JPS603519A - Flow rate detecting device - Google Patents

Flow rate detecting device

Info

Publication number
JPS603519A
JPS603519A JP11212083A JP11212083A JPS603519A JP S603519 A JPS603519 A JP S603519A JP 11212083 A JP11212083 A JP 11212083A JP 11212083 A JP11212083 A JP 11212083A JP S603519 A JPS603519 A JP S603519A
Authority
JP
Japan
Prior art keywords
flow
swirling
flow rate
spherical body
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11212083A
Other languages
Japanese (ja)
Inventor
Yukinori Ozaki
行則 尾崎
Shuji Yamanochi
山ノ内 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11212083A priority Critical patent/JPS603519A/en
Publication of JPS603519A publication Critical patent/JPS603519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/056Orbital ball flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain an extremely small flow rate resistance, and also to obtain a small- sized and compact flow rate detecting device by setting a flow direction of a fluid to an axial-flow direction, and rotating a rotating body whose area is smaller than a sectional area of a flow path in a swirling flow by a swirling means. CONSTITUTION:A fluid to be detected which has flowed in from an inlet 24 side is brought to axial-flow swirling by flowing to the downstream along a circular arc blade 13 of a blade 11. As a result, a magnetic spherical body 18 turns round in the direction vertical to a direction of the flow by obtaining a dynamic force by the swirling flow. In this case, the magnetic spherical body 18 abuts on two points of a rotating surface 28 of a spherical body receiver 19 and a casing 12 and turns round. A revolving speed of a rotation of this magnetic spherical body 18 is proportional to a flow rate, therefore, the flow rate can be measured by measuring the revolving speed of this magnetic spherical body 18. Its means gives a magnetic field of a constant strength to a magneto-resistance element 21 by a permanent magnet 20, and a resistance variation of the magneto-resistance element 21 in case when the magnetic spherical body 18 has passed through this magnetic field is fetched as a pulse variation of voltage, and processed through a controlling circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量を計測する流量検出装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow rate detection device for measuring the flow rate of fluid.

2・・−2゛ 従来例の構成とその問題点 従来この種の流量検出装置は第1図及び第2図に示すよ
うに構成されている。第1図、第2図において、1は断
面円形状の環状流路でこの流路の外周に流入通路2、及
び流出通路3が開口している。この流入通路2にはノズ
ル4が設けられている。また環状流路1内には球体5が
挿入されていると共に、透明窓6.7が構成され、発光
素子8と受光素子9が設けられている。このよう々構成
において流体が流入通路2のノズル4から環状流路1内
に入ると、流れは環状流路1内を環流しながら流入通路
2から流出通路3へ流れ、それと共に球体5も図中実線
の矢印の方向に環状流路1内を周回運動する。この球体
の周回回転数は流体の流量に比例するなど相関があるた
め、球体5の回転数を発光素子8と受光素子9によシパ
ルス信号として検出し制御回路を通して流量を計測する
2.-2゛Conventional structure and problems thereof Conventionally, this type of flow rate detection device has been structured as shown in FIGS. 1 and 2. In FIGS. 1 and 2, reference numeral 1 denotes an annular flow path having a circular cross section, and an inflow path 2 and an outflow path 3 are opened at the outer periphery of this flow path. This inflow passage 2 is provided with a nozzle 4 . Further, a sphere 5 is inserted into the annular flow path 1, a transparent window 6.7 is formed, and a light emitting element 8 and a light receiving element 9 are provided. In this configuration, when fluid enters the annular channel 1 from the nozzle 4 of the inflow channel 2, the flow flows from the inflow channel 2 to the outflow channel 3 while circulating in the annular channel 1, and the sphere 5 also flows along with it. It moves around inside the annular flow path 1 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 5 is detected as a pulse signal by the light emitting element 8 and the light receiving element 9, and the flow rate is measured through the control circuit.

