JPS6333399B2 - - Google Patents

Info

Publication number
JPS6333399B2
JPS6333399B2 JP54158070A JP15807079A JPS6333399B2 JP S6333399 B2 JPS6333399 B2 JP S6333399B2 JP 54158070 A JP54158070 A JP 54158070A JP 15807079 A JP15807079 A JP 15807079A JP S6333399 B2 JPS6333399 B2 JP S6333399B2
Authority
JP
Japan
Prior art keywords
frequency
primary
phase
induction motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158070A
Other languages
Japanese (ja)
Other versions
JPS5683291A (en
Inventor
Toshiaki Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15807079A priority Critical patent/JPS5683291A/en
Publication of JPS5683291A publication Critical patent/JPS5683291A/en
Publication of JPS6333399B2 publication Critical patent/JPS6333399B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Description

【発明の詳細な説明】 本発明は誘導電動機を速度検出器を用いること
なく十分な精度で速度制御可能な誘導電動機の速
度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed control device for an induction motor that can control the speed of the induction motor with sufficient accuracy without using a speed detector.

誘導電動機を可変周波電源装置(以下インバー
タ装置と記す)を用いて駆動する場合、電動機の
回転速度Nは次式で与えられる。
When an induction motor is driven using a variable frequency power supply device (hereinafter referred to as an inverter device), the rotational speed N of the motor is given by the following equation.

N=60/p01−s) ……(1) ここに、P0:極対数、1:駆動周波数、s:す
べり周波数。
N=60/ p0 ( 1 -s)...(1) Here, P0 : number of pole pairs, 1 : drive frequency, s: slip frequency.

(1)式におけるすべり周波数sはトルクに比例し
て変化するため、駆動周波数1が一定値である場
合では回転速度Nがトルクに応じて変動する。こ
のため単に駆動周波数1を一定に保つだけでは精
度のよい速度制御を行えない。一方、電動機の軸
端に速度検出器を取付け、速度指令と速度検出器
の信号との偏差に応じて駆動周波数1を制御すれ
ば高い精度が得られるが、しかし、速度検出器が
必要であり、取付が面倒で電動機周りの構造が複
雑になると共に速度信号の伝送用に長距離ケーブ
ルが必要であるなどの不都合がある。
Since the slip frequency s in equation (1) changes in proportion to the torque, when the drive frequency 1 is a constant value, the rotational speed N changes in accordance with the torque. Therefore, accurate speed control cannot be performed simply by keeping the drive frequency 1 constant. On the other hand, high accuracy can be obtained by attaching a speed detector to the shaft end of the motor and controlling the drive frequency 1 according to the deviation between the speed command and the signal from the speed detector. However, a speed detector is required. However, there are disadvantages such as the installation is troublesome, the structure around the motor is complicated, and a long distance cable is required for transmitting the speed signal.

そのため、速度検出器を用いずにすべり周波数
sを検出し、すべり周波数sが所定値となるよう
にすべり周波数制御を行う方式として、誘導電動
機の1次電圧V1と1次電流I1から励磁電流成分In
を演算により求め、電流I1とInの比からすべり周
波数sを演算する方法が提案されている。このこ
とは例えば特開昭54−11413号公報に記載されて
いる。
Therefore, the slip frequency can be determined without using a speed detector.
s is detected and the slip frequency is controlled so that the slip frequency s becomes a predetermined value .
A method has been proposed in which the slip frequency s is calculated from the ratio of the currents I 1 and I n . This is described, for example, in Japanese Unexamined Patent Publication No. 11413/1983.

しかし、上述の文献にはすべり周波数を演算に
より求め、このすべり周波数を所定値に制御する
ことによりトルク等を安定に制御することが記載
されているだけで、速度制御を精度良く行うこと
について何ら開示されていない。
However, the above-mentioned literature only describes that torque etc. can be stably controlled by calculating the slip frequency and controlling this slip frequency to a predetermined value, but there is nothing about accurately controlling the speed. Not disclosed.

