JPS63228026A - Flow rate detector - Google Patents

Flow rate detector

Info

Publication number
JPS63228026A
JPS63228026A JP29810786A JP29810786A JPS63228026A JP S63228026 A JPS63228026 A JP S63228026A JP 29810786 A JP29810786 A JP 29810786A JP 29810786 A JP29810786 A JP 29810786A JP S63228026 A JPS63228026 A JP S63228026A
Authority
JP
Japan
Prior art keywords
sphere
spherical body
flow rate
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29810786A
Other languages
Japanese (ja)
Inventor
Yukinori Ozaki
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29810786A priority Critical patent/JPS63228026A/en
Publication of JPS63228026A publication Critical patent/JPS63228026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To eliminate the influence of magnetic field noises, etc., by putting a magnetic detecting element, and a magnet and a spherical body at close distances and providing the magnet on the downstream side of a spherical body receiver. CONSTITUTION:The spherical body 22 abuts on the peripheral abutting surface 23 and peripheral abutting wall 27 of the spherical body receiver 26 at two points by a swivel flow, and swivels and rotates within the range of a vertical surface 21 at right angles to the flow of fluid. The swiveling speed of this spherical body 22 is determined by the swivel flow rate, but the flow passage area of a fixed vane 20 is constant, so the swivel flow rate is proportion to the flow rate. For the purpose, the swiveling speed of the spherical body 22 is detected to measure the flow rate. A magnetism detecting element 38 is applied with a magnetic field having constant intensity from the magnet 39. In this state, when the spherical body 22 passes below the element 38, the direction of the magnetic flux from the magnet 39 to the element 38 is changed by a metallic bead put in the spherical body 22. Consequently, the magnetic field applied to the element 38 decreases in its intensity and the resistance value of the element 38 varies. This variation is led out as variation in voltage and outputted as pulses. Thus, the influence of magnetic noises, etc., entering the element 38 is removed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯装置や温水暖房装置の水又は湯の流量を検
出したり、液体燃料供給装置の燃料流量を検出する目的
で使用する流量検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flow rate detection device used for the purpose of detecting the flow rate of water or hot water in a water heater or hot water heating device, or for detecting the fuel flow rate in a liquid fuel supply device. It is something.

従来の技術 従来この種の装置は各種あるが一般民生機器に適用でき
る簡便な手段としては、流量に比例して回転する羽根車
などの可動体の回転数を電気信号に変換するものがある
。例えば、流路中に軸支持された羽根車を設け、羽根車
の外周に埋設した永久磁石によって管路の外に設けた磁
気検出素子を動作させ、流量に比例した周波数のパルス
出力を得るものがある。この手段では、流路中に軸受が
あり異物の侵入で回転数精度が低下したυ軸受劣化を生
じる恐れや、流路中の永久磁石に流路中を流れて来る鉄
粉ゼどが付着し回転精度の劣下を生じる恐れがある。こ
のため流路中に軸受部と永久磁石を持たない形式の流量
検出装置がある。第3図はその従来例を示すものである
。1はハウジングであり、この材質としては黄銅鍛造品
や青銅鋳物品で構成され肉厚としては2.5mm以上設
けられていた。その理由は加工の際に出来る内部の巣(
空間部)による水洩れを防止する為で法規上定められて
いるものである。ハウジング1の内部には流れに軸流旋
回を生じさせる固定翼2と、この固定翼2の下流側で前
記旋回流によシ流れの方向に対して垂直面で周回する球
体3が設けられている。この球体3は磁石に吸着される
金属やン7ト7工2イト製の球体を内部に設け、その外
周を樹脂モールドして構成されている。前記球体3の下
流には前記球体3が当接する周回当接面4と内側流路5
及び外側流路6を有する球体受け7が設けられている。
BACKGROUND OF THE INVENTION There are various types of devices of this type, but one simple means that can be applied to general consumer equipment is one that converts the rotational speed of a movable body such as an impeller that rotates in proportion to the flow rate into an electrical signal. For example, a shaft-supported impeller is installed in the flow path, and a permanent magnet embedded in the outer periphery of the impeller operates a magnetic detection element installed outside the pipe to obtain a pulse output with a frequency proportional to the flow rate. There is. With this method, there is a risk that there is a bearing in the flow path, and the intrusion of foreign matter may cause deterioration of the υ bearing, which reduces rotational speed accuracy, or that iron powder sludge flowing through the flow path may adhere to the permanent magnet in the flow path. There is a risk of deterioration in rotation accuracy. For this reason, there is a type of flow rate detection device that does not have a bearing part or a permanent magnet in the flow path. FIG. 3 shows a conventional example. Reference numeral 1 denotes a housing, which is made of forged brass or cast bronze and has a wall thickness of 2.5 mm or more. The reason for this is the internal nests (
This is stipulated by law to prevent water leakage from spaces (spaces). The inside of the housing 1 is provided with a fixed blade 2 that causes an axial swirl in the flow, and a sphere 3 that rotates downstream of the fixed blade 2 in a plane perpendicular to the direction of the flow due to the swirl flow. There is. This spherical body 3 is constructed by providing a sphere made of metal or 7/7/2 metal inside which is attracted by a magnet, and molding the outer periphery with resin. Downstream of the sphere 3, there is a circumferential contact surface 4 with which the sphere 3 comes into contact, and an inner flow path 5.
and a spherical receiver 7 having an outer flow path 6.