この従来例の問題点としては第1に流量抵抗が大きいこ
とが上げられる。環状流路1を形成しているため流路の
入口出口が方向変換し、それによ3 る曲がシ損失を生じると共に、環流が流入通路附近で流
入通路2からの流れと交わるため流入抵抗となって損失
を生じる。更に球体50周回が促進するように球体を環
状流路1の断面積に近い大きさで構成されている場合に
も大きな流路抵抗となる。また流入通路2に球体5の周
回を円滑にするようノズ)V4を設けるとさらに大きな
流路抵抗となる。第2にセンサとしての構造が大きくな
りやすいなど構成上の課題がある。上記のように通路抵
抗が大きくなるためそれを低減するよう通路径を大きく
する必要がちシ、また直管などに対し、環状流路1を有
しているため、その分のヌペーヌが必要であシセンサ全
体として前後の通路に対し大型になる。加えて流入通路
2と流出通路3の方向がある程度限定されることになり
、センサとして機器などに組込む際に構成C上5の制約
が生じたり、全体の大型化につながるなどの問題点があ
る。
The first problem with this conventional example is that the flow resistance is large. Since the annular flow path 1 is formed, the inlet and outlet of the flow path change direction, resulting in bending loss, and the circular flow intersects with the flow from the inflow path 2 near the inflow path, resulting in inflow resistance. This results in losses. Furthermore, if the sphere is configured to have a size close to the cross-sectional area of the annular flow path 1 so as to promote 50 revolutions of the sphere, a large flow path resistance will occur. Further, if a nozzle (V4) is provided in the inflow passage 2 so as to make the rotation of the sphere 5 smooth, the flow passage resistance becomes even greater. Second, there are structural issues such as the sensor structure tends to be large. As mentioned above, the passage resistance increases, so it is necessary to increase the passage diameter to reduce it.Also, since it has an annular passage 1 compared to a straight pipe, a corresponding amount of Nupaine is required. The sensor as a whole is larger than the front and rear passages. In addition, the directions of the inflow passage 2 and the outflow passage 3 are limited to some extent, which poses problems such as the restriction of configuration C5 when incorporated into equipment as a sensor and the overall size. .

発明の目的 本発明はこのような従来の欠点を解消するもので流量抵
抗の小さい小型コンパクトな流量検出装置を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a small and compact flow rate detection device that eliminates such conventional drawbacks and has low flow resistance.

発明の構成 この目的を達成するために本発明は、被検出流体を軸流
旋回させ曲線翼が軸の周囲にほぼ軸方向に沿って設けら
れた旋回手段と、この旋回流の中に位置し流れの方向に
対して垂直向で周回する回転体と、この回転体を前記旋
回流の範囲内にとどめる流出防止手段と、前記回転体の
検出手段からなり、前記旋回手段は、前記曲線翼の」−
流側端部が前記被検出流体の流れ方向とほぼ平行して設
けられ、前記上流側端部から下流部に行くに従って軸方
向に対し曲線状に構成したものである。
Structure of the Invention In order to achieve this object, the present invention provides a swirling means that swirls the fluid to be detected in an axial flow, and a swirling means in which a curved blade is provided around an axis along the substantially axial direction, and a swirling means that swirls the fluid to be detected in an axial flow. It consists of a rotating body that revolves perpendicularly to the flow direction, an outflow prevention means for keeping this rotating body within the range of the swirling flow, and a detection means for the rotating body, and the swirling means is configured to detect the curved blade. ”−
The flow side end portion is provided substantially parallel to the flow direction of the fluid to be detected, and is configured to have a curved shape with respect to the axial direction as it goes from the upstream side end portion to the downstream portion.

この構成により、流体の流れ方向を軸流方向とし、旋回
手段による旋回流の中で流路断面積に比べ面積の小さい
回転体を回転することによシ極めて小さい流量抵抗とな
るとともに、小型コンパクトな流量検出装置を得ること
ができる。
With this configuration, the fluid flow direction is the axial flow direction, and by rotating the rotating body whose area is smaller than the cross-sectional area of the flow path in the swirling flow caused by the swirling means, it becomes extremely small flow resistance, and is compact and compact. It is possible to obtain a flow rate detection device.