本発明の目的は、速度検出器を用いることなし
に高い精度で速度制御が行える誘導電動機の速度
制御装置を提供することにある。
An object of the present invention is to provide a speed control device for an induction motor that can perform speed control with high accuracy without using a speed detector.

本発明の特徴とするところは周波数変換器から
誘導電動機に供給される一次電流と周波数変換器
の出力電圧の位相指令信号によつて一次電流のト
ルク電流成分を検出し、このトルク電流成分に基
づき一次周波数を修正し負荷の増減に応じて一次
周波数を増減するようにしたことにある。
The feature of the present invention is that the torque current component of the primary current is detected based on the phase command signal of the primary current supplied to the induction motor from the frequency converter and the output voltage of the frequency converter, and based on this torque current component. The primary frequency is modified so that it increases or decreases according to the increase or decrease in load.

本発明の他の特徴とするところは周波数変換器
から誘導電動機に供給される一次電流と周波数変
換器の出力電圧の位相指令信号によつて一次電流
のトルク電流成分を検出し、このトルク電流成分
に基づき誘導電動機のすべり周波数を演算により
求め、このすべり周波数演算値によつて一次周波
数を修正し負荷の増減に応じて一次周波数を増減
するようにしたことにある。
Another feature of the present invention is that the torque current component of the primary current is detected based on the phase command signal of the primary current supplied to the induction motor from the frequency converter and the output voltage of the frequency converter. Based on this, the slip frequency of the induction motor is calculated by calculation, and the primary frequency is corrected based on this calculated slip frequency value, so that the primary frequency is increased or decreased according to the increase or decrease in the load.

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において、1は商用交流電圧を整流する
ダイオード整流器、2は整流器1の出力電圧を平
滑するための平滑コンデンサ、3はGTOサイリ
スタを用いた電圧型PWMインバータ、4は誘導
電動機、5は速度指令回路、6は電動機の1次電
流を検出する電流検出器、7は1次電流のトルク
電流成分I1βと励磁電流電流成分I1αをそれぞれ検
出する電流成分検出器、8はI1β検出信号とI1α検
出信号に基づいてすべり周波数に比例した信号
(以下すべり周波数信号と記す)を検出するすべ
り周波数演算回路、9はすべり周波数信号と速度
指令信号を加算し、PWMインバータ3の出力周
波数を指令する周波数指令信号を出す加算器、1
0は加算器9の出力信号電圧に比例した周波数の
2相正弦波信号を発生する2相発振器、11は電
動機の磁束量を指令する磁束指令回路、12は磁
束指令信号と周波数指令信号を掛算し電圧指令信
号を出力する掛算器、13,14は発振器10と
掛算器12の出力信号を掛算する掛算器、15は
2相信号を3相信号に変換する相数変換器、16
はPWMインバータ3のGTOサイリスタのオ
ン・オフの周波数を制御する搬送波信号を発生す
る発振器、17は相数変換器15と発振器16の
出力信号を比較し、パルス幅変調信号(PWM信
号)を出力する比較器、18はPWMインバータ
3のGTOサイリスタをオン・オフ制御するため
のゲート信号を出力するゲートアンプである。
In Figure 1, 1 is a diode rectifier that rectifies the commercial AC voltage, 2 is a smoothing capacitor for smoothing the output voltage of rectifier 1, 3 is a voltage-type PWM inverter using a GTO thyristor, 4 is an induction motor, and 5 is a Speed command circuit, 6 is a current detector that detects the primary current of the motor, 7 is a current component detector that detects the torque current component I 1 β of the primary current and the excitation current current component I 1 α, respectively, 8 is I 1 A slip frequency calculation circuit that detects a signal proportional to the slip frequency (hereinafter referred to as the slip frequency signal) based on the β detection signal and the I 1 α detection signal, 9 adds the slip frequency signal and the speed command signal, and a PWM inverter. an adder that outputs a frequency command signal that commands the output frequency of 1;
0 is a two-phase oscillator that generates a two-phase sine wave signal with a frequency proportional to the output signal voltage of adder 9, 11 is a magnetic flux command circuit that commands the amount of magnetic flux of the motor, and 12 is a multiplier for multiplying the magnetic flux command signal and the frequency command signal. 13 and 14 are multipliers that multiply the output signals of the oscillator 10 and the multiplier 12, 15 is a phase number converter that converts a two-phase signal into a three-phase signal, and 16 is a multiplier that outputs a voltage command signal.
17 is an oscillator that generates a carrier signal that controls the on/off frequency of the GTO thyristor of PWM inverter 3, and 17 compares the output signals of the phase number converter 15 and oscillator 16 and outputs a pulse width modulation signal (PWM signal). The comparator 18 is a gate amplifier that outputs a gate signal for controlling on/off the GTO thyristor of the PWM inverter 3.

