口に至る流路内を流れる被測定流体によって羽根車が回転させられ、羽根車に設けられたマグネットの磁束変化を流路の外側に設けた検出素子で検出して羽根車の回転数を検知している(特許文献1参照)。   Conventionally, an impeller having a plurality of blades is rotatably accommodated in the flow path of the flow sensor body, and the number of rotations of the impeller that rotates by the flow of the fluid is output as a signal to measure the flow rate of the fluid to be measured. An impeller flow sensor is known. The impeller flow sensor is a detection element in which the impeller is rotated by the fluid to be measured flowing in the flow path from the inlet to the outlet and the magnetic flux change of the magnet provided in the impeller is provided outside the flow path. It detects and detects the rotation speed of an impeller (refer patent document 1).

羽根車の回転数は、流体の流量に比例し、羽根車の各羽根が検出素子の対向位置を通過する際に、検出素子は出力信号を出し、流量が多い場合にはその出力信号の間隔が小さく、流量が少ない場合には出力信号の間隔は大きくなる。従って、単位時間当りの出力信号回数によって流量が演算できる。   The rotation speed of the impeller is proportional to the flow rate of the fluid. When each blade of the impeller passes through the position facing the detection element, the detection element outputs an output signal. When the flow rate is small and the flow rate is small, the output signal interval becomes large. Accordingly, the flow rate can be calculated by the number of output signals per unit time.

上記形式の流量センサは、羽根車が流路内に収容されていることから、流量センサ全体を小型化することができ、配管内での流量センサの占めるスペ−スが小さくなる利点があるが、微少流量での羽根車の回転力が小さく微少流量の計測精度が不十分であるという問題があった。   The flow rate sensor of the above type has an advantage that the entire flow rate sensor can be miniaturized because the impeller is accommodated in the flow path, and the space occupied by the flow rate sensor in the pipe is reduced. There is a problem that the rotational force of the impeller at a minute flow rate is small and the measurement accuracy of the minute flow rate is insufficient.

計測精度を高めるには、流量センサ本体内の流れと羽根車の回転とが正確に比例する必要があるが、流量が少ない場合は羽根車の羽根に流体の回転力を充分に作用させることができないという問題があった。又、羽根車の羽根端縁と本体壁面との間を通過し羽根車の回転に関与しない流れが存在し、この流量分が信号としては変換されないことがある。従って、実際の流量と検出素子によって検出される流量との間に誤差が生じ、この結果、流量センサとしての計測精度が低下する虞があった。   In order to increase the measurement accuracy, the flow in the flow sensor body and the rotation of the impeller need to be accurately proportional, but if the flow rate is small, the rotational force of the fluid can be sufficiently applied to the impeller blades. There was a problem that I could not. Further, there is a flow that passes between the blade edge of the impeller and the wall surface of the main body and does not participate in the rotation of the impeller, and this flow amount may not be converted as a signal. Accordingly, an error occurs between the actual flow rate and the flow rate detected by the detection element, and as a result, the measurement accuracy as the flow rate sensor may be reduced.

特開平8−61999号公報JP-A-8-61999

本発明は、上記事実に鑑みてなされたものであり、小型化を損なわずに、微小流量変化や瞬間的な流量変動を正確に計測することができる流量センサを提供することを目的とする。   The present invention has been made in view of the above-described facts, and an object of the present invention is to provide a flow sensor capable of accurately measuring a minute flow rate change and an instantaneous flow rate change without impairing downsizing.

前記課題を解決するために、請求項1に記載の流量センサは、
流入口と流出口を有し、内部に流体を流通させる円形の計量室と、
前記計量室の内部に軸支され、前記計量室の内部を流通する前記流体の圧力を羽根部に受けて回転する羽根車と、
前記羽根車の回転による磁束変化の頻度を検知する検知部と、を備え、
前記計量室内において、前記流入口と前記流出口の間に、前記計量室の内周面と前記羽根車の前記羽根部の先端の回転軌跡とで仮想される空間が前記流体の流路として形成され、
前記流路内において、前記計量室の内周面が前記流入口及び前記流出口の内壁面よりも外側へ屈曲している、
ことを特徴とする。
In order to solve the above-mentioned problem, the flow sensor according to claim 1,
A circular measuring chamber having an inlet and an outlet and for circulating a fluid therein;
An impeller that is pivotally supported within the measuring chamber and rotates by receiving the pressure of the fluid flowing through the measuring chamber at a blade portion;
A detection unit that detects the frequency of magnetic flux change due to the rotation of the impeller,
In the measuring chamber, a space virtually formed by the inner circumferential surface of the measuring chamber and the rotation locus of the tip of the blade portion of the impeller is formed as the fluid flow path between the inlet and the outlet. And
In the flow path, the inner peripheral surface of the measurement chamber is bent outward from the inner wall surfaces of the inlet and the outlet.
It is characterized by that.

請求項1に記載の発明によれば、流路内で、コアンダ効果が発生し、微少流量であっても、羽根車を確実に回転させることができる。その結果、微小流量変化や瞬間的な流量変動を正確に計測することができる。   According to the first aspect of the present invention, the Coanda effect is generated in the flow path, and the impeller can be reliably rotated even at a minute flow rate. As a result, it is possible to accurately measure minute flow rate changes and instantaneous flow rate fluctuations.

請求項2に記載の発明は、請求項1に記載の流量センサにおいて、
前記流入口と前記流出口が、前記計量室と、前記流入口の内壁面の一端が前記計量室の内周面と連接する点(A)と前記計量室の中心(O)とを結ぶ線の前記計量室の中心(O)を通る第1の対称軸(Y−Y)と成す角度をθ1、前記流出口の内壁面の一端が前記計量室の内周面と連接する点(B)と前記計量室の中心(O)とを結ぶ線の前記第1の対称軸(Y−Y)と成す角度をθ2、前記計量室の内周面の直径をD1、前記羽根車の羽根部直径をD2、とするとき、前記流入口の軸心(a1)は前記計量室の中心(O)を通り前記第1の対称軸(Y−Y)と直交する第2の対称軸(X−X)と5度ないし10度の角度をなし、前記流出口の軸心(a2)は前記第1の対称軸(Y−Y)と直交し、
5度≦(θ1−θ2)≦10度、
D2/D1<COSθ1、
D2/D1<COSθ2、
の関係を満たして連接されている、
ことを特徴とする。
The invention according to claim 2 is the flow sensor according to claim 1,
A line connecting the inlet and the outlet, the measuring chamber, and a point (A) where one end of the inner wall of the inlet is connected to the inner peripheral surface of the measuring chamber and the center (O) of the measuring chamber. The angle formed with the first axis of symmetry (YY) passing through the center (O) of the measuring chamber is θ1, and one end of the inner wall surface of the outlet is connected to the inner peripheral surface of the measuring chamber (B) Is the angle between the first axis of symmetry (Y-Y) of the line connecting the center of the measuring chamber (O) and θ2, the diameter of the inner peripheral surface of the measuring chamber is D1, and the blade diameter of the impeller Is D2, and the axis (a1) of the inlet port passes through the center (O) of the measuring chamber and passes through a second symmetry axis (XX) that is orthogonal to the first symmetry axis (YY). ) And an angle of 5 to 10 degrees, and the axial center (a2) of the outlet is orthogonal to the first symmetry axis (YY),
5 degrees ≦ (θ1-θ2) ≦ 10 degrees,
D2 / D1 <COSθ1,
D2 / D1 <COSθ2,
Are connected to meet the relationship
It is characterized by that.

請求項2に記載の発明によれば、最大の回転モーメントで羽根車を回転させることができる。更に、コアンダ効果によって、流体が流路の内周面に付着しながら流出口へと流出する為に、流路内で羽根車の回転抵抗が少なくなり、微少流量であっても、羽根車を確実に回転させることができる。その結果、微小流量変化や瞬間的な流量変動を正確に計測することができる。 According to invention of Claim 2, an impeller can be rotated with the largest rotational moment. Furthermore, due to the Coanda effect, the fluid flows out to the outlet while adhering to the inner peripheral surface of the flow path, so that the rotational resistance of the impeller is reduced in the flow path, and the impeller is reduced even at a minute flow rate. It can be rotated reliably. As a result, it is possible to accurately measure minute flow rate changes and instantaneous flow rate fluctuations.

請求項3に記載の発明は、請求項1又は2に記載の流量センサにおいて、
前記計量室の内周面の直径D1と、前記羽根車の羽根部直径D2との比(D2/D1)が、0.87≦D2/D1≦0.93である、
ことを特徴とする。
The invention according to claim 3 is the flow sensor according to claim 1 or 2,
The ratio (D2 / D1) between the diameter D1 of the inner peripheral surface of the measuring chamber and the blade diameter D2 of the impeller is 0.87 ≦ D2 / D1 ≦ 0.93.
It is characterized by that.

請求項3に記載の発明によれば、羽根車の計量室内ないでの回転抵抗を最小にし、計測精度を高くすることができる。 According to the invention described in claim 3, it is possible to minimize the rotational resistance of the impeller without the measuring chamber and to increase the measurement accuracy.

請求項4に記載の発明は、請求項1ないし3のいずれか1項に記載の流量センサにおいて、
前記流入口の内径をd1としたときに、5≦D1/d1である、
ことを特徴とする。
The invention according to claim 4 is the flow sensor according to any one of claims 1 to 3,
When the inner diameter of the inlet is d1, 5 ≦ D1 / d1.
It is characterized by that.

請求項4に記載の発明によれば、微小流量の領域でも、羽根車の回転数を高くして、計測のための分解能を高くすることができる。 According to the fourth aspect of the present invention, it is possible to increase the rotation speed of the impeller and increase the resolution for measurement even in the region of a minute flow rate.

請求項5に記載の発明は、請求項1ないし4のいずれか1項に記載の流量センサにおいて、
前記羽根車は、ボス軸部と、複数の羽根部と、磁性体と、からなり、
前記羽根部は、前記ボス軸部に対して放射状に等間隔で形成され、
その外側端の角部の回転方向下流側がR形状に形成されている、
ことを特徴とする。
The invention according to claim 5 is the flow rate sensor according to any one of claims 1 to 4,
The impeller includes a boss shaft portion, a plurality of blade portions, and a magnetic body,
The blade portions are formed radially at equal intervals with respect to the boss shaft portion,
The downstream side in the rotational direction of the corner of the outer end is formed in an R shape,
It is characterized by that.

請求項5に記載の発明によれば、羽根車の回転に伴う流体の抵抗を低減し、特に流体の微少流量域においても、羽根車の回転効率を向上させることができる。 According to the fifth aspect of the present invention, the resistance of the fluid accompanying the rotation of the impeller can be reduced, and the rotational efficiency of the impeller can be improved particularly in a minute flow rate region of the fluid.

請求項6に記載の発明は、請求項1ないし5のいずれか1項に記載の流量センサにおいて、
前記羽根車が、ポリアクリロニトリル系の炭素繊維が充填されたポリアセタールを用いて射出成形で作成されている、
ことを特徴とする。
The invention according to claim 6 is the flow sensor according to any one of claims 1 to 5,
The impeller is made by injection molding using polyacetal filled with polyacrylonitrile-based carbon fiber,
It is characterized by that.

請求項6に記載の発明によれば、炭素繊維が個体潤滑剤として作用し、羽根車の流体中での摩擦摩耗特性を良好に維持することができる。 According to the sixth aspect of the invention, the carbon fiber acts as a solid lubricant, and the friction and wear characteristics in the fluid of the impeller can be maintained well.

本発明によれば、小型化を損なわずに、微小流量変化や瞬間的な流量変動を正確に検出することができる流量センサを得ることができる。   According to the present invention, it is possible to obtain a flow rate sensor that can accurately detect a minute flow rate change or instantaneous flow rate fluctuation without impairing downsizing.

