JPS62171493A - Detecting method for current of ac motor - Google Patents

Detecting method for current of ac motor

Info

Publication number
JPS62171493A
JPS62171493A JP61288841A JP28884186A JPS62171493A JP S62171493 A JPS62171493 A JP S62171493A JP 61288841 A JP61288841 A JP 61288841A JP 28884186 A JP28884186 A JP 28884186A JP S62171493 A JPS62171493 A JP S62171493A
Authority
JP
Japan
Prior art keywords
current
signal
phase
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288841A
Other languages
Japanese (ja)
Other versions
JPS6334719B2 (en
Inventor
Toshiaki Okuyama
俊昭 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61288841A priority Critical patent/JPS62171493A/en
Publication of JPS62171493A publication Critical patent/JPS62171493A/en
Publication of JPS6334719B2 publication Critical patent/JPS6334719B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect the titled current without influence of the waveform distortion of an output voltage by detecting the effective and reactive components of an output current by calculating a sinusoidal value and a cosine value corresponding to the output current and the output voltage phase. CONSTITUTION:A current component detector 7 obtains reactive and effective current detection signals from a 3-phase primary current signal detected by a current detector 6 and a 2-phase sinusoidal wave output signal of a 2-phase oscillator 10. A slip frequency calculator 8 obtains a signal proportional to the slip frequency from the detection signal. An adder 9 adds the slip frequency signal and a speed command signal to obtain a frequency command signal. The oscillator 10 generates a 2-phase sinusoidal wave signal having a frequency proportional to the frequency command signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可変電圧・可変周波数の交流を出力する電圧型
周波数変換器により駆動される交流電動機の電流検出方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting current of an AC motor driven by a voltage type frequency converter that outputs alternating current of variable voltage and variable frequency.

〔従来の技術〕[Conventional technology]

交流電動機を可変電圧・可変周波数の交流を出力する周
波数変換器によって駆動する場合、電動機の回転速度N
は次式で与えられる。
When an AC motor is driven by a frequency converter that outputs variable voltage/variable frequency AC, the motor's rotational speed N
is given by the following equation.

N=−(flfs)          ・・(1)O ここに、po :極対数、f工 :駆動周波数、fs 
:すべり周波数。
N=-(flfs)...(1)O Here, po: number of pole pairs, f: drive frequency, fs
: Slip frequency.

(1)式におけるすベリ周波数jsはトルクに比例して
変化するため、駆動周波数f1が一定値である場合には
回転速度Nがトルクに応じて変動する。このため単に駆
動周波数f1を一定に保つだけでは精度のよい速度制御
が行えない、一方、電動機の軸端に速度検出器を取付け
、速度指令信号と速度検出器の検出信号の偏差に応じて
駆動周波数f1を制御すれば高い精度が得られる。しか
し、速度検出器が必要であり、取付けが面倒で電動機周
りの構造が複雑になると共に速度信号の伝送用に長距離
ケーブルが必要であるなどの不都合がある。
Since the slippage frequency js in equation (1) changes in proportion to the torque, when the drive frequency f1 is a constant value, the rotational speed N changes in accordance with the torque. For this reason, accurate speed control cannot be achieved simply by keeping the drive frequency f1 constant.On the other hand, a speed detector is attached to the end of the motor shaft, and the motor is driven according to the deviation between the speed command signal and the detection signal of the speed detector. High accuracy can be obtained by controlling the frequency f1. However, this method requires a speed detector, is troublesome to install, complicates the structure around the motor, and requires a long distance cable for transmitting the speed signal.