第5図に電流成分検出器7の詳細な回路構成図
を示す。71はiU,iV,iWを所定比率で加減算す
る加算器、72はiWからiVを減算する減算器で、
これにより3相電流信号iU〜iWを2相電流信号ia
ibに変換する。73〜76は2相発振器10の出
力信号a,bと2相電流信号ia,ibを掛算する掛
算器、77,78は各掛算器の出力信号の加減算
を行う加減算器である。
FIG. 5 shows a detailed circuit diagram of the current component detector 7. 71 is an adder that adds or subtracts i U , i V , and i W at a predetermined ratio; 72 is a subtracter that subtracts i V from i W ;
This converts the three-phase current signal i U ~i W into the two-phase current signal i a ,
Convert to i b . Multipliers 73 to 76 multiply the output signals a and b of the two-phase oscillator 10 by the two-phase current signals i a and i b , and adders and subtracters 77 and 78 add and subtract the output signals of the respective multipliers.

次にその動作について説明する。周知のように
電圧形パルス幅変調インバータ3はGTOサイリ
スタのオン・オフ時間を変化させることにより出
力電圧を可変にできる。具体的には相数変換器1
5からの電圧指令信号(正弦波)と発振器16か
らの搬送波信号(3角波)を比較器17において
比較し、その出力信号であるPWM信号に応じて
インバータ3のGTOサイリスタをオン・オフ制
御して出力電圧を電圧指令信号に比例するように
制御する。
Next, its operation will be explained. As is well known, the voltage-type pulse width modulation inverter 3 can vary the output voltage by changing the on/off time of the GTO thyristor. Specifically, phase number converter 1
The voltage command signal (sine wave) from 5 and the carrier signal (triangular wave) from oscillator 16 are compared in comparator 17, and the GTO thyristor of inverter 3 is controlled on/off according to the PWM signal that is the output signal. and controls the output voltage so that it is proportional to the voltage command signal.

次に、まず本発明の原理について説明する。誘
導電動機4の1次電流の励磁電流成分I1αおよび
トルク電流成分I1βは次式で与えられる。
Next, the principle of the present invention will be explained first. The exciting current component I 1 α and the torque current component I 1 β of the primary current of the induction motor 4 are given by the following equations.

i1α=1+PT2/M′・φ2′ ……(2) I1β=2πs・T2/M′・φ2′ ……(3) ここに、P:d/dt(演算子) T2:2次時定数 M′:1次−2次間相互インダクタンス φ2′:2次鎖交磁束 s:すべり周波数 R2′:2次抵抗 すなわち、すべり周波数sは次式に従い演算で
きる。
i 1 α=1+PT 2 /M′・φ 2 ′ ……(2) I 1 β=2πs・T 2 /M′・φ 2 ′ ……(3) Here, P: d/dt (operator) T 2 : Secondary time constant M': Mutual inductance between primary and secondary φ 2 ': Secondary interlinkage flux s: Slip frequency R 2 ': Secondary resistance That is, the slip frequency s can be calculated according to the following formula.