本実施形態に係る流量センサの縦断面図である。It is a longitudinal cross-sectional view of the flow sensor which concerns on this embodiment. (a)は本実施形態に係る流量センサの平面視の断面図、(b)は平面視の部分拡大断面図である。(A) is sectional drawing of the planar view of the flow sensor which concerns on this embodiment, (b) is a partial expanded sectional view of planar view. 本実施形態に係る流量センサを上方から平面視した本体の断面模式図である。It is the cross-sectional schematic diagram of the main body which planarly viewed the flow sensor which concerns on this embodiment from upper direction. (a)は、本実施形態に係る流量センサの羽根車の磁性体側に視点を設けた斜視図、(b)は、本実施形態に係る流量センサの羽根車のニードル部に視点を設けた斜視図である。(A) is the perspective view which provided the viewpoint in the magnetic body side of the impeller of the flow sensor which concerns on this embodiment, (b) The perspective which provided the viewpoint in the needle part of the impeller of the flow sensor which concerns on this embodiment. FIG. (a)は、本実施形態に係る流量センサの羽根車の磁性体側に視点を設けた平面図、(b)は、本実施形態に係る流量センサの羽根車のE−E矢視の断面図である。(A) is the top view which provided the viewpoint in the magnetic body side of the impeller of the flow sensor which concerns on this embodiment, (b) is sectional drawing of the EE arrow of the impeller of the flow sensor which concerns on this embodiment. It is. 本実施形態に係る流量センサにおける流体の流れを説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating the flow of the fluid in the flow sensor which concerns on this embodiment. 本実施形態に係る流量センサにおける流体の流れを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the flow of the fluid in the flow sensor which concerns on this embodiment. 本実施形態に係る流量センサの回転立ち上がり時間と、計量室の内周面と羽根車との間隙との関係を説明するための図である。It is a figure for demonstrating the relationship between the rotation rise time of the flow sensor which concerns on this embodiment, and the clearance gap between the internal peripheral surface of a measurement chamber, and an impeller. 本実施形態に係る流量センサの計量室内における流体の逆流を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the backflow of the fluid in the measurement chamber of the flow sensor which concerns on this embodiment. 本実施形態に係る流量センサの回転立ち上がり時間と、流入口の計量室への連接角度との関係を説明するための図である。It is a figure for demonstrating the relationship between the rotation rise time of the flow sensor which concerns on this embodiment, and the connection angle to the measurement chamber of an inflow port. 本実施形態に係る流量センサの流入口の内径と検出素子で出力される出力パルス数との関係を示す図である。It is a figure which shows the relationship between the internal diameter of the inflow port of the flow sensor which concerns on this embodiment, and the number of output pulses output by a detection element. 本実施形態に係る流量センサにおける通水流量と検出素子で出力される出力パルス数及び羽根車の回転数との関係の一例を示す図である。It is a figure which shows an example of the relationship between the water flow volume in the flow sensor which concerns on this embodiment, the number of output pulses output by a detection element, and the rotation speed of an impeller. (a)は、比較例1に係る流量センサの計量室の断面模式図、(b)は、比較例2に係る流量センサの計量室の断面模式図、(c)は、比較例3に係る流量センサの計量室の断面模式図である。(A) is a schematic cross-sectional view of the measuring chamber of the flow sensor according to Comparative Example 1, (b) is a schematic cross-sectional view of the measuring chamber of the flow sensor according to Comparative Example 2, and (c) is related to Comparative Example 3. It is a cross-sectional schematic diagram of the measurement chamber of a flow sensor.

次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
尚、以降の説明の理解を用意にするために、図面において、第1の対称軸(Y−Y)方向をY方向、第2の対称軸(X−X)方向をX方向、上下方向をZ方向とする。又、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, specific examples of embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In order to facilitate understanding of the following description, in the drawings, the first symmetry axis (Y-Y) direction is the Y direction, the second symmetry axis (XX) direction is the X direction, and the vertical direction is Let it be the Z direction. In the following description using the drawings, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones, and are necessary for the description for easy understanding. Illustrations other than the members are omitted as appropriate.

(1)流量センサの全体構成
図1は本実施形態に係る流量センサ1の縦断面図、図2(a)は平面視の断面図、図2(b)は平面視の部分拡大断面図である。図1及び図2を参照しながら、流量センサ1の全体構成を説明する。
流量センサ1は一端が上方(Z方向)に開口された本体10と、本体10の上方開口面を閉塞する蓋体20とによって画成された計量室11内に回転自在に保持された羽根車30と、羽根車30の回転を検知する検知基板40と、を備えて構成されている。
(1) Overall Configuration of Flow Sensor FIG. 1 is a longitudinal sectional view of a flow sensor 1 according to the present embodiment, FIG. 2 (a) is a sectional view in plan view, and FIG. 2 (b) is a partially enlarged sectional view in plan view. is there. The overall configuration of the flow sensor 1 will be described with reference to FIGS.
The flow sensor 1 is an impeller rotatably held in a measuring chamber 11 defined by a main body 10 having one end opened upward (Z direction) and a lid body 20 that closes an upper opening surface of the main body 10. 30 and a detection board 40 that detects the rotation of the impeller 30.

図2(a)に示すように、本体10は、上方(Z方向)に開口された平面視円形の凹状の計量室11を有している。計量室11には、被計量流体の流入口15と、被計量流体の流出口16とが、計量室11の内周面17に開口して連接している。計量室11内には、流入口15と流出口16との間に、計量室11の内周面17と、羽根車30の羽根部32の先端の回転軌跡19で仮想される空間が流路18として形成されている(図2(b)参照)。   As shown in FIG. 2A, the main body 10 has a concave measuring chamber 11 having a circular shape in plan view and opened upward (in the Z direction). In the measuring chamber 11, an inlet 15 for the fluid to be measured and an outlet 16 for the fluid to be measured are open and connected to the inner peripheral surface 17 of the measuring chamber 11. In the measuring chamber 11, a space between the inlet 15 and the outlet 16 is imagined by an inner peripheral surface 17 of the measuring chamber 11 and a rotation locus 19 at the tip of the blade portion 32 of the impeller 30. 18 (see FIG. 2B).

流入口15は、流体の流れと直角方向の断面形状が円形で、被計量流体を流入可能に形成され、被計量流体を供給する供給管(不図示)と接続可能なボス部15bと、供給管との係止部15cを備えている。流出口16は、同様に流体の流れと直角方向の断面形状が円形で、流入口15から流入された被計量流体が流路18を通過したのち流出可能に形成され、流出口16から流出された被計量流体を流通させる排出管(不図示)と接続可能なボス部16bと、排出管との係止部16cとを備えている。
本実施形態に係る流量センサ1は、流入口15と、計量室11の内周面17と、羽根車30の羽根部32の先端の回転軌跡19と、流出口16と、で流体の流量を計測するための流路18が形成されている。
The inflow port 15 has a circular cross-sectional shape in a direction perpendicular to the flow of the fluid, is formed so as to be able to flow in the fluid to be measured, and is connected to a supply pipe (not shown) for supplying the fluid to be measured. A locking portion 15c with the tube is provided. Similarly, the outlet 16 has a circular cross-sectional shape perpendicular to the fluid flow, and is formed so that the fluid to be metered flowing in from the inlet 15 can flow out after passing through the flow path 18, and flows out from the outlet 16. And a boss portion 16b connectable to a discharge pipe (not shown) through which the fluid to be measured flows, and a locking portion 16c for the discharge pipe.
The flow rate sensor 1 according to the present embodiment controls the flow rate of fluid at the inlet 15, the inner peripheral surface 17 of the measuring chamber 11, the rotation locus 19 of the tip of the blade portion 32 of the impeller 30, and the outlet 16. A flow path 18 for measurement is formed.

計量室11の中心には、後述する羽根車30のボス軸部31の一端に設けられたニードル部35を受けるスラスト軸受部12が形成されている。計量室11の上方には、計量室11の内周面17よりも更に外側に、Oリング50の受け部となる環状凹部13aが形成されている。   A thrust bearing portion 12 that receives a needle portion 35 provided at one end of a boss shaft portion 31 of an impeller 30 to be described later is formed at the center of the measuring chamber 11. Above the measuring chamber 11, an annular recess 13 a that is a receiving portion for the O-ring 50 is formed further outside the inner peripheral surface 17 of the measuring chamber 11.

蓋体20は、一面において、上方(Z方向)に開口され、周囲を壁面で囲まれた凹状の基板収納部21を有している。又、他面側には、底面を有する円筒体22を有し、その底面の中心に、羽根車30の一面に設けられた凹部を軸支する突状のニードル部23が形成されている。円筒体22の略中央部(Z方向)には、円形のフランジ部22aが形成され、本体10の上端部内周面に形成された環状凹部13aとの間で、Oリング50を挟持し、本体10と蓋体20とによって画成された計量室11が密封されている。   The lid 20 has a concave substrate storage portion 21 that is open upward (Z direction) on one surface and is surrounded by a wall surface. A cylindrical body 22 having a bottom surface is provided on the other surface side, and a protruding needle portion 23 that pivotally supports a concave portion provided on one surface of the impeller 30 is formed at the center of the bottom surface. A circular flange portion 22a is formed in a substantially central portion (Z direction) of the cylindrical body 22, and an O-ring 50 is sandwiched between an annular recess 13a formed on the inner peripheral surface of the upper end portion of the main body 10, and the main body The measuring chamber 11 defined by the cover 10 and the lid 20 is sealed.

検知基板40は、一面に検出素子Sを備え、他の一面には検知基板40と外部機器(不図示)とを接続するワイヤーハーネス41が接続されている。検出素子Sとしては、ホールIC等の磁気検出素子を用いることができる。検知基板40は、検出素子Sを羽根車30側に対向させ、ワイヤーハーネス41を上方へ延在した状態で、蓋体20の基板収納部21内に、充填剤Jを用いて固定・封止されている。
充填剤Jとしては、特に限定されないが、エポキシ樹脂を、所定の硬化剤とともに用いることができる。例えば、主剤としてのエポキシ樹脂100重量部に対して硬化剤15重量部を混合し、60°Cの温度で3時間保持することで、固化させることができる。
The detection board 40 includes a detection element S on one surface, and a wire harness 41 that connects the detection board 40 and an external device (not shown) is connected to the other surface. As the detection element S, a magnetic detection element such as a Hall IC can be used. The detection substrate 40 is fixed and sealed using the filler J in the substrate storage portion 21 of the lid 20 with the detection element S facing the impeller 30 side and the wire harness 41 extending upward. Has been.
Although it does not specifically limit as the filler J, An epoxy resin can be used with a predetermined hardening | curing agent. For example, it can be solidified by mixing 15 parts by weight of a curing agent with 100 parts by weight of an epoxy resin as a main agent and holding at a temperature of 60 ° C. for 3 hours.

羽根車30は、ボス軸部31と、複数の羽根部32と、磁性体33と、からなる。ボス軸部31は、羽根部32の中心部の一端側に先端が円錐状に突出して形成されたニードル部35と、羽根部32の中心部の他端側にスラスト軸受部38と、を有し、本体10と蓋体20によって画成された計量室11内に回転自在に軸支される。
羽根車30は、複数の羽根部32の先端部の面が計量室11の流路18を流れる被計量流体からの圧力を受けることにより、回転するように形成されている。
羽根車30は、ボス軸部上方端に、ボス軸部31の中心と同心に円形の磁性体33を備えている。
The impeller 30 includes a boss shaft portion 31, a plurality of blade portions 32, and a magnetic body 33. The boss shaft part 31 has a needle part 35 formed with a tip protruding conically at one end side of the center part of the blade part 32, and a thrust bearing part 38 on the other end side of the center part of the blade part 32. Then, it is rotatably supported in the measuring chamber 11 defined by the main body 10 and the lid 20.
The impeller 30 is formed to rotate by receiving pressure from the fluid to be measured flowing through the flow path 18 of the measuring chamber 11 at the front end surface of the plurality of blade portions 32.
The impeller 30 includes a circular magnetic body 33 concentrically with the center of the boss shaft portion 31 at the upper end of the boss shaft portion.

(2)本体の構成
(2.1)計量室の構成
図3ないし図5を参照しながら本体10の構成について、以下具体的に説明する。
図3は、本実施形態に係る流量センサを上方(Z方向)から平面視した本体10の断面模式図である。本体10に形成された計量室11には、羽根車30が回転自在に軸支されている。計量室11の内周面17には、流入口15と、流出口16と、が開口して連接されている。
(2) Configuration of Main Body (2.1) Configuration of Weighing Chamber The configuration of the main body 10 will be specifically described below with reference to FIGS.
FIG. 3 is a schematic cross-sectional view of the main body 10 in plan view of the flow sensor according to the present embodiment from above (Z direction). An impeller 30 is rotatably supported in the measuring chamber 11 formed in the main body 10. An inflow port 15 and an outflow port 16 are opened and connected to the inner peripheral surface 17 of the measuring chamber 11.