そのため、速度検出器を用いずにすべり周波数fsを検
出し、そのすべり周波数f、が所定値となるようにすベ
リ周波数制御を行う方式として、誘導電動機の1次電圧
v1と1次電流工1から励磁電流成分工、を演算により
求め、エエと工、の比からすベリ周波数f8を演算する
方法が知られている。このように、すベリ周波数を演算
する際には、1次電流の成分を高精度検出することが必
要である。このことは例えば特開昭54−11413号
公報に記載されている。しかし、この方法はサイリスタ
変換器の出力電圧に含まれる高調波に基づく電圧の波形
歪みの影響を受は易く、特に電動機の回転速度が低い(
電動機の誘起起電力が小さい)場合、あるいは出力電圧
波形が方形波状である電圧型サイリスタ変換器を用いる
場合ではその影響は顕著であり、精度よくすべり周波数
fsを検出 ・することが困難である。
Therefore, the primary voltage v1 of the induction motor and the primary current A method is known in which the excitation current component f8 is calculated by calculation, and the frequency f8 is calculated from the ratio of the excitation current component f8. In this way, when calculating the sub-frequency, it is necessary to detect the primary current component with high precision. This is described, for example, in Japanese Unexamined Patent Publication No. 11413/1983. However, this method is easily affected by voltage waveform distortion due to harmonics contained in the output voltage of the thyristor converter, especially when the rotation speed of the motor is low (
This effect is noticeable when the induced electromotive force of the motor is small) or when using a voltage type thyristor converter whose output voltage waveform is a square wave, making it difficult to detect the slip frequency fs with high accuracy.

以上はすべり周波数を求めることについて説明したが、
誘導電動機の流れる1次電流の有効電流と無効電流を精
度良く検出することが強く要求されている。
The above explained how to find the slip frequency, but
There is a strong demand to accurately detect the effective current and reactive current of the primary current flowing through an induction motor.

本発明の目的は電圧型周波数変換器から交流電動機に供
給される1次電流の有効電流および無効電流を精度良く
検出できる交流電動機の電流検出方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a current detection method for an AC motor that can accurately detect the active current and reactive current of the primary current supplied to the AC motor from a voltage frequency converter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電圧型周波数変換器の出力電流の実際値と周波
数変換器の1つの出力相の電圧位相に相応する正弦値お
よび余弦値との演算によって有効電流または無効電流を
求める。
The active or reactive current is determined by calculating the actual value of the output current of the voltage type frequency converter according to the invention and the sine and cosine values corresponding to the voltage phase of one output phase of the frequency converter.

〔作用〕[Effect]

電圧型周波数変換器はその出力電圧の基本波成分の大き
さと位相を電圧指令信号に応じて制御することができる
。そこで電圧指令信号の電圧位相指令信号と電圧型周波
数変換器の出力電流を乗算し、フーリエ変換の原理に従
い出力電流の出力電圧に同相な成分(有効分)と出力電
圧に対し90度位相差の成分(無効分)の各々を検出す
る。
A voltage type frequency converter can control the magnitude and phase of the fundamental wave component of its output voltage according to a voltage command signal. Therefore, the voltage phase command signal of the voltage command signal is multiplied by the output current of the voltage type frequency converter, and according to the Fourier transform principle, the component (effective component) of the output current that is in phase with the output voltage and the 90 degree phase difference with respect to the output voltage are Detect each of the components (ineffective components).

〔実施例〕〔Example〕

第1図に、本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図は本発明は誘導電動機を横腹検出器なしで速度制
御を行うものに適用した例を示す。
FIG. 1 shows an example in which the present invention is applied to an induction motor that performs speed control without a flank detector.