これら固定翼2、球体3、球体受け7で構成される回転
変換部8は、Cリング9によシ/Sクジング1の内部に
固定されている。10.11は入口、出口を示している
。一方前記ハウジング1外部には前記球体3の回転検出
を行なう検出器12が前記ハウジング1に密着した状態
に取り付けられている。前記検出器12の内部には回路
基板13に半田付された磁気抵抗素子14と、この磁気
検出素子14に磁界を与える磁石15が前記球体3が周
回する範囲の垂直面16、及び球体受け7の上方位置に
設けられている。17は磁気抵抗素子14の出力信号を
増幅した後パルス波形に整形するための電子回路である
。18は球体3が周回する際の当接壁である。
A rotation converter 8 composed of the fixed blade 2, the sphere 3, and the sphere receiver 7 is fixed inside the shaft/seat ring 1 by a C ring 9. 10.11 shows the entrance and exit. On the other hand, a detector 12 for detecting the rotation of the sphere 3 is attached to the outside of the housing 1 in close contact with the housing 1. Inside the detector 12, there is a magnetoresistive element 14 soldered to a circuit board 13, a magnet 15 that provides a magnetic field to the magnetic detection element 14, and a vertical surface 16 in the range around which the sphere 3 revolves, and a sphere receiver 7. It is located above the 17 is an electronic circuit for amplifying the output signal of the magnetoresistive element 14 and then shaping it into a pulse waveform. 18 is a contact wall when the sphere 3 revolves.

次に従来例における動作を説明する。入口10から入っ
た流体は固定翼2で旋回流となる。この旋回流の流速は
固定翼2の流路部面積が一定であるため流量に比例する
。この旋回流の中に置かれた球体3は周回当接面4及び
当接壁18に当接しながら流量に比例した周回回転速度
で垂直面16を周回する。従って球体3の回転を検出す
ることにより流量を計測することができる。検出の原理
は、磁気抵抗素子14に磁界が作用している状態で球体
3が磁気抵抗素子14の下方を通過すると、前記球体3
内部の金属球の影響で磁石15から磁気抵抗素子14に
与えられている磁界の強さが変化する。この磁界の変化
による磁気抵抗素子14の抵抗変化を電圧の変化として
検出し、電子回路17で増幅した後パルス波形に整形し
出力するものである。
Next, the operation in the conventional example will be explained. The fluid entering from the inlet 10 becomes a swirling flow at the fixed blade 2. The flow velocity of this swirling flow is proportional to the flow rate because the flow path area of the fixed blade 2 is constant. The sphere 3 placed in this swirling flow orbits the vertical surface 16 at a rotation speed proportional to the flow rate while contacting the orbiting abutment surface 4 and the abutment wall 18. Therefore, by detecting the rotation of the sphere 3, the flow rate can be measured. The principle of detection is that when the sphere 3 passes below the magnetoresistive element 14 while a magnetic field is acting on the magnetoresistive element 14, the sphere 3
The strength of the magnetic field applied from the magnet 15 to the magnetoresistive element 14 changes due to the influence of the internal metal ball. The change in resistance of the magnetoresistive element 14 due to the change in the magnetic field is detected as a change in voltage, amplified by the electronic circuit 17, and then shaped into a pulse waveform and output.