本体10には、流入口15が、流入口15の内壁面15aの一端と計量室11の内周面17とが交わる点Aにおいて、第1の対称軸(Y−Y)と角度θ1をなし、かつ、第2の対称軸(X−X)と5度ないし10度の角度で連接されている。流出口16は、軸心a2が第1の対称軸(Y−Y)と直交し、かつ、流出口16の内壁面16aの一端と計量室11の内周面17とが交わる点Bにおいて、第1の対称軸(Y−Y)と角度θ2をなし、流入口15と流出口16は、式(1)ないし(3)の関係を満たして連接されている。
5度≦(θ1−θ2)≦10度・・・(1)
D2/D1<COSθ1・・・(2)
D2/D1<COSθ2・・・(3)
従って、計量室11には、流入口15と流出口16との間に計量室の中心Oから角度(θ1+θ2)の範囲(図3のA点からB点の範囲)で、計量室11の内周面17と、羽根車30の羽根部32の先端の回転軌跡19で仮想される空間が、流路18として形成されている。
又、流路18の内周面(図3のA点からB点の範囲)17は、流入口15の内壁15aが連接されたA点から、流出口16の内壁16aが連接されたB点の間の領域において、外側(Y方向)に湾曲している。
In the main body 10, the inlet 15 forms an angle θ 1 with the first axis of symmetry (YY) at a point A where one end of the inner wall surface 15 a of the inlet 15 and the inner peripheral surface 17 of the measuring chamber 11 intersect. And connected to the second axis of symmetry (XX) at an angle of 5 to 10 degrees. The outlet 16 has a point B at which the axis a2 is orthogonal to the first axis of symmetry (Y-Y) and one end of the inner wall surface 16a of the outlet 16 intersects with the inner peripheral surface 17 of the measuring chamber 11. An angle θ2 is formed with respect to the first axis of symmetry (YY), and the inflow port 15 and the outflow port 16 are connected so as to satisfy the relationships of the expressions (1) to (3).
5 degrees ≦ (θ1-θ2) ≦ 10 degrees (1)
D2 / D1 <COSθ1 (2)
D2 / D1 <COSθ2 (3)
Accordingly, the measuring chamber 11 has an inner space between the inlet 15 and the outlet 16 within the measuring chamber 11 within an angle (θ1 + θ2) range from the center O of the measuring chamber (range from point A to point B in FIG. 3). A space virtually defined by the circumferential surface 17 and the rotation locus 19 at the tip of the blade portion 32 of the impeller 30 is formed as the flow path 18.
Further, the inner peripheral surface 17 (range from point A to point B in FIG. 3) 17 of the flow path 18 is from point A where the inner wall 15a of the inlet 15 is connected to point B where the inner wall 16a of the outlet 16 is connected. Is curved outward (Y direction).

(2.2)流入口・流出口の構成
流入口15及び流出口16は、流体の流れと直角方向の断面形状が円形で、被計量流体が流れる配管(不図示)の途中に接続されるために、それぞれ配管と接続可能なボス部を備えている。又、流路内は断面形状が一定であり、流入口15及び流出口16は同一内径に形成されている。流入口15及び流出口16は、その内径をd1、計量室11の内周面17の直径をD1としたときに、式(4)の関係を有して連接されている。
5≦D1/d1・・・(4)
(2.2) Constitution of the inlet / outlet The inlet 15 and the outlet 16 have a circular cross-sectional shape perpendicular to the fluid flow, and are connected in the middle of a pipe (not shown) through which the fluid to be measured flows. Therefore, the boss | hub part which can be connected with piping is provided, respectively. The flow path has a constant cross-sectional shape, and the inflow port 15 and the outflow port 16 are formed to have the same inner diameter. The inflow port 15 and the outflow port 16 are connected so as to have the relationship of Expression (4), where d1 is the inner diameter and D1 is the diameter of the inner peripheral surface 17 of the measuring chamber 11.
5 ≦ D1 / d1 (4)

計量室11の内周面17の直径D1に対して、流入口15の内径d1が大きすぎると、微小流量の領域で、流速が低くなり羽根車30の回転数が少なくなる。その結果、検出素子Sで検出されるパルス数が減り、計測の分解能が低下しやすい。 If the inner diameter d1 of the inflow port 15 is too large with respect to the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11, the flow velocity becomes low and the rotational speed of the impeller 30 decreases in the region of a minute flow rate. As a result, the number of pulses detected by the detection element S decreases, and the measurement resolution is likely to decrease.

(2.3)羽根車の構成
次に、本実施形態に係る羽根車30について、図4及び図5を参照しながら具体的に説明する。図4(a)は、本実施形態に係る羽根車30の磁性体33側に視点を設けた斜視図である。図4(b)は、本実施形態に係る羽根車30のニードル部35に視点を設けた斜視図である。図5(a)は、本実施形態に係る羽根車30の磁性体33側に視点を設けた平面図、図5(b)は、本実施形態に係る羽根車30のE−E矢視の断面図である。
(2.3) Configuration of Impeller Next, the impeller 30 according to the present embodiment will be specifically described with reference to FIGS. 4 and 5. FIG. 4A is a perspective view in which a viewpoint is provided on the magnetic body 33 side of the impeller 30 according to the present embodiment. FIG. 4B is a perspective view in which a viewpoint is provided on the needle portion 35 of the impeller 30 according to the present embodiment. Fig.5 (a) is the top view which provided the viewpoint at the magnetic body 33 side of the impeller 30 which concerns on this embodiment, FIG.5 (b) is the EE arrow view of the impeller 30 which concerns on this embodiment. It is sectional drawing.

羽根車30は、ボス軸部31と、複数の羽根部32と、磁性体33と、からなる。ボス軸部31には、ニードル部35と、磁性体33が嵌入される平面視小判状の軸部37が形成されている。軸部37には、その中央部に凹状のスラスト軸受部38が形成され、蓋体20の下面に突状に形成されたニードル部23を支持する。羽根車30のニードル部35は、先端部が円錐状に形成され、本体10の底面中央部に形成された凹状のスラスト軸受部12で軸支される。ボス軸部31は、蓋体20の下面に形成された突状のニードル部23でスラスト軸受部38が軸支され、本体10の底面中央部に形成された凹状のスラスト軸受部12でニードル部35を軸支されることにより、計量室11内で回転可能とされている。   The impeller 30 includes a boss shaft portion 31, a plurality of blade portions 32, and a magnetic body 33. The boss shaft portion 31 is formed with a needle portion 35 and a shaft portion 37 having an oblong shape in plan view into which the magnetic body 33 is inserted. A concave thrust bearing portion 38 is formed at the center portion of the shaft portion 37, and supports the needle portion 23 formed in a protruding shape on the lower surface of the lid body 20. The needle portion 35 of the impeller 30 has a tip portion formed in a conical shape and is pivotally supported by a concave thrust bearing portion 12 formed in the bottom center portion of the main body 10. The boss shaft portion 31 has a thrust bearing portion 38 pivotally supported by a protruding needle portion 23 formed on the lower surface of the lid body 20, and a concave thrust bearing portion 12 formed at the center of the bottom surface of the main body 10. By rotating the shaft 35, it can be rotated in the measuring chamber 11.

複数の羽根部32は、本実施形態においては、図5(a)に示すように、ボス軸部31に対して、放射状に配置された6枚の羽根から構成され、各羽根の外側端の角部は、羽根車30の回転下流側がR形状に形成されている。従って、羽根車30の回転に伴う流体の抵抗を低減し、特に流体の微少流量域においても、羽根車の回転効率を向上させることができる。尚、各羽根の外側端の角部は、C面が形成されていても良い。   In the present embodiment, as shown in FIG. 5A, the plurality of blade portions 32 are configured by six blades arranged radially with respect to the boss shaft portion 31. The corner is formed in an R shape on the rotation downstream side of the impeller 30. Therefore, the resistance of the fluid accompanying the rotation of the impeller 30 can be reduced, and the rotational efficiency of the impeller can be improved especially in the minute flow rate region of the fluid. In addition, the corner | angular part of the outer side end of each blade | wing may form C surface.

羽根車30は、合成樹脂等を用いて射出成形で作成することができる。合成樹脂としては、ポリアクリロニトリル(PAN)系の炭素繊維が充填されたポリアセタール(POM)が好適である。羽根車30は、計量室11の内部で、被計量流体の流れの圧力を受けて回転するために、流体内での摩擦摩耗特性に優れた材料で形成されることが必要である。
ポリアセタールの本来有する自己潤滑性は、例えば水中内では作用しなくなることがあるが、PAN系の炭素繊維を適宜充填することで、炭素繊維が個体潤滑剤として作用し、羽根車の水中での摩擦摩耗特性を良好に維持することができる。
The impeller 30 can be created by injection molding using a synthetic resin or the like. As the synthetic resin, polyacetal (POM) filled with polyacrylonitrile (PAN) carbon fiber is suitable. Since the impeller 30 rotates in response to the pressure of the flow of the fluid to be measured inside the measuring chamber 11, the impeller 30 needs to be formed of a material having excellent friction and wear characteristics in the fluid.
The inherent self-lubricating property of polyacetal may not work in water, for example, but by filling PAN-based carbon fiber as appropriate, the carbon fiber acts as a solid lubricant and the impeller friction in water Good wear characteristics can be maintained.

ボス軸部31の上端側には、リング状の磁性体33が固定されている。磁性体33は、例えばフェライト磁性体を混入した合成樹脂で形成され、リングはN極及びS極に着磁された永久磁石となっている。磁性体33は、ボス軸部31の上端面に形成された小判状の軸部37へ固定されている。固定方法は、特に限定されないが、ボス軸部31及び羽根部32が、上述したPAN系の炭素繊維が充填されたポリアセタール(POM)で形成されている場合は、例えば、熱カシメで固定することができる。   A ring-shaped magnetic body 33 is fixed to the upper end side of the boss shaft portion 31. The magnetic body 33 is formed of, for example, a synthetic resin mixed with a ferrite magnetic body, and the ring is a permanent magnet that is magnetized at the N pole and the S pole. The magnetic body 33 is fixed to an oval shaft portion 37 formed on the upper end surface of the boss shaft portion 31. The fixing method is not particularly limited, but when the boss shaft portion 31 and the blade portion 32 are formed of polyacetal (POM) filled with the above-described PAN-based carbon fiber, for example, fixing with heat caulking. Can do.

羽根車30は本体10の中央部に形成された計量室11に、計量室11の内周面17と間隙Δを有して、回転自在に軸支されている。計量室11の内周面17の直径をD1、羽根車30の羽根部32の直径をD2、とした場合、計量室11の内周面17と、各羽根部32の外側端との間隙Δは、Δ=(D1−D2)/2で表され、羽根車30の羽根部32の直径D2と、計量室11の内周面17の直径D1との比Rは、R=D2/D1で表される(図7参照)。
本実施形態の流量センサ1においては、羽根車30の羽根部32の先端と、計量室11の内周面17との間に、(5)式の関係を有して流路が形成されているが、その作用については後述する。
0.87≦R≦0.93・・・(5)
The impeller 30 is rotatably supported in a measuring chamber 11 formed in the center of the main body 10 with an inner peripheral surface 17 of the measuring chamber 11 and a gap Δ. When the diameter of the inner peripheral surface 17 of the measuring chamber 11 is D1 and the diameter of the blade portion 32 of the impeller 30 is D2, the gap Δ between the inner peripheral surface 17 of the measuring chamber 11 and the outer end of each blade portion 32. Is expressed by Δ = (D1−D2) / 2, and the ratio R between the diameter D2 of the blade portion 32 of the impeller 30 and the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 is R = D2 / D1. Represented (see FIG. 7).
In the flow sensor 1 of the present embodiment, a flow path is formed between the tip of the blade portion 32 of the impeller 30 and the inner peripheral surface 17 of the measuring chamber 11 with a relationship of the expression (5). The operation will be described later.
0.87 ≦ R ≦ 0.93 (5)

(3)作用
本実施形態に係る流量センサ1は、接線流方式の流量センサである。接線流方式の流量センサにおいては、流入口15から、計量室11の内周面17を経由して、流出口16までの領域が流路18となり、この領域が羽根車30に回転力を付与する作用範囲となる。係る作用範囲が広ければ、微少流量であっても正確に計測できる。
又、流入口15から噴出された流体が、羽根車30の羽根部32に当たる位置は、羽根部32の先端側であるほど、羽根車の回転モーメントは大きくなる。
以下、本実施形態の流量センサ1の作用について説明するが、その前に比較例の流量センサの問題点について、図面を用いて説明する。尚、比較例の流量センサにおいて、本実施形態と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
(3) Operation The flow rate sensor 1 according to the present embodiment is a tangential flow type flow rate sensor. In the tangential flow type flow rate sensor, a region from the inlet 15 to the outlet 16 via the inner peripheral surface 17 of the measuring chamber 11 becomes a flow path 18, and this region gives a rotational force to the impeller 30. This is the working range. If such a working range is wide, even a minute flow rate can be measured accurately.
In addition, the rotational moment of the impeller increases as the position where the fluid ejected from the inflow port 15 hits the impeller portion 32 of the impeller 30 is closer to the tip end side of the impeller portion 32.
Hereinafter, although the effect | action of the flow sensor 1 of this embodiment is demonstrated, the problem of the flow sensor of a comparative example is demonstrated using drawing before that. In addition, in the flow sensor of a comparative example, the same code | symbol is attached | subjected to the same component as this embodiment, and detailed description is abbreviate | omitted.