実施例の説明 1 次に本発明の実施例について第3図〜第5図に基づいて
説明する。第3図において10はハウジ5 ′ニー” ンクであり、このハウジング10の内部には被検出流体
を軸流旋回させる旋回手段である翼11がケーシング1
2に固定されている。この翼11は円弧翼13と軸14
で構成されている。この円弧翼13の上流側端部15は
前記被検出流体の流れ方向を示す矢印16とほぼ平行し
て設けられている。また円弧翼13は下流部17に行く
に従って円弧状に構成されている。この翼11の下流に
は回転体である磁性球体18があシ、その下流には前記
磁性球体18の流出防止手段である球体受け19が前記
ケーシング12に固定されている。この磁性球体18構
成としては、中空鋼球、中実鋼球、FeN1メッキを表
面に行なった樹脂球等がある。ハウジング10の外部に
は永久磁石20と磁気抵抗素子21からなる磁性球体1
8の検出手段である回転検出器22が設けられ流量検出
装置が構成されている。23はケーシング12の止め輪
である。24.25は入口及び出口であり26は磁性球
体18の回転方向を示す矢印である。第4図は翼11を
入口24側から見た場合の図である6ペーコク が、6枚の円弧翼13が1lilI114から伸び翼1
1を構成しており、円弧翼13の間の間隙部27は極め
て小さく設けられている。第5図は球体受け19である
が、28は磁性球体18の周回面であり円錐形状に構成
されている。29は流路である。
DESCRIPTION OF EMBODIMENTS 1 Next, embodiments of the present invention will be described based on FIGS. 3 to 5. In FIG. 3, reference numeral 10 denotes a housing 5' knee, and inside this housing 10 there are blades 11 that serve as swirling means for axially swirling the fluid to be detected.
It is fixed at 2. This wing 11 has a circular arc wing 13 and a shaft 14.
It consists of The upstream end 15 of the arcuate blade 13 is provided substantially parallel to the arrow 16 indicating the flow direction of the fluid to be detected. Further, the arcuate blade 13 is formed into an arcuate shape toward the downstream portion 17. A magnetic sphere 18 which is a rotating body is located downstream of the blade 11, and a sphere receiver 19 which is a means for preventing the magnetic sphere 18 from flowing out is fixed to the casing 12 downstream thereof. The configuration of the magnetic sphere 18 includes a hollow steel ball, a solid steel ball, a resin ball whose surface is plated with FeN1, and the like. A magnetic sphere 1 consisting of a permanent magnet 20 and a magnetic resistance element 21 is disposed outside the housing 10.
A rotation detector 22 serving as a detection means of 8 is provided to constitute a flow rate detection device. 23 is a retaining ring of the casing 12. 24 and 25 are an inlet and an outlet, and 26 is an arrow indicating the direction of rotation of the magnetic sphere 18. Figure 4 is a view of the blade 11 seen from the inlet 24 side.
1, and the gap 27 between the arc blades 13 is extremely small. FIG. 5 shows the spherical receiver 19, and 28 is the circumferential surface of the magnetic sphere 18, which has a conical shape. 29 is a flow path.

次に上記構成における動作を第3図〜第5図において説
明する。入口24側から流入した被検出流体は、翼11
の円弧翼13に沿って下流へと流れることにより軸流旋
回される。この結果旋回流によシ運動力を得て磁性球体
18は流れの方向に対して直角方向に周回する。この時
磁性球体18は球体受け19の周回面28とケーシング
12の2点に当接して周回する。この磁性球体18の周
回回転数は流量に比例するためこの磁性球体1日の回転
数を計測することにより流量を測定することができる。
Next, the operation of the above configuration will be explained with reference to FIGS. 3 to 5. The fluid to be detected flowing in from the inlet 24 side flows into the blade 11
The air flows downstream along the arcuate blades 13 of the air, causing an axial swirl. As a result, the magnetic sphere 18 is rotated in a direction perpendicular to the direction of the flow due to the rotational flow. At this time, the magnetic sphere 18 contacts two points, the circumferential surface 28 of the sphere receiver 19 and the casing 12, and rotates. Since the number of rotations of the magnetic sphere 18 is proportional to the flow rate, the flow rate can be measured by measuring the number of rotations of the magnetic sphere per day.