従来例においては、ハウジング1の肉厚が2.5鴫以上
確保されているため、磁石15が球体3の当接壁18や
球体受け7の上方に設けられても、前記当接壁18にお
ける磁界の強さが弱く流体中を微細な鉄粉が流れても、
当接壁18には鉄粉が付着しないと言う構成上の利点を
有していた。
In the conventional example, since the wall thickness of the housing 1 is ensured to be 2.5 mm or more, even if the magnet 15 is provided above the abutting wall 18 of the sphere 3 or the sphere receiver 7, the wall thickness of the housing 1 is ensured. Even if the strength of the magnetic field is weak and fine iron powder flows through the fluid,
The abutting wall 18 had a structural advantage in that iron powder did not adhere to it.

発明が解決しようとする問題点 しかしながら上記のような構成においては磁気抵抗素子
14の出力信号が小さいと言う欠点を有していた。その
理由は、ハウジング1の肉厚が2.5−以上であるため
磁気抵抗素子14及び磁石15と球体3の距離が遠く、
球体3が磁気抵抗素子14及び磁石15の下方向を通過
した時の前記磁気抵抗素子14抵抗値変化が小さくなる
ためである。その結果出力電圧が小さい。このように出
力信号が小さい為、従来においては増幅率を大きくしパ
ルス出力するものであった。しかしながら微弱信号を増
幅率を大きくして信号処理した際の間領としては流最検
出装置近傍に設けられた交流モータのコ不ルから出る磁
界ノイズや、ノ・ム無線などの強電界ノイズの影響を受
けやすく、最悪の磁気抵抗素子及び磁石と球体の距離を
接近させると共に、前記磁石を球体受けの下流側に設け
た構成としたものである。
Problems to be Solved by the Invention However, the above configuration has the disadvantage that the output signal of the magnetoresistive element 14 is small. The reason is that since the wall thickness of the housing 1 is 2.5- or more, the distance between the magnetoresistive element 14 and the magnet 15 and the sphere 3 is long.
This is because the change in the resistance value of the magnetoresistive element 14 when the sphere 3 passes below the magnetoresistive element 14 and the magnet 15 becomes small. As a result, the output voltage is small. Since the output signal is small in this way, in the past, the amplification factor was increased and pulse output was performed. However, when a weak signal is processed by increasing the amplification factor, there is a problem with magnetic field noise emitted from the coil of an AC motor installed near the current detection device, and strong electric field noise such as from radio waves. The structure is such that the distance between the magnet, which is easily affected by the worst effect, and the magnet and the sphere are made close to each other, and the magnet is provided on the downstream side of the sphere receiver.