(3.1)比較例の流量センサ
「比較例1」
図13(a)は、比較例1の流量センサ100の計量室110を上方(Z方向)から平面視した断面模式図である。
図13(a)に示すように、比較例1の流量センサ100は、計量室110に、流入口150及び流出口160が連接され、計量室110の中心には、羽根車30が回転自在に軸支されている。又、流入口150及び流出口160は、ともに計量室110の内周面170と、A1点で接線状に連接されている点で、本実施形態に係る流量センサ1と異なっている。
(3.1) Flow sensor of comparative example “Comparative example 1”
FIG. 13A is a schematic cross-sectional view of the weighing chamber 110 of the flow sensor 100 of Comparative Example 1 as viewed from above (Z direction).
As shown in FIG. 13A, in the flow rate sensor 100 of Comparative Example 1, the inlet 150 and the outlet 160 are connected to the measuring chamber 110, and the impeller 30 is rotatable at the center of the measuring chamber 110. It is pivotally supported. Further, the inlet 150 and the outlet 160 are different from the flow sensor 1 according to the present embodiment in that both the inlet 150 and the outlet 160 are tangentially connected to the inner peripheral surface 170 of the measuring chamber 110 at the point A1.

比較例1の流量センサ100においては、流入口150と、流出口160と、が計量室110の内周面170とA1点で接線状に連接されているために、流入口150から噴出された流体が、羽根車30の羽根部32の先端部に当たり、羽根車の回転モーメントは大きくなる。一方、流入口150から、計量室110の内周面170を経由して、流出口160までの流路範囲が狭く、羽根車30に回転を付与する作用が弱くなる。 In the flow rate sensor 100 of the comparative example 1, the inflow port 150 and the outflow port 160 are tangentially connected to the inner peripheral surface 170 of the measuring chamber 110 at the point A1, so that the air flow was ejected from the inflow port 150. The fluid hits the tip of the blade portion 32 of the impeller 30, and the rotational moment of the impeller increases. On the other hand, the flow path range from the inflow port 150 to the outflow port 160 via the inner peripheral surface 170 of the measuring chamber 110 is narrow, and the action of imparting rotation to the impeller 30 is weakened.

流入口150から計量室110へ噴出された流体は、羽根部32の側面先端部に当たり、羽根車30を反時計回りに回転させようとする(正流、図13(a)のF1参照)。羽根部32に流体の圧力を受けた羽根車30は、計量室110内で反時計回りに回転し、流入口150から噴出された流体は、そのまま、計量室110に連接された流出口160へと向かう。この時点で、流入口150と流出口160は、ともに計量室110の内周面170と接線で連接されているために、流路が屈曲している場合に、流体が壁面に沿って付着しながら流れる、いわゆるコアンダ効果は発生しない。   The fluid ejected from the inlet 150 to the measuring chamber 110 strikes the tip of the side surface of the blade portion 32 and tries to rotate the impeller 30 counterclockwise (positive flow, see F1 in FIG. 13A). The impeller 30 receiving the pressure of the fluid in the blade portion 32 rotates counterclockwise in the measuring chamber 110, and the fluid ejected from the inlet 150 remains as it is to the outlet 160 connected to the measuring chamber 110. Head to. At this time, since the inflow port 150 and the outflow port 160 are both connected to the inner peripheral surface 170 of the measuring chamber 110 by a tangent line, the fluid adheres along the wall surface when the flow path is bent. However, the so-called Coanda effect does not occur.

又、流入口150と計量室110の内周面170とが連接したC点は、流入口150の内壁150aが90度を超えて、鋭角に屈曲しているために、コアンダ効果による流体の内周面170への付着は生じにくい。従って、流入口150から噴出された流体の一部は、C点から時計回りの方向において、内周面170には付着しない状態で、羽根車30を時計回りに逆転させようとする流れ(逆流、図13(a)のFR参照)になる。   In addition, the point C where the inlet 150 and the inner peripheral surface 170 of the measuring chamber 110 are connected is bent at an acute angle with the inner wall 150a of the inlet 150 exceeding 90 degrees. Adhesion to the peripheral surface 170 is difficult to occur. Accordingly, a part of the fluid ejected from the inflow port 150 in the clockwise direction from the point C does not adhere to the inner peripheral surface 170 and flows to reverse the impeller 30 clockwise (reverse flow). FIG. 13 (a) FR).

従って、流量センサ100の計量室110内には、羽根車30を反時計回りに回転させようとする正流(F1)と、C点から時計回りの方向の内周面170において、羽根車30を時計回りに逆転させようとする逆流(FR)が混在した状態になる。その結果、流入口150から噴出される流体と、検出素子Sによって検出される流量との間に誤差が生じ、流量センサとしての計測精度が低下する要因となる。   Accordingly, in the measuring chamber 110 of the flow rate sensor 100, the impeller 30 is located on the positive flow (F1) to rotate the impeller 30 counterclockwise and the inner peripheral surface 170 in the clockwise direction from the point C. Backflow (FR) that attempts to reverse the rotation clockwise is mixed. As a result, an error occurs between the fluid ejected from the inflow port 150 and the flow rate detected by the detection element S, which causes a decrease in measurement accuracy as a flow rate sensor.

「比較例2」
図13(b)に示す比較例2に係る流量センサ200は、流入口150と、流出口160と、を第1の対称軸(Y−Y)の下方寄り(中心O側)に配置した点で、比較例1に係る流量センサ100と異なる。比較例2の流量センサ200においては、比較例1に係る流量センサ100に比較して、流路範囲は広くなるが、流入口150から噴出された流体が、羽根車30の羽根部32のボス軸部31側へ当たり、羽根車30の回転モーメントは小さくなる。
“Comparative Example 2”
In the flow rate sensor 200 according to Comparative Example 2 shown in FIG. 13B, the inflow port 150 and the outflow port 160 are arranged closer to the lower side (center O side) of the first axis of symmetry (YY). Thus, the flow rate sensor 100 according to the comparative example 1 is different. In the flow rate sensor 200 of the comparative example 2, the flow range is wider than that of the flow rate sensor 100 according to the comparative example 1, but the fluid ejected from the inlet 150 is the boss of the blade portion 32 of the impeller 30. The rotational moment of the impeller 30 decreases when it hits the shaft portion 31 side.

「比較例3」
図13(c)に示す比較例3に係る流量センサ300は、流入口150及び流出口160がそれぞれ第2の対称軸(X−X)に対して角度をなして連接されている。従って、一定の流路範囲を確保しながら、流入口150から噴出された流体を、羽根車30の羽根部32の先端部に当て、羽根車の回転モーメントも大きくすることができる。
“Comparative Example 3”
In the flow sensor 300 according to Comparative Example 3 shown in FIG. 13C, the inflow port 150 and the outflow port 160 are connected to each other at an angle with respect to the second axis of symmetry (XX). Accordingly, the fluid ejected from the inflow port 150 can be applied to the tip of the blade portion 32 of the impeller 30 and the rotational moment of the impeller can be increased while ensuring a certain flow path range.

一方、B点において、計量室110の内周面170から、流出口160の内壁160aへの流路の屈曲が少なくなり、コアンダ効果が発生しにくくなる。その結果、内周面170に沿って流れる流体は、流出口160の内壁160aに付着した流れになりにくい。従って、流体の一部は、流出口160から排出されにくく、計量室110の内周面170に沿って流動する(図13(c)のF6参照)。
又、流入口150及び流出口160がともに第2の対称軸(X−X)に対して角度をなして連接されているため、配管に接続されて使用される場合に、配管の屈曲が大きくなる。そのため、流入口150及び流出口160のそれぞれのボス部と、配管との係止部には方向変換のための接続部材が必要になり、信頼性を低下させ、かつコスト上昇する場合がある。又、配管と流量センサ300との間に、より多くのスペースを必要とする。
On the other hand, at point B, the bending of the flow path from the inner peripheral surface 170 of the measuring chamber 110 to the inner wall 160a of the outlet 160 is reduced, and the Coanda effect is less likely to occur. As a result, the fluid flowing along the inner peripheral surface 170 is unlikely to become a flow attached to the inner wall 160 a of the outlet 160. Accordingly, a part of the fluid is difficult to be discharged from the outlet 160 and flows along the inner peripheral surface 170 of the measuring chamber 110 (see F6 in FIG. 13C).
In addition, since the inflow port 150 and the outflow port 160 are connected to each other at an angle with respect to the second axis of symmetry (XX), the pipe is greatly bent when used by being connected to the pipe. Become. For this reason, a connecting member for changing the direction is required at the boss portion of each of the inflow port 150 and the outflow port 160 and the engaging portion of the pipe, which may reduce reliability and increase costs. In addition, more space is required between the piping and the flow sensor 300.

(3・2)本実施形態の流量センサ
図6は、本実施形態に係る流量センサ1をZ方向から平面視した部分断面模式図である。図6中の矢印F1、F2、F3、F4、F5は、流入口15から計量室11へ噴出した流体の流れを説明するものである。
(3.2) Flow Sensor of the Present Embodiment FIG. 6 is a partial cross-sectional schematic view of the flow sensor 1 according to the present embodiment when viewed from the Z direction. The arrows F1, F2, F3, F4, and F5 in FIG. 6 explain the flow of the fluid ejected from the inlet 15 to the measuring chamber 11.

本実施形態に係る流量センサ1の計量室11は、流入口15が、第2の対称軸(X−X)と5度ないし10度の角度をなして連接されている。又、流入口15は、計量室11及び羽根車30の羽根部32に対して、その内壁面15aの延長線が、常に羽根車30の羽根部32の先端と計量室11の内周面17とで仮想される流路18内に連接されている。
従って、流入口15から流路18へ噴出された流体は、羽根部32の側面先端部に当たり、最大の回転モーメントで羽根車30を反時計回りに回転させようとする(図4、図7参照)。羽根部32に流体の圧力を受けた羽根車30は、計量室11内で反時計回りに回転し、流入口15から噴出された流体は、流路18内において、内周面17に沿って、流路18に連接された流出口16へと向かう(図6のF1、F2、F3、F4、F5参照)。
In the measuring chamber 11 of the flow sensor 1 according to the present embodiment, the inlet 15 is connected to the second axis of symmetry (XX) at an angle of 5 degrees to 10 degrees. In addition, the inlet 15 has an extension line of the inner wall surface 15a with respect to the measurement chamber 11 and the blade portion 32 of the impeller 30 so that the tip of the blade portion 32 of the impeller 30 and the inner peripheral surface 17 of the measurement chamber 11 are always provided. Are connected in a virtual flow path 18.
Accordingly, the fluid ejected from the inlet 15 to the flow path 18 strikes the tip of the side surface of the blade portion 32 and tries to rotate the impeller 30 counterclockwise with the maximum rotational moment (see FIGS. 4 and 7). ). The impeller 30 receiving the fluid pressure on the blade portion 32 rotates counterclockwise in the measuring chamber 11, and the fluid ejected from the inflow port 15 flows along the inner peripheral surface 17 in the flow path 18. Then, it goes to the outlet 16 connected to the flow path 18 (see F1, F2, F3, F4, and F5 in FIG. 6).

流入口15の内壁面15aの一端は計量室11の内周面17の一端(図6のA点参照)で連接され、流出口16の内壁面16aの一端は計量室11の内周面17の一端(図6のB点参照)で連接され、羽根車30に回転力を付与する作用範囲が広く形成されている。
流体の流路18は、A点で外側(Y方向)に屈曲しているため、流出口15から計量室11内に流入した流体にはコアンダ効果が発生し、流体は流路18内において、内周面17に付着した流れになる(図6のF1、F2、F3参照)。
一旦、流路18の内周面17に付着した流れが発生すると、この領域の圧力は低くなる。従って、内周面17の境界における流体の流速は速くなり、微少流量であっても、羽根車30を反時計回りに確実に回転させることができる。
One end of the inner wall surface 15 a of the inflow port 15 is connected to one end of the inner peripheral surface 17 of the measuring chamber 11 (see point A in FIG. 6), and one end of the inner wall surface 16 a of the outlet port 16 is connected to the inner peripheral surface 17 of the measuring chamber 11. Are connected at one end (see point B in FIG. 6), and a wide range of action for applying a rotational force to the impeller 30 is formed.
Since the fluid flow path 18 is bent outward (Y direction) at the point A, the Coanda effect occurs in the fluid that flows into the measuring chamber 11 from the outlet 15, and the fluid flows in the flow path 18. The flow adheres to the inner peripheral surface 17 (see F1, F2, and F3 in FIG. 6).
Once the flow adhering to the inner peripheral surface 17 of the flow path 18 is generated, the pressure in this region becomes low. Accordingly, the flow velocity of the fluid at the boundary of the inner peripheral surface 17 is increased, and the impeller 30 can be reliably rotated counterclockwise even at a minute flow rate.