s=1/2πT2 I1β/〔I1α/(1+PT2)〕 ……(4) または、 s=M′/2πT2・I1β/φ2′ ……(5) 一方、誘導電動機4の回転周波数rと駆後周波
1は、 r=1−s(2極機の場合) ……(6) の関係があるから、駆動周波数1を予めすべり周
波数s分だけ大きくしておき、 1′=1+s ……(7) なる1′を新たな駆動周波数とすれば、 r=1′−s=1 ……(8) の関係が成立する。すなわち、回転周波数rは、
元の駆動周波数1に対応する。
s=1/2πT 2 I 1 β/[I 1 α/(1+PT 2 )] …(4) Or, s=M′/2πT 2・I 1 β/φ 2 ′ …(5) On the other hand, induction The rotational frequency r of the electric motor 4 and the driving frequency 1 have the following relationship: r = 1 - s (for a two-pole machine) ... (6) Therefore, the driving frequency 1 should be increased by the slip frequency s in advance. , 1 ′= 1 + s ……(7) If 1 ′ is set as a new driving frequency, the relationship r= 1 ′−s= 1 ……(8) holds true. That is, the rotational frequency r is
Corresponds to the original drive frequency 1 .

このことから、速度指令信号を元の駆動周波数
1の指令信号に対応させ、これにすべり周波数s
相当の信号を加算し、それによりインバータ3の
出力周波数1′を制御すれば、回転速度rを速度
指令に精度よく一致させることができる。
From this, it is possible to change the speed command signal to the original drive frequency.
1 , and the slip frequency s
By adding corresponding signals and controlling the output frequency 1 ' of the inverter 3 accordingly, the rotational speed r can be made to match the speed command with high precision.

以上が原理である。次に第1図の実施例の動作
について説明する。
The above is the principle. Next, the operation of the embodiment shown in FIG. 1 will be explained.

電流成分検出器7はトルク電流成分I1βと励磁
電流成分I1αを次式の関係に従い検出する。まず、
電流検出器6で検出した3相の1次電流信号iU
iV,iWを第5図に示す加減算器71,72により
2相信号ia,ibに変換する。その演算内容は下式
であり、そのベクトルの位相関係を第2図に示
す。
The current component detector 7 detects the torque current component I 1 β and the excitation current component I 1 α according to the following relationship. first,
The three-phase primary current signal i U detected by the current detector 6,
i V and i W are converted into two-phase signals i a and i b by adders and subtracters 71 and 72 shown in FIG. The content of the calculation is as shown below, and the phase relationship of the vectors is shown in FIG.

ここに、k:比例定数 このようにして得た2相信号ia,ibと2相発振
器10の正弦波出力信号a,bを掛算器73〜7
6で掛算し、励磁電流成分I1αとトルク電流成分
I1βの検出信号i1α,i1βを得る。その演算内容は次
式であり、ベクトルの位相関係を第3図に示す。
where, k: proportional constant The two-phase signals i a , i b obtained in this way and the sine wave output signals a, b of the two-phase oscillator 10 are multiplied by the multipliers 73 to 7
Multiply by 6, excitation current component I 1 α and torque current component
Detection signals i 1 α and i 1 β of I 1 β are obtained. The contents of the calculation are as follows, and the phase relationship of the vectors is shown in FIG.

i1α=−b・ia+a・ib=k′Isinθ i1β=a・ia+b・ib=k′・Icosθ ……(10) ここに、k′:比例定数 I:1次電流の振幅 θ:信号ia,ibの信号a,bに対する遅れ位相
角度 2相発振器10の信号a,bと電動機4の1次
電圧は以下で述べるように位相が一致するため、
(10)式の演算により1次電流のトルク電流成分I1β
と励磁電流成分I1αが検出される。
i 1 α=-b・i a +a・i b =k′Isinθ i 1 β=a・i a +b・i b =k′・Icosθ ……(10) Here, k′: constant of proportionality I: 1 Amplitude of the secondary current θ: Delay phase angle of signals i a and i b with respect to signals a and b Since the signals a and b of the two-phase oscillator 10 and the primary voltage of the motor 4 match in phase as described below,
By calculating equation (10), the torque current component of the primary current I 1 β
and the excitation current component I 1 α are detected.