その手段は、磁気抵抗素子21に永久磁石20で一定強
さの磁界をあたえておき、磁性球体18がこの磁界中を
通過した際の磁気抵抗素子21の抵抗変化を電圧のパル
ス変化として取り出し制御回路(図示せず)を介して処
理するも7t、−二! のである。本実施例では円弧翼13により被検出流体を
旋回流に変換しておりこの円弧翼13は曲線翼の中でも
簡単な翼形状で損失を小さくすることができ好ましい形
状である。まだ磁性球体18回数は磁気検出方法であり
、不透明液体においても使用可能である。
This means that a permanent magnet 20 applies a magnetic field of constant strength to the magnetoresistive element 21, and when the magnetic sphere 18 passes through this magnetic field, the resistance change of the magnetoresistive element 21 is extracted and controlled as a voltage pulse change. Processed through a circuit (not shown), 7t, -2! It is. In this embodiment, the fluid to be detected is converted into a swirling flow by the arcuate blade 13, and the arcuate blade 13 has a simple blade shape among curved blades and is a preferable shape since it can reduce loss. The magnetic sphere 18 times is still a magnetic detection method and can be used even in opaque liquids.

発明の効果 以」二の説明から明らか々ように本発明の流量検出装置
は、被検出流体を軸流旋回させ、曲線翼が軸の周囲にほ
ぼ軸方向に沿って設けられた旋回手段と、この流れの中
に位置し流れの方向に対して垂直面で周回する回転体と
、この回転体を前記旋回流の範囲内にとどめる流出防止
手段と、前記回転体の回転数を検出する検出手段からな
り、前記旋回手段は、前記曲線翼の上流側端部が前記被
検出流体の流れ方向とほぼ平行して設けられ、前記上流
側端部から下流部に行くに従って軸方向に対し曲線状に
構成することにより下記の効果を有するものである。
Effects of the Invention As is clear from the second explanation, the flow rate detection device of the present invention has a swirling means for axially swirling the fluid to be detected, and a swirling means in which curved blades are provided around a shaft substantially along the axial direction; A rotating body located in this flow and rotating in a plane perpendicular to the direction of the flow, an outflow prevention means for keeping this rotating body within the range of the swirling flow, and a detection means for detecting the rotational speed of the rotating body. The swirling means is provided with an upstream end of the curved blade substantially parallel to the flow direction of the fluid to be detected, and a curved blade with respect to the axial direction as it goes from the upstream end to the downstream part. The configuration provides the following effects.

(1)流量抵抗が小さい。曲線翼の上流側端部が被検出
流体の流れ方向とほぼ平行して設けられているため、被
検出流体が曲線翼に流入する際の損失が小さい。また被
検出流体が曲線翼に沿って流れる際の損失も曲線翼を用
いることによシ小さくすることかできる。さらに回転体
も流路断面積に比べ一段と小径であシ損失が小さい。ま
た流路自体の曲りもない。
(1) Low flow resistance. Since the upstream end of the curved blade is provided substantially parallel to the flow direction of the fluid to be detected, loss when the fluid to be detected flows into the curved blade is small. Further, the loss caused when the fluid to be detected flows along the curved blade can also be reduced by using the curved blade. Furthermore, the rotating body has a much smaller diameter than the cross-sectional area of the flow path, and thus has low loss. Moreover, there is no bend in the flow path itself.

(2)流量検出装置の構造が小型コンパクトとなる。(2) The structure of the flow rate detection device is small and compact.