また、流路18内において、内周面17に付着した流れになった流体は、B点において、流路18に連接された流出口16へと向かう(図6のF3、F4、F5参照)。
流出口16は、B点において、第1の対称軸(Y−Y)と直交(第2の対称軸(X−X)と平行)して連接されている。そのため、流路18は、B点において、流出口16の内壁16aへ屈曲して連接されることになり、内周面17に沿って流れる流体は、コアンダ効果によって、流出口16の内面16aに付着した流れになる(図6のF4、F5参照)。従って、流体は、流出口16から排出されやすくなる。
Further, in the flow path 18, the fluid that has become a flow adhering to the inner peripheral surface 17 is directed to the outlet 16 connected to the flow path 18 at point B (see F 3, F 4, and F 5 in FIG. 6). .
The outflow port 16 is connected to the first symmetry axis (YY) at right angles to the B outlet at a point B (parallel to the second symmetry axis (XX)). Therefore, the flow path 18 is bent and connected to the inner wall 16a of the outlet 16 at the point B, and the fluid flowing along the inner peripheral surface 17 flows to the inner surface 16a of the outlet 16 by the Coanda effect. It becomes an attached flow (see F4 and F5 in FIG. 6). Therefore, the fluid is easily discharged from the outlet 16.

一方、比較例の流量センサ100と同様に、C点から時計回りの方向の領域における内周面17においては、流入口15の内壁面が90度を超えて、鋭角に屈曲しているために、コアンダ効果による流体の内周面17への付着は生じにくく、内周面17には付着しない状態で、羽根車30を時計回りに、すなわち、逆転させる流れ(逆流、FR)が発生する。   On the other hand, similarly to the flow sensor 100 of the comparative example, the inner wall surface of the inflow port 15 exceeds 90 degrees and is bent at an acute angle on the inner circumferential surface 17 in the clockwise direction from the point C. As a result, the fluid hardly adheres to the inner peripheral surface 17 due to the Coanda effect, and a flow (reverse flow, FR) is generated that rotates the impeller 30 in the clockwise direction, that is, in the reverse direction.

図7に示すように、C点から時計回りの方向の領域における逆流(FR)は、羽根車30の羽根部32の先端と、計量室11の内周面17との間隙△が流路となって流れる。間隙△が大きい場合には、この逆流(FR)が多くなるため、羽根車30の回転抵抗が大きくなる。又、間隙△が小さい場合には、逆流(FR)の流量は少ないが、内周面17での壁面抵抗が大きくなり、羽根車30の回転抵抗が大きくなる。
羽根車30の回転抵抗は、計量室11へ流体を流入させ場合に羽根車30が定常回転に達するまでの時間(以下、回転立ち上がり時間と記す)T1に比例する。すなわち、羽根車30の回転抵抗が低い場合は、回転立ち上がり時間T1が短くなる。
As shown in FIG. 7, the reverse flow (FR) in the region in the clockwise direction from the point C has a gap Δ between the tip of the blade portion 32 of the impeller 30 and the inner peripheral surface 17 of the measuring chamber 11 as a flow path. It flows. When the gap Δ is large, the reverse flow (FR) increases, so that the rotational resistance of the impeller 30 increases. On the other hand, when the gap Δ is small, the flow rate of the backflow (FR) is small, but the wall resistance at the inner peripheral surface 17 increases, and the rotational resistance of the impeller 30 increases.
The rotational resistance of the impeller 30 is proportional to the time T <b> 1 (hereinafter referred to as the rotation rise time) until the impeller 30 reaches steady rotation when the fluid is allowed to flow into the measuring chamber 11. That is, when the rotational resistance of the impeller 30 is low, the rotation rise time T1 is shortened.

本実施形態に係る流量センサ1においては、計量室11の内周面17の直径D1と、羽根車30の羽根部直径D2との比Rを0.87≦R≦0.93とすることで、羽根車30の回転抵抗を最小にしている。以下、実施例として具体的に説明する。   In the flow sensor 1 according to the present embodiment, the ratio R between the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 and the blade portion diameter D2 of the impeller 30 is set to 0.87 ≦ R ≦ 0.93. The rotational resistance of the impeller 30 is minimized. Hereinafter, it demonstrates concretely as an Example.

「実施例1」
本実施形態に係る流量センサ1の計量室11の内周面17と、各羽根部32の外側端との間隙Δを変化させて、流体を、流入口15から計量室11に、微小流量領域に相当する100ml/分の流量で流入させた場合の、羽根車30の回転立ち上がり時間T1を計測した。具体的には、計量室11の内周面17の直径D1をD1=13.2mmとし、羽根車30の羽根部直径D2を、それぞれ、D2=11.0mm、11.6mm、12.2mm、12.6mmと変化させ、それぞれの回転立ち上がり時間T1を計測した。
"Example 1"
By changing the gap Δ between the inner peripheral surface 17 of the measuring chamber 11 of the flow rate sensor 1 according to the present embodiment and the outer end of each blade portion 32, fluid is transferred from the inlet 15 to the measuring chamber 11 in a minute flow rate region. The rotational rise time T1 of the impeller 30 when flowing at a flow rate corresponding to 100 ml / min was measured. Specifically, the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 is D1 = 13.2 mm, and the blade portion diameter D2 of the impeller 30 is D2 = 11.0 mm, 11.6 mm, 12.2 mm, respectively. The rotation rise time T1 of each was measured with a change of 12.6 mm.

図8に示すように、回転立ち上がり時間T1は、計量室の内周面17と、各羽根部32の外側端との間隙Δ、あるいは、計量室11の内周面17の直径D1と、羽根車30の羽根部直径D2との比Rとに依存した。具体的には、間隙△=0.8mm(R=0.879)の場合が、T1=0.2751秒と最も短く(図8(a))羽根車30の回転抵抗が小さく、間隙△=1.1mm(R=0.833)の場合が、T1=0.3707秒と最も長く羽根車30の回転抵抗が大きくなった(図8(b))。
尚、間隙△=0.3mm(R=0.955)の場合は、T1=0.28411秒(図8(c))、間隙△=0.5mm(R=0.924)の場合が、T1=0.2824秒(図8(d))と、いずれも、間隙△=0.8mm(R=0.879)の場合よりやや長くなった。
As shown in FIG. 8, the rotation rise time T1 is determined by the gap Δ between the inner peripheral surface 17 of the measuring chamber and the outer end of each blade 32, or the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11, and the blade It depends on the ratio R to the blade diameter D2 of the car 30. Specifically, when the gap Δ = 0.8 mm (R = 0.879), T1 = 0.2751 seconds is the shortest (FIG. 8A), the rotational resistance of the impeller 30 is small, and the gap Δ = In the case of 1.1 mm (R = 0.833), the rotational resistance of the impeller 30 was the longest at T1 = 0.3707 seconds (FIG. 8B).
When the gap Δ = 0.3 mm (R = 0.955), T1 = 0.28411 seconds (FIG. 8C), and the gap Δ = 0.5 mm (R = 0.924) Both T1 = 0.2824 seconds (FIG. 8D) were slightly longer than in the case of the gap Δ = 0.8 mm (R = 0.879).

図9には、同様に、計量室11の内周面17の直径D1をD1=13.2mmとし、羽根車30の羽根部直径D2を、それぞれ、D2=11.0mm、11.6mm、12.2mm、12.6mmと変化させたときの、計量室11の内周面17と、羽根車30の羽根部32の先端との流路における、逆流(FR)の状態を解析した結果を模式的に示す。   Similarly, in FIG. 9, the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 is D1 = 13.2 mm, and the blade diameter D2 of the impeller 30 is D2 = 11.0 mm, 11.6 mm, 12 Schematic results of analyzing the state of backflow (FR) in the flow path between the inner peripheral surface 17 of the measuring chamber 11 and the tip of the blade portion 32 of the impeller 30 when changed to 2 mm and 12.6 mm Indicate.

間隙△=1.1mm(R=0.833)の場合は、C点から時計回りの方向の領域において、逆流(FR)が多く、羽根車30の回転抵抗が大きくなっている(図9(a)参照)。すなわち、内周面17においては、流入口15の内壁面が90度を超えて、鋭角に屈曲しているために、コアンダ効果による流体の内周面17への付着は生じにくく、内周面17には付着しない状態で逆流しやすいが、間隙Δが大きい場合は、この逆流(FR)が多くなるため、羽根車30の回転抵抗が大きく、回転立ち上がり時間T1が長くなると推察される。   In the case of the gap Δ = 1.1 mm (R = 0.833), the backflow (FR) is large in the region in the clockwise direction from the point C, and the rotational resistance of the impeller 30 is large (FIG. 9 ( a)). That is, on the inner peripheral surface 17, the inner wall surface of the inflow port 15 exceeds 90 degrees and is bent at an acute angle, so that the fluid does not easily adhere to the inner peripheral surface 17 due to the Coanda effect, and the inner peripheral surface However, when the gap Δ is large, the reverse flow (FR) increases, and it is assumed that the rotational resistance of the impeller 30 is large and the rotation rise time T1 is long.

一方、間隙△=0.3mm(R=0.955)の場合は、計量室11の内周面17と、羽根車30の羽根部32の先端との流路が狭く、逆量(FR)は少なくても、内周面17での壁面抵抗が大きくなり、回転立ち上がり時間T1がやや長くなると推察される(図9(b)参照)。
間隙△=0.8mm(R=0.879)、及び間隙△=0.5mm(R=0.924)の場合はC点から時計回りの方向の領域において、逆流(FR)が少なく、羽根車30の回転抵抗が小さくなっている(図9(c)、(d)参照)。すなわち、計量室11の内周面17の直径D1と、羽根車30の羽根部直径D2との比Rを0.87ないし0.93とすることで、羽根車30の回転抵抗を小さくし、微小流量変化や瞬間的な流量変動を正確に計測することができた。
On the other hand, when the gap Δ = 0.3 mm (R = 0.955), the flow path between the inner peripheral surface 17 of the measuring chamber 11 and the tip of the blade portion 32 of the impeller 30 is narrow, and the reverse amount (FR). At least, it is assumed that the wall resistance on the inner peripheral surface 17 increases and the rotation rise time T1 becomes slightly longer (see FIG. 9B).
In the case of the gap Δ = 0.8 mm (R = 0.879) and the gap Δ = 0.5 mm (R = 0.924), there is little backflow (FR) in the clockwise direction from the point C, and the blade The rotational resistance of the vehicle 30 is small (see FIGS. 9C and 9D). That is, by setting the ratio R between the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 and the blade portion diameter D2 of the impeller 30 to 0.87 to 0.93, the rotational resistance of the impeller 30 is reduced. We were able to accurately measure minute flow changes and instantaneous flow fluctuations.

「実施例2」
次に、計量室11の内周面17の直径D1と、羽根車30の羽根部直径D2との比Rを0.879(間隙△=0.8mm)とし、計量室11への流入口15の連接角度を変化させて、回転立ち上がり時間T1を計測した。
"Example 2"
Next, the ratio R between the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 and the blade portion diameter D2 of the impeller 30 is set to 0.879 (gap Δ = 0.8 mm), and the inlet 15 to the measuring chamber 11 is set. The rotation rising time T1 was measured by changing the connection angle of the rotation.