作  用 本発明は上記構成によって、球体の周回域における磁界
の強さを強めることにより、球体が磁気抵抗素子の下方
向を通過した際において前記磁気抵抗素子に作用する磁
界の変化量を大きくし、前記磁気抵抗素子の抵抗値変化
量を大きく取るもので、信号出力を大きくすることがで
きるものである。更に磁石を球体受けの下流側に設ける
ことにより流体中の微細鉄粉が流路内壁に付着しても球
体周回域に付着することがなく、球体の周回回転を常に
安定に保ち、精度を確保する。
Effect: With the above configuration, the present invention increases the strength of the magnetic field in the orbiting region of the sphere, thereby increasing the amount of change in the magnetic field acting on the magnetoresistive element when the sphere passes below the magnetoresistive element. , the amount of change in the resistance value of the magnetoresistive element is increased, and the signal output can be increased. Furthermore, by installing a magnet on the downstream side of the sphere receiver, even if fine iron particles in the fluid adhere to the inner wall of the flow path, they will not adhere to the sphere's orbiting area, and the orbital rotation of the sphere will always be kept stable, ensuring accuracy. do.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
。第1図、第2図において19は非磁性薄肉部材からな
り・・ウジングを構成する銅パイプでありその肉厚は0
.5〜1腫程度が用いられる。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In Figures 1 and 2, 19 is a non-magnetic thin-walled member...a copper pipe that constitutes the housing, and its wall thickness is 0.
.. About 5 to 1 tumor is used.

この銅パイプ19の内部には流れに旋回流を生じさせる
旋回手段である固定翼20が設けられている。この固定
翼2oの下流側には旋回流の中で流れの方向に対して垂
直面21で周回する球体22が設けられている。ここで
垂直面21とは前記球体22が周回する周回域(矢印で
示す範囲)の全域を示している。前記球体22の構造と
しては各種あるがその代表例としては、磁石に吸着され
錆に強いスデンレスの薄板を半球にプレス成形し、この
半球プレス品を2ヶ突き合せて球体形状とし、この球体
形状のステンレス球体の上から同じく半球に成形した樹
脂半球2ケで挟み込み、前記樹脂半球同士の合せ面を超
音波溶着し、その後研摩することにより球体22を完成
するものである。そぺ他、ステンレス半球の他の手段と
して、ソ7・トフェライトに樹脂を混合させた複合材料
を半球に成形し、この成形された半球を2ヶ合せて球体
を作り、曲述と、同様の手段により球体22として構成
するものもある。
A fixed blade 20 is provided inside the copper pipe 19 as a swirling means for generating a swirling flow. A sphere 22 is provided on the downstream side of the fixed blade 2o and revolves in a swirling flow in a plane 21 perpendicular to the flow direction. Here, the vertical plane 21 indicates the entire circumferential region (range indicated by the arrow) in which the sphere 22 circulates. There are various structures for the sphere 22, but a typical example is to press a thin plate of stainless steel, which is attracted by a magnet and is resistant to rust, into a hemisphere, and then press two hemisphere presses against each other to form a sphere. The sphere 22 is completed by sandwiching the stainless steel sphere between two resin hemispheres also molded into hemispheres, ultrasonically welding the mating surfaces of the resin hemispheres, and then polishing. In addition, as another method for making a stainless steel hemisphere, a composite material made by mixing resin with So7 Toferrite is molded into a hemisphere, and two of these molded hemispheres are put together to make a sphere. There is also one constructed as a sphere 22 by this means.

前記球体22の下流には前記球体22が当接する周回当
接面23と内側流路24と外側流路25を有する球体受
け26が設けられている。27は球体22が周回する際
に当接する周回当接壁である。
A sphere receiver 26 is provided downstream of the sphere 22 and has a circumferential contact surface 23 on which the sphere 22 comes into contact, an inner flow passage 24, and an outer flow passage 25. Reference numeral 27 denotes a rotating abutment wall that the sphere 22 comes into contact with when it rotates.

これら固定翼20、球体22、球体受け26、周回当接
壁27で構成され、流れを球体22の周回回転に変換す
る回転変換部28は、入口継手29と出口継手30によ
シ挾まれて銅パイプ19内に設けられている。尚銅パイ
プ19と入口継手29及び出口継手30のシールは0リ
ング31及び32で行なわれている。さらに、入口継手
29及び出口継手30は銅バイブ19の折り曲げ端33
及び34によシ抜は防止構造に構成されている。
The rotation converting section 28, which is composed of the fixed blade 20, the sphere 22, the sphere receiver 26, and the orbiting abutment wall 27, and which converts the flow into orbital rotation of the sphere 22, is sandwiched between an inlet joint 29 and an outlet joint 30. It is provided inside the copper pipe 19. The copper pipe 19, the inlet joint 29, and the outlet joint 30 are sealed by O-rings 31 and 32. Further, the inlet joint 29 and the outlet joint 30 are connected to the bent end 33 of the copper vibe 19.
and 34 are constructed to prevent removal.