第1図においては、1は商用交流電圧を整流するダイオ
ード整流器、2は整流器1の出力電圧を平滑するための
平滑コンデンサ、3はスイッチング素子としてGTOサ
イリスタを用いた電圧型PWMインバータ、4は誘導電
動機、5は速度指令回路、6は電動機4の1次電流を検
出する電流検出器、7は1次電流のトルク作用電流成分
(有効電流)Iz#と励磁電流成分(無効電流)Its
をそれぞれ検出する電流成分検出器、8は有効電流■1
βと無効電流It(に基づいてすベリ周波数を求めすベ
リ周波数信号を出力するすべり周波数演算回路、9はす
ベリ周波数信号と速度指令信号を加算し、PWMインバ
ータ3の出力周波数を指令する周波数指令信号を出力す
る加算器、10は加算器9の周波数指令信号に比例した
周波数の2指圧弦波信号(電圧位相指令信号)を発生す
る2相発振器、11は電動機4の磁束量を指令する磁束
指令回路、12は磁束指令信号と周波数指令信号を掛算
し電圧指令信号を出力する掛算器、13゜14は発振器
10と、掛算器12の出力信号を掛算する掛算器、15
は2相宿号を3相宿号に変換する相数変換器、16はP
WMインバータ3を構成するGTOサイリスタのオン・
オフの周波数を制御する搬送波信号を発生する発振器、
17は相数変換器15と発振器16の出力信号を比較し
、パルス幅変M信号(PWM信号)を出力する比較器。
In Figure 1, 1 is a diode rectifier that rectifies the commercial AC voltage, 2 is a smoothing capacitor for smoothing the output voltage of rectifier 1, 3 is a voltage-type PWM inverter using a GTO thyristor as a switching element, and 4 is an inductive 5 is a speed command circuit; 6 is a current detector that detects the primary current of the motor 4; 7 is a torque acting current component (active current) Iz# and an exciting current component (reactive current) Its of the primary current.
8 is the effective current■1
A slip frequency calculation circuit that outputs a slip frequency signal that calculates the slip frequency based on β and reactive current It (9) is a frequency that adds the slip frequency signal and the speed command signal and commands the output frequency of the PWM inverter 3. an adder that outputs a command signal; 10 a two-phase oscillator that generates a two-shiatsu sinusoidal wave signal (voltage phase command signal) with a frequency proportional to the frequency command signal of the adder 9; 11 a two-phase oscillator that commands the amount of magnetic flux of the motor 4; A magnetic flux command circuit, 12 is a multiplier that multiplies the magnetic flux command signal and the frequency command signal and outputs a voltage command signal, 13. 14 is an oscillator 10 and a multiplier that multiplies the output signal of the multiplier 12. 15
is a phase number converter that converts a 2-phase inversion code into a 3-phase inversion code, and 16 is a P
ON/OFF of the GTO thyristor that constitutes the WM inverter 3
an oscillator that generates a carrier signal that controls the off frequency;
A comparator 17 compares the output signals of the phase number converter 15 and the oscillator 16 and outputs a pulse width variable M signal (PWM signal).

18はPWMインバータ3を構成するGTOサイリスタ
をオン・オフ制御するためのゲート信号を出力するゲー
トアンプである。
Reference numeral 18 denotes a gate amplifier that outputs a gate signal for controlling on/off of the GTO thyristor forming the PWM inverter 3.

第5図に電流成分検出器7の詳細な回路構成図を示す。FIG. 5 shows a detailed circuit diagram of the current component detector 7.

71はIU r l’V g IWを所定比率で加減算
する加算器、72はitからivを減算する減算器で、
これにより3相電流信号iu”iwを2相電流信号ia
、ibに変換する。73〜76は2相発振器1oの出力
信号a、bと2相電流信号ia + ibを掛算する掛
算器、77.78は各掛算器73〜76の出力信号の加
減算を行う加減算器である。
71 is an adder that adds or subtracts IU r l'V g IW at a predetermined ratio; 72 is a subtracter that subtracts iv from it;
This converts the three-phase current signal iu''iw into the two-phase current signal ia
, ib. Multipliers 73 to 76 multiply the output signals a and b of the two-phase oscillator 1o by the two-phase current signal ia+ib, and adder/subtractors 77 and 78 add and subtract the output signals of the multipliers 73 to 76.

次にその動作について説明する。周知のように電圧形パ
ルス幅変調インバータ3はインバータを構成するGT○
サイリスタのオン・オフ時間を変化させることにより出
力電圧を可変にできる。具体的には相数変換器15から
の電圧指令信号(正弦波)と発振器16からの搬送波信
号(3角波)を比較器17において比較し、その出力信
号であるPWM信号に応じてインバータ3のGTOサイ
リスタをオン・オフ制御して出力電圧を電圧指令信号に
比例するように制御する。
Next, its operation will be explained. As is well known, the voltage type pulse width modulation inverter 3 is a GT
The output voltage can be varied by changing the on/off time of the thyristor. Specifically, the voltage command signal (sine wave) from the phase number converter 15 and the carrier wave signal (triangular wave) from the oscillator 16 are compared in the comparator 17, and the inverter 3 is The output voltage is controlled to be proportional to the voltage command signal by controlling the GTO thyristor on and off.