比較例として、流入口15が、計量室11の一端で内周面17と接線として連接されている場合は、羽根車30の回転立ち上がり時間T1が、T1=0.4104秒(図10参照)であり、本実施例による羽根車30の回転立ち上がり時間T1=0.2751(図8(a)参照)秒より長くなった。
比較例の場合は、流入口15から流入した流体は、羽根部32に略垂直に当たり羽根車30が回転するが、流入口15から流出口16の領域において、コアンダ効果は発生しない。
一方、本実施例に係る流量センサ1の計量室11の構成によれば、コアンダ効果により、流入口15から計量室11内に流入した流体は、流路18の内周面17に付着しながら進行し、流出口16へと流出する為に、この領域の圧力は低くなる。従って、内周面17の境界における流体の流速は速くなり、羽根車30の回転抵抗を少なくし、微小流量変化や瞬間的な流量変動を正確に計測することができた。
As a comparative example, when the inlet 15 is connected as a tangent to the inner peripheral surface 17 at one end of the measuring chamber 11, the rotation rising time T1 of the impeller 30 is T1 = 0.4104 seconds (see FIG. 10). Thus, the rotational rise time T1 = 0.2751 (see FIG. 8 (a)) of the impeller 30 according to the present embodiment is longer than seconds.
In the case of the comparative example, the fluid flowing in from the inflow port 15 hits the blade portion 32 substantially perpendicularly and the impeller 30 rotates, but no Coanda effect occurs in the region from the inflow port 15 to the outflow port 16.
On the other hand, according to the configuration of the measuring chamber 11 of the flow rate sensor 1 according to the present embodiment, the fluid flowing into the measuring chamber 11 from the inlet 15 is attached to the inner peripheral surface 17 of the flow path 18 due to the Coanda effect. As it travels and flows out to the outlet 16, the pressure in this region is reduced. Therefore, the flow velocity of the fluid at the boundary of the inner peripheral surface 17 is increased, the rotational resistance of the impeller 30 is reduced, and a minute flow rate change and an instantaneous flow rate change can be accurately measured.

本実施形態に係る流量センサ1の流入口15及び流出口16は、計量室11との、流体の流れと直角方向の断面形状が円形で、その内径をd1、計量室11の内周面17の直径をD1としたときに、5≦D1/d1の関係を有して連接されている。
計量室11の内周面17の直径D1に対して、流入口15の内径d1が大きすぎると、微小流量の領域で、流速が低くなり羽根車30の回転数が少なくなる。その結果、検出素子Sで検出されるパルス数が減り、計測の分解能が低下しやすい。以下、実施例として具体的に説明する。
The inflow port 15 and the outflow port 16 of the flow rate sensor 1 according to the present embodiment have a circular cross-sectional shape perpendicular to the fluid flow with respect to the measuring chamber 11, the inner diameter is d 1, and the inner peripheral surface 17 of the measuring chamber 11. When the diameters of these are D1, they are connected with a relationship of 5 ≦ D1 / d1.
If the inner diameter d1 of the inflow port 15 is too large with respect to the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11, the flow velocity becomes low and the rotational speed of the impeller 30 decreases in the region of a minute flow rate. As a result, the number of pulses detected by the detection element S decreases, and the measurement resolution is likely to decrease. Hereinafter, it demonstrates concretely as an Example.

「実施例3」
流量をQ(ml/分)、1パルス当たりの流量をM(ml/分)、単位時間当たりの出力パルス数をP(Hz)としたときに、流量は次の(6)式で表される。
Q=M×P・・・(6)
計量室11の内周面17の直径D1に対して、流入口15の内径d1が大きすぎる場合、微小流量の領域で、流速が低くなり羽根車30の回転数が少なくなる。その結果、検出素子Sで検出される出力パルス数が減り、計測の分解能が低下する。
流量が少なくなり、単位時間当たりの出力パルス数が少ない場合、具体的には出力パルス数Pが1Hzないし2Hzと小さい場合は、微少な流量があるにもかかわらず、流量が0(ml/分)と誤判断されることがある(図11参照)。微少流量の領域での計測精度を向上させるために、演算処理において出力パルス数Pを平均化処理し、平均化の回数を上げた場合は処理時間がかかり応答性が低下する。又、一定の流量であっても、計数される出力パルス数Pには、標準偏差として0.2Hz程度のバラツキは避けられず、微少流量領域においては、出力パルス数Pは3Hz以上あることが望ましい(図11参照)。
"Example 3"
When the flow rate is Q (ml / min), the flow rate per pulse is M (ml / min), and the number of output pulses per unit time is P (Hz), the flow rate is expressed by the following equation (6). The
Q = M × P (6)
When the inner diameter d1 of the inflow port 15 is too large with respect to the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11, the flow velocity is reduced and the rotational speed of the impeller 30 is reduced in a minute flow rate region. As a result, the number of output pulses detected by the detection element S decreases, and the measurement resolution decreases.
When the flow rate decreases and the number of output pulses per unit time is small, specifically when the output pulse number P is as small as 1 Hz to 2 Hz, the flow rate is 0 (ml / min) even though there is a minute flow rate. ) May be erroneously determined (see FIG. 11). In order to improve the measurement accuracy in the minute flow rate region, if the number of output pulses P is averaged in the arithmetic processing and the number of times of averaging is increased, the processing time is increased and the responsiveness is lowered. In addition, even if the flow rate is constant, the output pulse number P to be counted cannot avoid a variation of about 0.2 Hz as a standard deviation, and the output pulse number P may be 3 Hz or more in a minute flow rate region. Desirable (see FIG. 11).

本実施形態に係る流量センサ1の流入口15の内径d1を変化させて、流体を、流入口15から計量室11に、微小流量領域に相当する100ml/分の流量で流入させた場合の噴出される流体の流速と、羽根車30の回転に応じて出力される出力パルス数を計測した。具体的には、計量室11の内周面17の直径D1をD1=13.2mmとし、流入口15の内径d1を、それぞれ、d1=2.3mm、2.4mm、2.5mm、2.6mm、2.7mmと変化させ、それぞれの噴出される流体の流速と、羽根車30の回転に応じて出力される出力パルス数を計測し、その結果を図11に示す。 The ejection when the inner diameter d1 of the inlet 15 of the flow rate sensor 1 according to the present embodiment is changed and the fluid flows from the inlet 15 into the measuring chamber 11 at a flow rate of 100 ml / min corresponding to the minute flow rate region. The number of output pulses output in accordance with the flow velocity of the fluid to be rotated and the rotation of the impeller 30 was measured. Specifically, the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 is D1 = 13.2 mm, and the inner diameter d1 of the inflow port 15 is d1 = 2.3 mm, 2.4 mm, 2.5 mm, 2. The flow rate of each fluid to be ejected and the number of output pulses output in accordance with the rotation of the impeller 30 are measured, and the results are shown in FIG.

本実施例においては、d1=2.7mmの場合、流速は292mm/秒と低くなり、平均出力パルス数Pは3.8Hzであったが、バラツキを考慮しても3.2Hzの出力パルス数Pが得られる。d1=2.6mmの場合、流速は315mm/秒、出力パルス数Pは4.0Hz、バラツキを考慮した出力パルス数Pは3.4Hzであった。d1=2.5mmの場合は、流速は341mm/秒、出力パルス数Pは4.08Hz、d1=2.4mmの場合、流速は370mm/秒、出力パルス数Pは4.3Hzであり、微小流量の領域でバラツキを考慮しても、高い分解能が得られた。特に、始動流量が40(ml/分)と、極めて微少流量の領域から、流体の流れを検知することができた。 In this embodiment, when d1 = 2.7 mm, the flow velocity is as low as 292 mm / second, and the average output pulse number P was 3.8 Hz. However, the number of output pulses of 3.2 Hz is considered even if variation is considered. P is obtained. In the case of d1 = 2.6 mm, the flow rate was 315 mm / second, the number P of output pulses was 4.0 Hz, and the number P of output pulses considering variation was 3.4 Hz. When d1 = 2.5 mm, the flow rate is 341 mm / second, the output pulse number P is 4.08 Hz, and when d1 = 2.4 mm, the flow rate is 370 mm / second, and the output pulse number P is 4.3 Hz. High resolution was obtained even when variations were considered in the flow rate region. In particular, the flow of the fluid could be detected from a very small flow rate region where the starting flow rate was 40 (ml / min).

一方、d1=2.3mmの場合、流速は404mm/秒と速くなり、出力パルス数Pも4.5Hzであり、高い分解能が得られたが、流入口15の内径d1が小さすぎると、壁面抵抗による圧力損失が大きく、かつ、流量が多い領域では、流速が速くなり、羽根車30の回転が必要以上に高くなる。その結果、羽根車軸の摩耗が大きくなり、流量センサの計測寿命に悪影響を及ぼす。
すなわち、流入口15の内径d1と、計量室11の内周面17の直径D1を、5≦D1/d1を満たして形成することによって、微少流量であっても、応答性を維持しながら高い分解能を得ることができた。
On the other hand, when d1 = 2.3 mm, the flow velocity is as fast as 404 mm / second and the output pulse number P is 4.5 Hz, and high resolution is obtained. However, if the inner diameter d1 of the inlet 15 is too small, In a region where the pressure loss due to resistance is large and the flow rate is large, the flow velocity becomes high, and the rotation of the impeller 30 becomes higher than necessary. As a result, wear of the impeller shaft increases, which adversely affects the measurement life of the flow sensor.
That is, by forming the inner diameter d1 of the inlet 15 and the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 so as to satisfy 5 ≦ D1 / d1, it is high while maintaining responsiveness even at a minute flow rate. The resolution could be obtained.

(4)効果
図12に本実施形態に係る流量センサ1の出力性能の一例を計測流量(ml/分)と出力パルス数(Hz)及び羽根車30の回転数(rpm)との関係として示す。この出力性能から、微少流量域である100(ml/分)から流量の多い600(ml/分)の領域まで安定した出力パルス数が得られた。
本実施形態に係る流量センサ1は、計量室11の内周面17と、羽根車30の羽根部32の先端の回転軌跡で仮想される空間が、流路18として形成されている。流路18の内周面17は、流入口15の内壁15aが連接されたA点から、流出口16の内壁16aが連接されたB点の間の領域において、外側(Y方向)に湾曲している。
又、流入口15は、第2の対称軸(X−X)と5度ないし10度の角度で連接され、流出口16は、軸心a2が第1の対称軸(Y−Y)と直交(第2の対称軸(X−X)と平行)して連接されている。その為、流入口15と流出口16とを略直線状に配置しながら、流入口15から、計量室11の内周面17を経由して、流出口16までの流路を広く形成することができる。
従って、流入口15から流路18へ噴出された流体は、羽根部32の側面先端部32aに当たり、最大の回転モーメントで羽根車30を回転させることができる。更に、コアンダ効果によって、流路18の内周面17に付着しながら進行し、流出口16へと流出する為に、この領域の圧力は低くなる。その結果、内周面17の境界における流体の流速は速くなり、微少流量であっても、羽根車30に確実に回転させることができる。
(4) Effect FIG. 12 shows an example of the output performance of the flow sensor 1 according to this embodiment as the relationship between the measured flow rate (ml / min), the number of output pulses (Hz), and the rotational speed (rpm) of the impeller 30. . From this output performance, a stable number of output pulses was obtained from 100 (ml / min), which is a very small flow rate range, to 600 (ml / min), where the flow rate is high.
In the flow sensor 1 according to the present embodiment, a space virtually formed by a rotation locus of the inner peripheral surface 17 of the measuring chamber 11 and the tip of the blade portion 32 of the impeller 30 is formed as the flow path 18. The inner peripheral surface 17 of the flow path 18 is curved outward (Y direction) in a region between point A where the inner wall 15a of the inflow port 15 is connected and point B where the inner wall 16a of the outflow port 16 is connected. ing.
The inflow port 15 is connected to the second axis of symmetry (XX) at an angle of 5 to 10 degrees, and the outflow port 16 has an axis a2 orthogonal to the first axis of symmetry (YY). They are connected in parallel (parallel to the second axis of symmetry (XX)). Therefore, the flow path from the inflow port 15 to the outflow port 16 through the inner peripheral surface 17 of the measuring chamber 11 is widely formed while the inflow port 15 and the outflow port 16 are arranged substantially linearly. Can do.
Accordingly, the fluid ejected from the inflow port 15 to the flow path 18 hits the side surface tip portion 32a of the blade portion 32 and can rotate the impeller 30 with the maximum rotational moment. Furthermore, the coanda effect proceeds while adhering to the inner peripheral surface 17 of the flow path 18 and flows out to the outlet 16, so that the pressure in this region is lowered. As a result, the flow velocity of the fluid at the boundary of the inner peripheral surface 17 is increased, and the impeller 30 can be reliably rotated even at a minute flow rate.

又、計量室11の内周面17の直径D1と、羽根車30の羽根部直径D2との比Rを0.87≦R≦0.93として、計量室11の内周面17と、羽根部32の外側端とに間隙を形成している。その結果、羽根車30の回転抵抗を少なくし、微小流量変化や瞬間的な流量変動を正確に計測することができる。 The ratio R between the diameter D1 of the inner peripheral surface 17 of the measuring chamber 11 and the blade portion diameter D2 of the impeller 30 is set to 0.87 ≦ R ≦ 0.93, and the inner peripheral surface 17 of the measuring chamber 11 and the blade A gap is formed at the outer end of the portion 32. As a result, the rotational resistance of the impeller 30 can be reduced, and minute flow rate changes and instantaneous flow rate fluctuations can be accurately measured.