すべり周波数演算回路8の詳細な構成図を第6
図に示す。1次遅れ回路81及び割算器82から
成り、(4)式に対応した演算を行いすべり周波数s
に比例したすべり周波数演算信号が求められる。
このすべり周波数演算信号と速度指令回路5から
の速度指令信号が加算器9で加算され周波数指令
信号1となる。この関係については(7)(8)式等で述
べた通りである。
The detailed configuration diagram of the slip frequency calculation circuit 8 is shown in the sixth figure.
As shown in the figure. Consists of a first-order delay circuit 81 and a divider 82, which performs calculations corresponding to equation (4) to determine the slip frequency s.
A slip frequency calculation signal proportional to is obtained.
This slip frequency calculation signal and the speed command signal from the speed command circuit 5 are added by an adder 9 to form a frequency command signal 1 . This relationship is as described in equations (7) and (8).

2相発振器10は周波数指令信号1に比例した
周波数をもつ2相正弦波信号a,bを発生する。
2相発振器10は例えば周知の積分形鋸歯状波発
振器と関数発生器からなるものが用いられ、その
出力信号a,bは次式に示すような振巾が一定な
正弦波信号である。
A two-phase oscillator 10 generates two-phase sine wave signals a and b having a frequency proportional to the frequency command signal 1 .
The two-phase oscillator 10 is, for example, a well-known integral type sawtooth wave oscillator and a function generator, and its output signals a and b are sine wave signals with constant amplitudes as shown in the following equation.

a=sin(2π1t) b=cos(2π1t) ……(11) 掛算器13,14は2相信号aまたはbと掛算
器12からの電圧指令信号を掛算して次式に示す
信号c,dを出力する。
a=sin (2π 1 t) b=cos (2π 1 t) ...(11) Multipliers 13 and 14 multiply the two-phase signal a or b by the voltage command signal from multiplier 12, as shown in the following equation. Outputs signals c and d.

c=Asin(2π1t) d=Acos(2π1t) ……(12) ここに、A:電圧指令信号電圧 相数変換器15は周知の方法により2相信号
c,dを3相信号に変換する。PWMインバータ
3の出力電圧は前述したようにしてこの3相信号
に比例するように制御されるが、このとき出力電
圧EU〜EWと1次電流IU〜IWの位相関係は第4図
に示すようになる。この際、1次電流の励磁電流
成分I1αとトルク電流成分I1βは次式で与えられ、
(10)式の検出信号i1α,i1βと比例関係が成立する。
c=Asin (2π 1 t) d=Acos (2π 1 t) ...(12) Here, A: Voltage command signal voltage The phase number converter 15 converts the two-phase signals c and d into three-phase signals by a well-known method. Convert to The output voltage of the PWM inverter 3 is controlled to be proportional to this three-phase signal as described above, but at this time, the phase relationship between the output voltage E U - E W and the primary current I U - I W is 4-phase. The result will be as shown in the figure. At this time, the exciting current component I 1 α and the torque current component I 1 β of the primary current are given by the following equation,
A proportional relationship holds true with the detection signals i 1 α and i 1 β in equation (10).

I1α=Isinθ I1β=Icosθ ……(13) 以上のように制御するのであるが、一次電流の
トルク電流成分を検出してすべり周波数を演算に
より求め、このすべり周波数演算値によつて速度
指令信号を修正して一次周波数を制御している。
負荷の増減に応じて一次周波数を増減するように
しているので、電動機の回転速度を速度指令信号
に比例して精度よく制御することができる。また
速度検出器を省略できるので、特にその取付けが
困難な場合において大きな効果が得られる。
I 1 α=Isinθ I 1 β=Icosθ (13) Control is performed as described above, and the slip frequency is calculated by detecting the torque current component of the primary current. The primary frequency is controlled by modifying the speed command signal.
Since the primary frequency is increased or decreased in response to an increase or decrease in the load, the rotational speed of the motor can be accurately controlled in proportion to the speed command signal. Furthermore, since the speed detector can be omitted, a great effect can be obtained especially in cases where its installation is difficult.