一方銅パイブの外部には前記球体22の回転検出を行な
いパルス出力する検出器35が固定部品、36によシ銅
バイブ19に密着して設けられている。前記検出器35
の内部には回路基板37に半巴付された磁気検出素子で
ある磁気抵抗素子3Bが球体22の上方に位置して設け
られている。
On the other hand, outside the copper pipe, a detector 35 for detecting the rotation of the sphere 22 and outputting pulses is provided in close contact with the copper vibrator 19 through a fixed part 36. The detector 35
A magnetoresistive element 3B, which is a magnetic detection element partially attached to a circuit board 37, is provided inside the sphere 22 and located above the sphere 22.

また前記磁気抵抗素子38に磁界を与える磁石39が前
記球体受け26の下流側に位置した状態で固定されてい
る。4oは磁気抵抗素子3日からの信号を増幅し、パル
ス波形に整形するための電子回路である。
Further, a magnet 39 that applies a magnetic field to the magnetic resistance element 38 is positioned and fixed on the downstream side of the spherical receiver 26. 4o is an electronic circuit for amplifying the signal from the magnetoresistive element 3 and shaping it into a pulse waveform.

尚ハウジングを構成する非磁性薄肉部材は銅パイプなど
の金属パイプの他樹脂バイブもあるが、パイプ形状に限
定されるものではなく、磁気検出素子の下方が薄肉に構
成された断面が四角形状のハウジングであっても良い。
The non-magnetic thin-walled members that make up the housing include metal pipes such as copper pipes, as well as resin vibrators, but they are not limited to pipe shapes. It may also be a housing.

次に本実施例における動作を説明する。Next, the operation in this embodiment will be explained.

入口継手29側から入った流体は固定翼20により旋回
流となシ下流側へと流れる。この旋回流の中に置かれた
球体22は旋回流によシ球体受け26の周回当接面23
と周回当接壁27の2点に当接し垂直面21の範囲で流
体の流れに対し垂直方向に周回回転する。この球体22
の周回回転数は旋回流速によって定まるが、固定翼20
の流路面積は一定であるため、旋回流速は流量に比例す
ることになる、。従って球体220周回回転数を検出す
ることによシ流量を計測することが可能となる。次に球
体22の周回回転の検出原理を説明する。磁気抵抗素子
38へは磁石39から時定強さの磁界が与えられている
。この状態で旋回流により周回回転する球体22が前記
磁気抵抗素子3日の下方を通過すると、磁石39から磁
気抵抗素子38に向って出ている磁束の方向が、球体2
2の内部に挿入された金属球によシ曲げられる。その結
果磁気抵抗素子38に与えられる磁界の強さが弱まり磁
気抵抗素子38の抵抗値が変化する。この抵抗値の変化
を電圧の変化として取シ出し増幅、波形整形しパルスと
して出力する。従って球体221回転当シ1パルスの出
力が得られる。実際に流量を計測するには、パルス間隔
の時間を計測することにより瞬時流量が、パルス数を積
算することにより積算流量が計測できるものである。
The fluid entering from the inlet joint 29 side is turned into a swirling flow by the fixed blades 20 and flows downstream. The sphere 22 placed in this swirling flow is moved by the swirling flow to the orbiting contact surface 23 of the sphere receiver 26.
and the rotating abutting wall 27, and rotates in a direction perpendicular to the fluid flow within the range of the vertical surface 21. This sphere 22
The rotational speed of the fixed wing 20 is determined by the swirling flow velocity.
Since the flow path area of is constant, the swirling flow velocity is proportional to the flow rate. Therefore, by detecting the number of rotations of the sphere 220, it is possible to measure the flow rate. Next, the principle of detecting the circular rotation of the sphere 22 will be explained. A magnetic field of constant strength is applied to the magnetoresistive element 38 from a magnet 39. In this state, when the sphere 22 rotating around due to the swirling flow passes below the magnetoresistive element 3, the direction of the magnetic flux coming out from the magnet 39 toward the magnetoresistive element 38 changes to the sphere 22.
It is bent by a metal ball inserted inside 2. As a result, the strength of the magnetic field applied to the magnetoresistive element 38 weakens, and the resistance value of the magnetoresistive element 38 changes. This change in resistance value is extracted as a voltage change, amplified, waveform shaped, and output as a pulse. Therefore, one pulse output is obtained per rotation of the sphere 221. To actually measure the flow rate, the instantaneous flow rate can be measured by measuring the pulse interval time, and the cumulative flow rate can be measured by integrating the number of pulses.