流路内は断面形状が一定であり、流入口15及び流出口16は同一内径に形成されている。その内径をd1、計量室11の内周面17の直径をD1としたときに、5≦D1/d1の関係を有している。
その結果、微小流量の領域でも、羽根車30の回転数を高くして、計測のための分解能を高くすることができる。
The cross-sectional shape is constant in the flow path, and the inflow port 15 and the outflow port 16 are formed to have the same inner diameter. When the inner diameter is d1 and the diameter of the inner peripheral surface 17 of the measuring chamber 11 is D1, the relationship is 5 ≦ D1 / d1.
As a result, it is possible to increase the rotational speed of the impeller 30 and increase the resolution for measurement even in the region of a minute flow rate.

複数の羽根部32は、ボス軸部31に対して、放射状に配置された6枚の羽根から構成され、各羽根の外側端の角部は、羽根車30の回転下流側がR形状に形成されている。従って、羽根車30の回転に伴う流体の抵抗を低減し、特に流体の微少流量域においても、羽根車の回転効率を向上させることができる。   The plurality of blade portions 32 are composed of six blades arranged radially with respect to the boss shaft portion 31, and the corners of the outer ends of the blades are formed in an R shape on the downstream side of the impeller 30. ing. Therefore, the resistance of the fluid accompanying the rotation of the impeller 30 can be reduced, and the rotational efficiency of the impeller can be improved especially in the minute flow rate region of the fluid.

羽根車30は、ポリアクリロニトリル(PAN)系の炭素繊維が充填されたポリアセタール(POM)を用いて射出成形で作成されている。従って、炭素繊維が個体潤滑剤として作用し、羽根車30の流体中での摩擦摩耗特性を良好に維持することができる。   The impeller 30 is made by injection molding using polyacetal (POM) filled with polyacrylonitrile (PAN) carbon fiber. Therefore, the carbon fiber acts as a solid lubricant, and the friction and wear characteristics in the fluid of the impeller 30 can be maintained well.

以上、本発明の実施形態について図面を参照しながら詳述したが、具体的な構成はこれらの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、検出素子Sの一例として、ホールIC等の磁気検出素子を、羽根車30には、フェライト磁性体を混入した合成樹脂で形成されたリング状の磁性体33を例に挙げて説明したが、この組み合わせによる検出方法を備えた流量センサ1に限定されるものではない。例えば、羽根車30に、複数の切欠き部が形成された遮光版を設け、検出素子Sとしてフォトインタラプタを用いて構成された流量センサとしてもよい。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and various modifications are made without departing from the scope of the present invention. Is possible.
For example, in the above embodiment, as an example of the detection element S, a magnetic detection element such as a Hall IC is used, and the impeller 30 is an example of a ring-shaped magnetic body 33 formed of a synthetic resin mixed with a ferrite magnetic body. Although mentioned and demonstrated, it is not limited to the flow sensor 1 provided with the detection method by this combination. For example, the impeller 30 may be provided with a light shielding plate in which a plurality of notches are formed, and the flow rate sensor configured using a photo interrupter as the detection element S may be used.

産業上の利用分野Industrial application fields

本発明の対象の流量センサは、シャワートイレ、浄水器、瞬間湯沸器等の流量検出用に広く用いることができる。   The flow rate sensor of the present invention can be widely used for flow rate detection of shower toilets, water purifiers, instantaneous water heaters, and the like.

1、100、200、300・・・流量センサ
10・・・本体
11、110・・・計量室
12・・・スラスト軸受部(本体)
15、150・・・流入口
16、160・・・流出口
17、170・・・内周面
18・・・流路
20・・・蓋体
21・・・基板収納部
22・・・円筒体
23・・・ニードル部(蓋体)
30・・・羽根車
31・・・ボス軸部
32・・・羽根部
33・・・磁性体
35・・・ニードル部(羽根車)
38・・・スラスト軸受部(羽根車)
40・・・検知基板
50・・・Oリング
S・・・検出素子
DESCRIPTION OF SYMBOLS 1, 100, 200, 300 ... Flow sensor 10 ... Main body 11, 110 ... Measurement chamber 12 ... Thrust bearing part (main body)
15, 150 ... Inlet 16, 160 ... Outlet 17, 170 ... Inner peripheral surface 18 ... Channel 20 ... Lid 21 ... Substrate storage part 22 ... Cylindrical body 23 ... Needle part (lid)
30 ... Impeller 31 ... Boss shaft portion 32 ... Blade portion 33 ... Magnetic body 35 ... Needle portion (impeller)
38 ... Thrust bearing (impeller)
40 ... Detection substrate 50 ... O-ring S ... Detection element

前記課題を解決するために、請求項1に記載の流量センサは、
流入口と流出口を有し、内部に流体を流通させる円形の計量室と、
前記計量室の内部に軸支され、前記計量室の内部を流通する前記流体の圧力を羽根部に受けて回転する羽根車と、
前記羽根車の回転による磁束変化の頻度を検知する検知部と、を備え、
前記計量室内において、前記流入口と前記流出口の間に、前記計量室の内周面と前記羽根車の前記羽根部の先端の回転軌跡とで仮想される空間が前記流体の流路として形成され、
前記流路内において、前記計量室の内周面が前記流入口及び前記流出口の内壁面よりも外側へ屈曲し
前記流入口と前記流出口が、前記計量室と、前記流入口の内壁面の一端が前記計量室の内周面と連接する点(A)と前記計量室の中心(O)とを結ぶ線の前記計量室の中心(O)を通る第1の対称軸(Y−Y)と成す角度をθ1、前記流出口の内壁面の一端が前記計量室の内周面と連接する点(B)と前記計量室の中心(O)とを結ぶ線の前記第1の対称軸(Y−Y)と成す角度をθ2、前記計量室の内周面の直径をD1、前記羽根車の羽根部直径をD2、とするとき、前記流入口の軸心(a1)は前記計量室の中心(O)を通り前記第1の対称軸(Y−Y)と直交する第2の対称軸(X−X)と5度ないし10度の角度をなし、前記流出口の軸心(a2)は前記第1の対称軸(Y−Y)と直交し、
5度≦(θ1−θ2)≦10度、
D2/D1<COSθ1、
D2/D1<COSθ2、
の関係を満たして連接されている、
ことを特徴とする。
In order to solve the above-mentioned problem, the flow sensor according to claim 1,
A circular measuring chamber having an inlet and an outlet and for circulating a fluid therein;
An impeller that is pivotally supported within the measuring chamber and rotates by receiving the pressure of the fluid flowing through the measuring chamber at a blade portion;
A detection unit that detects the frequency of magnetic flux change due to the rotation of the impeller,
In the measuring chamber, a space virtually formed by the inner circumferential surface of the measuring chamber and the rotation locus of the tip of the blade portion of the impeller is formed as the fluid flow path between the inlet and the outlet. And
In the flow path, the inner peripheral surface of the measuring chamber is bent outward from the inner wall surfaces of the inlet and the outlet ,
A line connecting the inlet and the outlet, the measuring chamber, and a point (A) where one end of the inner wall of the inlet is connected to the inner peripheral surface of the measuring chamber and the center (O) of the measuring chamber. The angle formed with the first axis of symmetry (YY) passing through the center (O) of the measuring chamber is θ1, and one end of the inner wall surface of the outlet is connected to the inner peripheral surface of the measuring chamber (B) Is the angle between the first axis of symmetry (Y-Y) of the line connecting the center of the measuring chamber (O) and θ2, the diameter of the inner peripheral surface of the measuring chamber is D1, and the blade diameter of the impeller Is D2, and the axis (a1) of the inlet port passes through the center (O) of the measuring chamber and passes through a second symmetry axis (XX) that is orthogonal to the first symmetry axis (YY). ) And an angle of 5 to 10 degrees, and the axial center (a2) of the outlet is orthogonal to the first symmetry axis (YY),
5 degrees ≦ (θ1-θ2) ≦ 10 degrees,
D2 / D1 <COSθ1,
D2 / D1 <COSθ2,
Are connected to meet the relationship
It is characterized by that.

請求項1に記載の発明によれば、最大の回転モーメントで羽根車を回転させることができる。更に、コアンダ効果によって、流体が流路の内周面に付着しながら流出口へと流出する為に、流路内で羽根車の回転抵抗が少なくなり、微少流量であっても、羽根車を確実に回転させることができる。その結果、微小流量変化や瞬間的な流量変動を正確に計測することができる。
According to invention of Claim 1 , an impeller can be rotated with the largest rotational moment. Furthermore, due to the Coanda effect, the fluid flows out to the outlet while adhering to the inner peripheral surface of the flow path, so that the rotational resistance of the impeller is reduced in the flow path, and the impeller is reduced even at a minute flow rate. It can be rotated reliably. As a result, it is possible to accurately measure minute flow rate changes and instantaneous flow rate fluctuations.

請求項に記載の発明は、請求項1に記載の流量センサにおいて、
前記計量室の内周面の直径D1と、前記羽根車の羽根部直径D2との比(D2/D1)が、0.87≦D2/D1≦0.93である、
ことを特徴とする。
The invention according to claim 2 is the flow sensor according to claim 1,
The ratio (D2 / D1) between the diameter D1 of the inner peripheral surface of the measuring chamber and the blade diameter D2 of the impeller is 0.87 ≦ D2 / D1 ≦ 0.93.
It is characterized by that.

請求項に記載の発明によれば、羽根車の計量室内での回転抵抗を最小にし、計測精度を高くすることができる。
According to the second aspect of the present invention, the rotational resistance of the impeller in the measuring chamber can be minimized and the measurement accuracy can be increased.

請求項に記載の発明は、請求項1又は2に記載の流量センサにおいて、
前記流入口の内径をd1としたときに、5≦D1/d1である、
ことを特徴とする。
The invention according to claim 3 is the flow sensor according to claim 1 or 2 ,
When the inner diameter of the inlet is d1, 5 ≦ D1 / d1.
It is characterized by that.

請求項に記載の発明によれば、微小流量の領域でも、羽根車の回転数を高くして、計測のための分解能を高くすることができる。
According to the third aspect of the present invention, it is possible to increase the rotation speed of the impeller and increase the resolution for measurement even in the region of a minute flow rate.

本実施形態に係る流量センサの縦断面図である。It is a longitudinal cross-sectional view of the flow sensor which concerns on this embodiment. (a)は本実施形態に係る流量センサの平面視の断面図、(b)は平面視の部分拡大断面図である。(A) is sectional drawing of the planar view of the flow sensor which concerns on this embodiment, (b) is a partial expanded sectional view of planar view. 本実施形態に係る流量センサを上方から平面視した本体の断面模式図である。It is the cross-sectional schematic diagram of the main body which planarly viewed the flow sensor which concerns on this embodiment from upper direction. (a)は、本実施形態に係る流量センサの羽根車の磁性体側に視点を設けた斜視図、(b)は、本実施形態に係る流量センサの羽根車のニードル部に視点を設けた斜視図である。(A) is the perspective view which provided the viewpoint in the magnetic body side of the impeller of the flow sensor which concerns on this embodiment, (b) The perspective which provided the viewpoint in the needle part of the impeller of the flow sensor which concerns on this embodiment. FIG. (a)は、本実施形態に係る流量センサの羽根車の磁性体側に視点を設けた平面図、(b)は、本実施形態に係る流量センサの羽根車のE−E矢視の断面図である。(A) is the top view which provided the viewpoint in the magnetic body side of the impeller of the flow sensor which concerns on this embodiment, (b) is sectional drawing of the EE arrow of the impeller of the flow sensor which concerns on this embodiment. It is. 本実施形態に係る流量センサにおける流体の流れを説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating the flow of the fluid in the flow sensor which concerns on this embodiment. 本実施形態に係る流量センサにおける流体の流れを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the flow of the fluid in the flow sensor which concerns on this embodiment. 本実施形態に係る流量センサの回転立ち上がり時間と、計量室の内周面と羽根車との間隙との関係を説明するための図である。It is a figure for demonstrating the relationship between the rotation rise time of the flow sensor which concerns on this embodiment, and the clearance gap between the internal peripheral surface of a measurement chamber, and an impeller. 本実施形態に係る流量センサの計量室内における流体の逆流を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the backflow of the fluid in the measurement chamber of the flow sensor which concerns on this embodiment. 比較例1に係る流量センサの回転立ち上がり時間を説明するための図である。It is a figure for demonstrating the rotation rise time of the flow sensor which concerns on the comparative example 1. FIG. 本実施形態に係る流量センサの流入口の内径と検出素子で出力される出力パルス数との関係を示す図である。It is a figure which shows the relationship between the internal diameter of the inflow port of the flow sensor which concerns on this embodiment, and the number of output pulses output by a detection element. 本実施形態に係る流量センサにおける通水流量と検出素子で出力される出力パルス数及び羽根車の回転数との関係の一例を示す図である。It is a figure which shows an example of the relationship between the water flow volume in the flow sensor which concerns on this embodiment, the number of output pulses output by a detection element, and the rotation speed of an impeller. (a)は、比較例1に係る流量センサの計量室の断面模式図、(b)は、比較例2に係る流量センサの計量室の断面模式図、(c)は、比較例3に係る流量センサの計量室の断面模式図である。(A) is a schematic cross-sectional view of the measuring chamber of the flow sensor according to Comparative Example 1, (b) is a schematic cross-sectional view of the measuring chamber of the flow sensor according to Comparative Example 2, and (c) is related to Comparative Example 3. It is a cross-sectional schematic diagram of the measurement chamber of a flow sensor.