流路自体が環状流路を形成するものと異なり、直管部に
軸流旋回を生じさせて回転体を周回させることに特長が
あり、流路が最もシンプルで、流路長さも短く構成でき
る。
Unlike those in which the flow path itself forms an annular flow path, this type has the advantage of creating an axial flow swirl in the straight pipe section and causing a rotating body to revolve around it.The flow path is the simplest and can be configured with a short flow path length. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例における流量検出装置の流路水
平断面図および垂直断面図、第3図は本発明の一実施例
を示す流量検出装置の断面図、第4図は固定翼の側面図
、第5図は流出防止手段の外観斜視図1ある・ 1 11・・・・・・旋回手段(翼)、13・・・・・・曲
線翼(円弧翼)、14・・・・・・軸、15・・・・・
・」二流側端部、179 lニーzj ・・・・下流部、18・・・・・・回転体(磁性球体)
、19・・・・・・流出防止手段(球体受け)、22・
・・・・・検出手段(回転検出器) 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
1 and 2 are horizontal and vertical cross-sectional views of the flow path of a conventional flow rate detection device, FIG. 3 is a sectional view of a flow rate detection device according to an embodiment of the present invention, and FIG. 4 is a fixed blade Fig. 5 is a perspective view of the appearance of the outflow prevention means. ...Axis, 15...
・"Second flow side end, 179 l knee zz...Downstream part, 18...Rotating body (magnetic sphere)
, 19... Outflow prevention means (spherical receiver), 22.
...Detection means (rotation detector) Name of agent Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)流路中を流れる被検出流体を軸流旋回させ、曲線
翼が軸の周囲にほぼ軸方向に沿って設けられた旋回手段
と、この旋回流の中に位置し流れの方向に対して垂直面
で周回する回転体と、この回転体を前記旋回流の範囲内
にとどめる流出防止手段と、前記回転体の回転数を検出
する検出手段からなり、前記旋回手段の曲線翼は、上流
側端部が前記被検出流体の流れ方向とほぼ平行して設け
られ、前記上流側端部から下流部に行くに従って軸方向
に対し曲線状に構成した流量検出装置。
(1) The fluid to be detected flowing in the flow path is swirled in an axial flow, and a swirling means is provided with curved blades provided around the axis along the approximately axial direction, and a swirling means is positioned in the swirling flow and rotates in the direction of the flow. It consists of a rotating body that revolves in a vertical plane, an outflow prevention means that keeps this rotating body within the range of the swirling flow, and a detection means that detects the rotation speed of the rotating body, and the curved blade of the swirling means A flow rate detection device having a side end portion provided substantially parallel to a flow direction of the fluid to be detected, and having a curved shape with respect to an axial direction from the upstream end portion toward the downstream portion.
(2)曲線翼は円弧翼で構成した特許請求の範囲第1項
記載の流量検出装置。
(2) The flow rate detection device according to claim 1, wherein the curved blade is an arcuate blade.
JP11212083A 1983-06-21 1983-06-21 Flow rate detecting device Pending JPS603519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212083A JPS603519A (en) 1983-06-21 1983-06-21 Flow rate detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212083A JPS603519A (en) 1983-06-21 1983-06-21 Flow rate detecting device

Publications (1)

Publication Number Publication Date
JPS603519A true JPS603519A (en) 1985-01-09

Family

ID=14578680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212083A Pending JPS603519A (en) 1983-06-21 1983-06-21 Flow rate detecting device

Country Status (1)

Country Link
JP (1) JPS603519A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051758A (en) * 1973-09-06 1975-05-08

Similar Documents

Publication Publication Date Title
JPS603519A (en) Flow rate detecting device
JPS59133428A (en) Flow rate detector
JPS6013217A (en) Flow-rate detecting device
JPS608716A (en) Detector for flow rate
JPS603520A (en) Flow rate detecting device
JPH0140297B2 (en)
JPS60135721A (en) Flow rate detector
JPS60164217A (en) Flow rate detecting device
JPH0360047B2 (en)
JPH0140298B2 (en)
JPH0472175B2 (en)
JPS6159213A (en) Flow rate detecting device
JPS59153124A (en) Flow rate detecting device
JPS6326845B2 (en)
JPS6013215A (en) Flow-rate detecting device
JPS59153123A (en) Flow rate detecting device
JPH01178819A (en) Flow rate sensor
JPS6015517A (en) Flow rate detector
JPS59202024A (en) Rotating body detection
JPH01265121A (en) Flow rate detector
JPS63140915A (en) Flow rate detector
JPH08105772A (en) Flow rate sensor
JPH06323879A (en) Flowmeter
JP3286055B2 (en) Flow sensor
JPS6013214A (en) Flow-rate detecting device