上記構成においては、ハウジングを非磁性薄肉パイプで
ある銅パイプで構成するため、磁気抵抗素子38に作用
する磁界の強さが大きくなるため球体22が磁気抵抗素
子38の下方向を通過した際に磁気抵抗素子38に作用
する磁界の変化量が犬きくなり、前記磁気抵抗素子38
の抵抗値変化を大きく取ることができ、出力信号を増大
させることができる。更に、磁石39が球体受け26の
下流側に位置して設けられているため、球体22が周回
する垂直面21での磁界強度も弱いため、流体中を流れ
る微細鉄粉が球体22が周回回転時に当接する周回当接
面23や周回当接壁27に付着することもなく安定した
球体22周回回転を得ることができ精度を確保すること
ができる。
In the above configuration, since the housing is made of a copper pipe which is a non-magnetic thin-walled pipe, the strength of the magnetic field acting on the magnetoresistive element 38 increases, so when the sphere 22 passes below the magnetoresistive element 38, The amount of change in the magnetic field acting on the magnetoresistive element 38 increases, and the magnetoresistive element 38
It is possible to take a large change in resistance value, and to increase the output signal. Furthermore, since the magnet 39 is located downstream of the sphere receiver 26, the magnetic field strength on the vertical plane 21 around which the sphere 22 revolves is weak, so that the fine iron powder flowing in the fluid is affected by the rotation of the sphere 22. It is possible to obtain stable rotation of the sphere 22 without adhering to the orbiting abutment surface 23 or the orbiting abutment wall 27 that come into contact with the sphere 22, thereby ensuring accuracy.

発明の効果 以上のように本発明の流量検出装置は、流路中を流れる
被検出流体を軸流旋回させる旋回手段と、前記旋回手段
による旋回流の中に位置し流れの方向に対し垂直面で周
回する球体と、前記球体の下流に位置し前記球体の周回
当接面を有する球体受けと、前記球体の周回回転数を検
出する磁気検出素子さ、前記磁気検出素子からの信号を
処理する電子回路さ、前記旋回手段を内設し少なくても
、前記磁気検出、素子の下方位置が非磁性薄肉部材から
なるハウジングと、前記球体受けの下流側に位置し前記
ハウジング外部に設けられ前記磁気検出素子に磁界を与
える磁石とを備える構成により次の効果を有する。
Effects of the Invention As described above, the flow rate detection device of the present invention includes a swirling means for axially swirling the fluid to be detected flowing in a flow path, and a swirling means located in the swirling flow caused by the swirling means and arranged in a plane perpendicular to the flow direction. a sphere orbiting at a speed, a sphere receiver located downstream of the sphere and having an orbiting contact surface for the sphere, a magnetic detection element for detecting the number of rotations of the sphere, and processing a signal from the magnetic detection element. Even if the electronic circuit is provided with the rotating means inside, the lower position of the magnetic detecting element is a housing made of a non-magnetic thin-walled member, and the lower position of the magnetic detecting element is provided with a housing made of a non-magnetic thin-walled member, and the magnetic detecting element is located downstream of the spherical receiver and is provided outside the housing. The configuration including a magnet that applies a magnetic field to the detection element has the following effects.