比較例として、流入口15が、計量室11の一端で内周面17と接線として連接されている場合は、羽根車30の回転立ち上がり時間T1が、T1=0.4104秒(図10参照)であり、本実施例による羽根車30の回転立ち上がり時間T1=0.2751(図8(a)参照)秒より長くなった。
比較例の場合は、流入口15から流入した流体は、羽根部32に略垂直に当たり羽根車30が回転するが、流入口15から流出口16の領域において、コアンダ効果は発生しない。
一方、本実施例に係る流量センサ1の計量室11の構成によれば、コアンダ効果により、流入口15から計量室11内に流入した流体は、流路18の内周面17に付着しながら進行し、流出口16へと流出する為に、この領域の圧力は低くなる。従って、内周面17の境界における流体の流速は速くなり、羽根車30の回転抵抗を少なくし、微小流量変化や瞬間的な流量変動を正確に計測することができた。
As Comparative Example 1, the inlet 15 0, if it is connected as the inner peripheral surface 17 0 the tangent at one end of the metering chamber 11 0, the rotation rising time T1 of the impeller 30, T1 = .4104 seconds ( 10), which is longer than the rotation rise time T1 = 0.2751 (see FIG. 8A) seconds of the impeller 30 according to the present embodiment.
For Comparative Example 1, the fluid flowing from the inlet port 15 0 is the impeller 30 Upon substantially perpendicular to the blade unit 32 is rotated, in the region of the outlet 16 0 from the inlet 15 0, the Coanda effect does not occur .
On the other hand, according to the configuration of the measuring chamber 11 of the flow rate sensor 1 according to the present embodiment, the fluid flowing into the measuring chamber 11 from the inlet 15 is attached to the inner peripheral surface 17 of the flow path 18 due to the Coanda effect. As it travels and flows out to the outlet 16, the pressure in this region is reduced. Therefore, the flow velocity of the fluid at the boundary of the inner peripheral surface 17 is increased, the rotational resistance of the impeller 30 is reduced, and a minute flow rate change and an instantaneous flow rate change can be accurately measured.

Claims (6)

流入口と流出口を有し、内部に流体を流通させる円形の計量室と、
前記計量室の内部に軸支され、前記計量室の内部を流通する前記流体の圧力を羽根部に受けて回転する羽根車と、
前記羽根車の回転による磁束変化の頻度を検知する検知部と、を備え、
前記計量室内において、前記流入口と前記流出口の間に、前記計量室の内周面と前記羽根車の前記羽根部の先端の回転軌跡とで仮想される空間が前記流体の流路として形成され、
前記流路内において、前記計量室の内周面が前記流入口及び前記流出口の内壁面よりも外側へ屈曲している、
ことを特徴とする流量センサ。
A circular measuring chamber having an inlet and an outlet and for circulating a fluid therein;
An impeller that is pivotally supported within the measuring chamber and rotates by receiving the pressure of the fluid flowing through the measuring chamber at a blade portion;
A detection unit that detects the frequency of magnetic flux change due to the rotation of the impeller,
In the measuring chamber, a space virtually formed by the inner circumferential surface of the measuring chamber and the rotation locus of the tip of the blade portion of the impeller is formed as the fluid flow path between the inlet and the outlet. And
In the flow path, the inner peripheral surface of the measurement chamber is bent outward from the inner wall surfaces of the inlet and the outlet.
A flow sensor characterized by that.
前記流入口と前記流出口が、前記計量室と、前記流入口の内壁面の一端が前記計量室の内周面と連接する点(A)と前記計量室の中心(O)とを結ぶ線の前記計量室の中心(O)を通る第1の対称軸(Y−Y)と成す角度をθ1、前記流出口の内壁面の一端が前記計量室の内周面と連接する点(B)と前記計量室の中心(O)とを結ぶ線の前記第1の対称軸(Y−Y)と成す角度をθ2、前記計量室の内周面の直径をD1、前記羽根車の羽根部直径をD2、とするとき、前記流入口の軸心(a1)は前記計量室の中心(O)を通り前記第1の対称軸(Y−Y)と直交する第2の対称軸(X−X)と5度ないし10度の角度をなし、前記流出口の軸心(a2)は前記第1の対称軸(Y−Y)と直交し、
5度≦(θ1−θ2)≦10度、
D2/D1<COSθ1、
D2/D1<COSθ2、
の関係を満たして連接されている、
ことを特徴とする請求項1に記載の流量センサ。
A line connecting the inlet and the outlet, the measuring chamber, and a point (A) where one end of the inner wall of the inlet is connected to the inner peripheral surface of the measuring chamber and the center (O) of the measuring chamber. The angle formed with the first axis of symmetry (YY) passing through the center (O) of the measuring chamber is θ1, and one end of the inner wall surface of the outlet is connected to the inner peripheral surface of the measuring chamber (B) Is the angle between the first axis of symmetry (Y-Y) of the line connecting the center of the measuring chamber (O) and θ2, the diameter of the inner peripheral surface of the measuring chamber is D1, and the blade diameter of the impeller Is D2, and the axis (a1) of the inlet port passes through the center (O) of the measuring chamber and passes through a second symmetry axis (XX) that is orthogonal to the first symmetry axis (YY). ) And an angle of 5 to 10 degrees, and the axial center (a2) of the outlet is orthogonal to the first symmetry axis (YY),
5 degrees ≦ (θ1-θ2) ≦ 10 degrees,
D2 / D1 <COSθ1,
D2 / D1 <COSθ2,
Are connected to meet the relationship
The flow sensor according to claim 1.
前記計量室の内周面の直径D1と、前記羽根車の羽根部直径D2との比(D2/D1)が、0.87≦D2/D1≦0.93である、
ことを特徴とする請求項1又は2に記載の流量センサ。
The ratio (D2 / D1) between the diameter D1 of the inner peripheral surface of the measuring chamber and the blade diameter D2 of the impeller is 0.87 ≦ D2 / D1 ≦ 0.93.
The flow sensor according to claim 1 or 2, wherein
前記流入口の内径をd1としたときに、5≦D1/d1である、
ことを特徴とする請求項1ないし3のいずれか1項に記載の流量センサ。
When the inner diameter of the inlet is d1, 5 ≦ D1 / d1.
The flow sensor according to any one of claims 1 to 3, wherein the flow sensor is provided.
前記羽根車は、ボス軸部と、複数の羽根部と、磁性体と、からなり、
前記羽根部は、前記ボス軸部に対して放射状に等間隔で形成され、
その外側端の角部の回転方向下流側がR形状に形成されている、
ことを特徴とする請求項1ないし4のいずれか1項に記載の流量センサ。
The impeller includes a boss shaft portion, a plurality of blade portions, and a magnetic body,
The blade portions are formed radially at equal intervals with respect to the boss shaft portion,
The downstream side in the rotational direction of the corner of the outer end is formed in an R shape,
The flow sensor according to any one of claims 1 to 4, wherein:
前記羽根車が、ポリアクリロニトリル系の炭素繊維が充填されたポリアセタールを用いて射出成形で作成されている、
ことを特徴とする請求項1ないし5のいずれか1項に記載の流量センサ。
The impeller is made by injection molding using polyacetal filled with polyacrylonitrile-based carbon fiber,
The flow sensor according to any one of claims 1 to 5, wherein:
JP2012034603A 2012-02-21 2012-02-21 Flow sensor Active JP5043245B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034603A JP5043245B1 (en) 2012-02-21 2012-02-21 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034603A JP5043245B1 (en) 2012-02-21 2012-02-21 Flow sensor

Publications (2)

Publication Number Publication Date
JP5043245B1 JP5043245B1 (en) 2012-10-10
JP2013170912A true JP2013170912A (en) 2013-09-02

Family

ID=47087605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034603A Active JP5043245B1 (en) 2012-02-21 2012-02-21 Flow sensor

Country Status (1)

Country Link
JP (1) JP5043245B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091999A (en) * 2014-01-20 2016-08-03 다카하타 푸레시죤 재팬 가부시키가이샤 Impeller support member, impeller support structure using same, and water supply meter
JP2016205311A (en) * 2015-04-27 2016-12-08 株式会社川本製作所 Water supply system and method for controlling water supply system
JP2021001844A (en) * 2019-06-24 2021-01-07 アラム株式会社 Flow monitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137352A (en) * 2013-01-18 2014-07-28 Tgk Co Ltd Detection unit and hot water supply system
CN113155401B (en) * 2021-02-24 2022-12-20 中国空气动力研究与发展中心空天技术研究所 Rotatable linear flow measuring device and measuring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133127U (en) * 1986-02-10 1987-08-22
JPH06160403A (en) * 1992-11-16 1994-06-07 Nippon Autom Kk Pulse generator
JPH0755514A (en) * 1993-08-17 1995-03-03 Techno Excel Co Ltd Flowmeter
JPH11118820A (en) * 1997-10-20 1999-04-30 Takurou Machino Water flow detector and health tumultus notification device
JP3649316B2 (en) * 1998-08-03 2005-05-18 テクノエクセル株式会社 Fluid detection device
JP4641764B2 (en) * 2004-08-27 2011-03-02 有限会社シーエムエムディ Impeller type flow meter
JP2006162296A (en) * 2004-12-02 2006-06-22 Tokyo Keiso Co Ltd Impeller flow meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091999A (en) * 2014-01-20 2016-08-03 다카하타 푸레시죤 재팬 가부시키가이샤 Impeller support member, impeller support structure using same, and water supply meter
KR101871612B1 (en) * 2014-01-20 2018-06-26 다카하타 푸레시죤 재팬 가부시키가이샤 Impeller support member, impeller support structure using same, and water supply meter
JP2016205311A (en) * 2015-04-27 2016-12-08 株式会社川本製作所 Water supply system and method for controlling water supply system
JP2021001844A (en) * 2019-06-24 2021-01-07 アラム株式会社 Flow monitor
JP7089289B2 (en) 2019-06-24 2022-06-22 アラム株式会社 Flow monitor

Also Published As

Publication number Publication date
JP5043245B1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5043245B1 (en) Flow sensor
KR101790326B1 (en) electric water metering device
US11624636B2 (en) Turbine design for flow meter
KR200443454Y1 (en) Flowmeter having Antipollution Element
CN205719117U (en) Fluid flowmeter and unmanned plane
EP2239544A3 (en) Measuring capsule for fluid counter and fluid counter
KR102421713B1 (en) flow meter
US20150362349A1 (en) Throughflow measurement device for a beverage preparation machine
KR102042345B1 (en) Rotary magnetic flowmeter
JP7159754B2 (en) Impeller type flow meter
JP2014021026A (en) Axial flow type flow sensor
KR101519412B1 (en) Volumetric Flow Meter
JP2005257309A (en) Turbine flowmeter and fluid rotary machine
JP6659199B2 (en) Flowmeter
KR101519413B1 (en) Volumetric Flow Meter
JP2008209260A (en) Foreign matter corresponding impeller type flow rate sensor
KR101458109B1 (en) Flow rate sensor
CN211954274U (en) Precession vortex flowmeter for eliminating vortex flow
WO2018052294A1 (en) Flowmeter
JP2011117757A (en) Flow sensor
JPH09196715A (en) Flow rate sensor
EA044467B1 (en) AXIAL FLOWMETER
JP3710919B2 (en) Turbine flow meter
JPH0136886B2 (en)
JPH02287217A (en) Flow rate detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5043245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250