ここで、第1図に示す実施例では磁束指令回路
11及び掛算器12の働きにより磁束量を任意に
制御することができる。しかし、磁束量一定の条
件で運転する場合では、励磁電流成分I1αは一定
であるため(4)式から明らかなようにs=k″i1β
(k″:比例定数)とみなすことができる。したが
つて、この場合は第1図におけるすべり周波数演
算回路8を省略できる。また、すべり周波数sは
(5)式に従つても検出が可能である。したがつて、
すべり周波数演算回路8の代りに、トルク電流成
分I1βを磁束指令信号で割算してすべり周波数s
を演算して加算器9に加えるようにしても同一の
効果が得られる。
Here, in the embodiment shown in FIG. 1, the amount of magnetic flux can be arbitrarily controlled by the functions of the magnetic flux command circuit 11 and the multiplier 12. However, when operating under conditions where the amount of magnetic flux is constant, the excitation current component I 1 α is constant, so as is clear from equation (4), s = k″i 1 β
(k″: proportionality constant). Therefore, in this case, the slip frequency calculation circuit 8 in FIG. 1 can be omitted. Also, the slip frequency s is
Detection is also possible according to equation (5). Therefore,
Instead of the slip frequency calculation circuit 8, the torque current component I 1 β is divided by the magnetic flux command signal to calculate the slip frequency s.
The same effect can be obtained by calculating and adding to the adder 9.

以上説明したように、本発明は電圧位相指令信
号と一次電流とからトルク電流成分を検出し、こ
のトルク電流成分によつて速度指令信号を修正し
一次周波数を制御している。したがつて、電圧の
波形歪みによる影響を受けず、かつ負荷変化によ
る速度変化を修正しているので高精度の速度制御
を行える。
As explained above, the present invention detects the torque current component from the voltage phase command signal and the primary current, modifies the speed command signal based on this torque current component, and controls the primary frequency. Therefore, since it is not affected by voltage waveform distortion and speed changes due to load changes are corrected, highly accurate speed control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図〜第4図は第1図の動作説明図、第5図は第1
図に示す電流成分検出器の詳細な回路構成図、第
6図は第1図に示すすべり周波数演算回路の詳細
な回路構成図である。 1……ダイオード整流器、2……平滑コンデン
サ、3……PWMインバータ、4……誘導電動
機、5……速度指令回路、6……電流検出器、7
……電流成分検出器、8……すべり周波数演算回
路、9……加算器、10……2相発振器、11…
…磁束指令回路、12……掛算器、13,14…
…掛算器、15……相数変換器、16……発振
器、17……比較器、18……ゲートアンプ。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
Figures 4 to 4 are explanatory diagrams of the operation of Figure 1, and Figure 5 is an illustration of the operation of Figure 1.
FIG. 6 is a detailed circuit diagram of the current component detector shown in the figure, and FIG. 6 is a detailed circuit diagram of the slip frequency calculation circuit shown in FIG. 1... Diode rectifier, 2... Smoothing capacitor, 3... PWM inverter, 4... Induction motor, 5... Speed command circuit, 6... Current detector, 7
... Current component detector, 8 ... Slip frequency calculation circuit, 9 ... Adder, 10 ... Two-phase oscillator, 11 ...
...Magnetic flux command circuit, 12... Multiplier, 13, 14...
... Multiplier, 15 ... Phase number converter, 16 ... Oscillator, 17 ... Comparator, 18 ... Gate amplifier.