(1)検出器の性能を向上することができる。即ち磁気
検出素子からの信号レベルの向上でS/Nが高くなるた
め磁気検出素子に直接式る交流モーフからの磁界ノイズ
に対して強くなる。またS/Nの向上により信号の増幅
ゲインを小さくすることが出来るため、電子回路に直接
式るハム無線などの強電界ノイズに対しても強くなる。
(1) The performance of the detector can be improved. That is, since the signal level from the magnetic detection element is improved, the S/N ratio becomes higher, so that it becomes resistant to magnetic field noise from the AC morph directly applied to the magnetic detection element. Furthermore, since the signal amplification gain can be reduced by improving the S/N ratio, it becomes resistant to strong electric field noise such as ham radio directly connected to electronic circuits.

(2)検出器の小型・低コスト化が図れる。即ち、S/
Nの向上により増幅回路が簡略化されると共に制御部品
点数も削減されるため従来に比べ小型・低コスト化が図
れる。
(2) The size and cost of the detector can be reduced. That is, S/
The improvement in N simplifies the amplifier circuit and reduces the number of control parts, making it possible to achieve smaller size and lower cost than in the past.

(3)常に精度の良い流量検出が可能となる。即ち球体
が当接する面には流体中を流れる微細鉄粉が付着するこ
とが無いため、実用配管中を微細鉄粉が流れたとしても
、球体の回転には影響を与えることはなく精度の良い流
量検出が可能となる。
(3) Accurate flow rate detection is always possible. In other words, the fine iron powder flowing in the fluid does not adhere to the surface that the sphere comes into contact with, so even if fine iron powder flows through practical piping, it does not affect the rotation of the sphere, resulting in high accuracy. Flow rate detection becomes possible.

以上のように本発明は、磁気検出素子の信号を太きくし
性能を向上させ、かつ鉄粉等に影響されない流量検出器
を実現したものであり実用的な効果に優れたものである
As described above, the present invention realizes a flow rate detector that improves performance by thickening the signal of the magnetic detection element and is not affected by iron powder, etc., and has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流量検出装置の断面図
、第2図は第1図のA−A’線断面図、第3図は従来例
における流量検出装置の断面図である。 19・・・・・・ハウジング、20・・・・・・旋回手
段、22・・・・・・球体、26・・・・・・球体受け
、37・・・・・・電子回路38・・・・・・磁気検出
素子、39・・・・・・磁石。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名19
− ハウジング n−旋回+段 22−  球  俸 26−  球体受け 、D −m−電子回路 田−磁気検出素子 n−磁石 第1図 第2図
FIG. 1 is a sectional view of a flow rate detection device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA' in FIG. 1, and FIG. 3 is a sectional view of a conventional flow rate detection device. . 19... Housing, 20... Swivel means, 22... Sphere, 26... Sphere receiver, 37... Electronic circuit 38... ...Magnetic detection element, 39...Magnet. Name of agent: Patent attorney Toshio Nakao and 1 other person19
- Housing n - Swivel + stage 22 - Ball 26 - Ball receiver, D - m - Electronic circuit field - Magnetic detection element n - Magnet Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)流路中を流れる被検出流体を軸流旋回させる旋回
手段と、前記旋回手段による旋回流の中に位置し流れの
方向に対し垂直面で周回する球体と、前記球体の下流に
位置し前記球体の周回当接面を有する球体受けと、前記
球体の周回回転数を検出する磁気検出素子と、前記磁気
検出素子からの信号を処理する電子回路と、前記旋回手
段を内設し少なくとも、前記磁気検出素子の下方位置が
非磁性薄肉部材からなるハウジングと、前記球体受けの
下流側に位置し前記ハウジング外部に設けられ前記磁気
検出素子に磁界を与える磁石とを備えた流量検出装置。
(1) A swirling means for axially swirling the fluid to be detected flowing in a flow path, a sphere located in the swirling flow caused by the swirling means and orbiting in a plane perpendicular to the flow direction, and a sphere located downstream of the sphere. and at least a spherical receiver having an orbiting contact surface of the spherical body, a magnetic detection element for detecting the orbiting rotation speed of the spherical body, an electronic circuit for processing a signal from the magnetic detection element, and the turning means. A flow rate detection device comprising: a housing in which a position below the magnetic detection element is made of a non-magnetic thin-walled member; and a magnet located downstream of the spherical receiver and provided outside the housing to apply a magnetic field to the magnetic detection element.
(2)ハウジングは非磁性金属パイプから構成された特
許請求の範囲第1項記載の流量検出装置。
(2) The flow rate detection device according to claim 1, wherein the housing is constructed from a non-magnetic metal pipe.
JP29810786A 1986-12-15 1986-12-15 Flow rate detector Pending JPS63228026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29810786A JPS63228026A (en) 1986-12-15 1986-12-15 Flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29810786A JPS63228026A (en) 1986-12-15 1986-12-15 Flow rate detector

Publications (1)

Publication Number Publication Date
JPS63228026A true JPS63228026A (en) 1988-09-22

Family

ID=17855249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29810786A Pending JPS63228026A (en) 1986-12-15 1986-12-15 Flow rate detector

Country Status (1)

Country Link
JP (1) JPS63228026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287217A (en) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd Flow rate detector
JPH02293627A (en) * 1989-05-09 1990-12-04 Matsushita Electric Ind Co Ltd Flow rate detecting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123062A (en) * 1978-03-17 1979-09-25 Tokico Ltd Turbine meter
JPS5719617A (en) * 1980-07-10 1982-02-01 Yamatake Honeywell Co Ltd Flowmeter
JPS61138124A (en) * 1984-12-11 1986-06-25 Matsushita Electric Ind Co Ltd Flow rate detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123062A (en) * 1978-03-17 1979-09-25 Tokico Ltd Turbine meter
JPS5719617A (en) * 1980-07-10 1982-02-01 Yamatake Honeywell Co Ltd Flowmeter
JPS61138124A (en) * 1984-12-11 1986-06-25 Matsushita Electric Ind Co Ltd Flow rate detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287217A (en) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd Flow rate detector
JPH02293627A (en) * 1989-05-09 1990-12-04 Matsushita Electric Ind Co Ltd Flow rate detecting device

Similar Documents

Publication Publication Date Title
US4098118A (en) Unitary electromagnetic flowmeter
US2683224A (en) Flowmeter
US3342070A (en) Fluid meter
US7908932B2 (en) Magneto-inductive measuring transducer
US4499754A (en) Electromagnetic flowmeter
US4358963A (en) Unitary electromagnetic flowmeter with sealed coils
JPS63228026A (en) Flow rate detector
US4420982A (en) Unitary electromagnetic flowmeter with sealed coils
JP2001255183A (en) Flow sensor
US4497212A (en) Flangeless electromagnetic flowmeter
JP2005055276A (en) Electromagnetic flowmeter
JPH0472173B2 (en)
JPS6327647B2 (en)
JPS59202024A (en) Rotating body detection
US3372591A (en) Flowmeter
JP6667795B2 (en) Flow rate detecting device and hot water device provided with the same
JPH0327846B2 (en)
JPH0140296B2 (en)
JPH0211090B2 (en)
JP2000055708A (en) Electromagnetic flowmeter
JPH09196715A (en) Flow rate sensor
JPH01140022A (en) Electromagnetic flowmeter
RU2090844C1 (en) Vortex electromagnetic flowmeter
JPS5939612Y2 (en) turbine meter
JPS57175913A (en) Tap-water meter