Claims (1)

【特許請求の範囲】 1 周波数変換器により一次周波数が速度指令値
に応じて制御される誘導電動機の速度制御装置に
おいて、前記周波数変換器から前記誘導電動機に
供給される一次電流と前記周波数変換器の出力電
圧の位相指令信号によつて前記一次電流のトルク
電流成分を検出し、このトルク電流成分に基づき
前記一次周波数を修正し負荷の増減に応じて前記
一次周波数を増減するようにしたことを特徴とす
る誘導電動機の速度制御装置。 2 周波数変換器により、一次周波数が速度指令
値に応じて制御される誘導電動機の速度制御装置
において、前記周波数変換器から前記誘導電動機
に供給される一次電流と前記周波数変換器の出力
電圧の位相指令信号によつて前記一次電流のトル
ク電流成分を検出し、このトルク電流成分に基づ
き前記誘導電動機のすべり周波数を演算により求
め、このすべり周波数演算値によつて前記一次周
波数を修正し負荷の増減に応じて前記一次周波数
を増減するようにしたことを特徴とする誘導電動
機の速度制御装置。
[Scope of Claims] 1. In a speed control device for an induction motor in which a primary frequency is controlled by a frequency converter according to a speed command value, a primary current supplied from the frequency converter to the induction motor and the frequency converter The torque current component of the primary current is detected based on the phase command signal of the output voltage of the controller, and the primary frequency is corrected based on the torque current component, so that the primary frequency is increased or decreased in accordance with an increase or decrease in load. Features a speed control device for induction motors. 2. In a speed control device for an induction motor in which the primary frequency is controlled by a frequency converter according to a speed command value, the phase of the primary current supplied from the frequency converter to the induction motor and the output voltage of the frequency converter The torque current component of the primary current is detected by a command signal, the slip frequency of the induction motor is calculated based on this torque current component, and the primary frequency is corrected based on the calculated slip frequency value to increase or decrease the load. 1. A speed control device for an induction motor, characterized in that the primary frequency is increased or decreased depending on the speed of the induction motor.
JP15807079A 1979-12-07 1979-12-07 Speed controller of induction motor Granted JPS5683291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15807079A JPS5683291A (en) 1979-12-07 1979-12-07 Speed controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15807079A JPS5683291A (en) 1979-12-07 1979-12-07 Speed controller of induction motor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP61288840A Division JPS62171492A (en) 1986-12-05 1986-12-05 Speed controller for induction motor
JP61288841A Division JPS62171493A (en) 1986-12-05 1986-12-05 Detecting method for current of ac motor

Publications (2)

Publication Number Publication Date
JPS5683291A JPS5683291A (en) 1981-07-07
JPS6333399B2 true JPS6333399B2 (en) 1988-07-05

Family

ID=15663636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15807079A Granted JPS5683291A (en) 1979-12-07 1979-12-07 Speed controller of induction motor

Country Status (1)

Country Link
JP (1) JPS5683291A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118085A (en) * 1983-11-28 1985-06-25 Meidensha Electric Mfg Co Ltd Vector controller of induction motor

Also Published As

Publication number Publication date
JPS5683291A (en) 1981-07-07

Similar Documents

Publication Publication Date Title
US4862343A (en) Induction motor control apparatus
EP0330188B1 (en) Induction motor vector control
EP0173216B1 (en) Control system for a power converter for driving induction motors
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
EP0082303B1 (en) Method and apparatus for controlling induction motor
EP0030462A2 (en) Induction motor drive apparatus
JPS5850119B2 (en) Control device for commutatorless motor
EP0490024B1 (en) Induction motor vector control
EP0083945A2 (en) Method and apparatus of controlling induction motors
JPS6333399B2 (en)
JPS6334719B2 (en)
JPS6334718B2 (en)
JPH0344509B2 (en)
JPS6329518B2 (en)
JP3124019B2 (en) Induction motor control device
JPH0213555B2 (en)
JPS6355314B2 (en)
JP2881957B2 (en) Induction motor control device
JPH0254039B2 (en)
JPS6330236Y2 (en)
JP2544321B2 (en) Induction motor controller
JPS58136288A (en) Controlling method for induction motor
JPH0552154B2 (en)
JPH0413953B2 (en)
JPH0767319B2 (en) Variable speed controller for induction motor