次に、第1図の動作の理解を容易にするため動作の基本
的な考え方を説明する。電動機4の1次電流の励磁電流
成分1xaおよびトルク作用電流成分■1βは次式で与
えられる。
Next, in order to facilitate understanding of the operation shown in FIG. 1, the basic concept of the operation will be explained. The exciting current component 1xa and the torque acting current component 1β of the primary current of the motor 4 are given by the following equations.

ここに、P:d/dt(演算子) T2 :2次時定数 M′ =1次−2次間相互インダクタンスφ2′:2次
鎖交磁束 fs :すべり周波数 すなわち、すべり周波数f、は次式に従い演算できる。
Here, P: d/dt (operator) T2: Secondary time constant M' = Mutual inductance between primary and secondary φ2': Secondary linkage magnetic flux fs: Slip frequency, that is, slip frequency f, is expressed by the following formula It can be calculated according to

または 一方、電動機4の回転周波数J、と駆動周波数f1は fr=fs  fs (2極機の場合)     −(
6)の関係があるから、駆動周波数f1を予めすベリ周
波数1.分だけ大きくしておき f L’ = f 1+ f s          
 −(7)なるfx’  を新たな駆動周波数とすれば
、! r=f t’ −f s= f t      
   ”・(8)の関係が成立する。すなわち、回転周
波数!、は元の駆動周波数fxに対応する。
Or, on the other hand, the rotational frequency J of the electric motor 4 and the driving frequency f1 are fr=fs fs (in the case of a two-pole machine) −(
Because of the relationship 6), the very frequency 1. Make it larger by f L' = f 1 + f s
-(7) If fx' is the new driving frequency, then! r=ft'-fs=ft
”·(8) holds true. That is, the rotational frequency ! corresponds to the original drive frequency fx.

このことから、速度指令信号を駆動周波数fsの指令信
号に対応させ、これにすべり周波数Js相当の信号を加
算し、それによりインバータ3の出力周波数fl’  
を制御すれば回転速度f、を速度指令に精度よく一致さ
せることができる。
From this, the speed command signal is made to correspond to the command signal of the drive frequency fs, and a signal corresponding to the slip frequency Js is added thereto, thereby making the output frequency fl' of the inverter 3
By controlling the rotational speed f, it is possible to precisely match the rotational speed f with the speed command.

以上が動作の基本的な考え方である。The above is the basic concept of operation.

次に第1図の実施例の動作を説明する。まず、本発明の
要部である電流検出について説明する。
Next, the operation of the embodiment shown in FIG. 1 will be explained. First, current detection, which is the main part of the present invention, will be explained.

電流成分検出器7は有効電流Isβと無効電流11aを
次のようにして検出する。まず、電流検出器6で検出し
た3相の1次電流信号(1U+ I V viw)を第
5図に示す加減算器71.72により2相信号(ia、
ib)に変換する。その演算内容は下式であり、そのベ
クトルの位相関係を第2図に示す。
The current component detector 7 detects the active current Isβ and the reactive current 11a as follows. First, the three-phase primary current signal (1U+I V viw) detected by the current detector 6 is converted into two-phase signals (ia,
ib). The content of the calculation is as shown below, and the phase relationship of the vectors is shown in FIG.

ここに、k:比例定数 このようにして得た2相信号ia 、ibと2相発振器
10の正弦波出力信号(a、b)を掛算器73〜76で
掛算し、無効電流E 1a、有効電流Itlの検出信号
i1d、i1βを得る。その演算内容は次式に示す通り
であり、ベクトルの位相関係を第3図に示す。
Here, k: proportional constant The two-phase signals ia, ib thus obtained and the sine wave output signals (a, b) of the two-phase oscillator 10 are multiplied by multipliers 73 to 76, and the reactive current E 1a, effective Detection signals i1d and i1β of current Itl are obtained. The contents of the calculation are as shown in the following equation, and the phase relationship of the vectors is shown in FIG.

1ta=−b−ia+a−ib =に’l5inθ 11β=a−ia+b−ib = k’  ・Icos(1・=(10)ここに、k′
 :比例定数 工 :1次電流の振幅 θ :信号ia 、 ibの信号a、bに対する遅れ位
相角度 2相発振器の信号a、bと電動機4の1次電圧は以下で
述べるように位相が一致するため、(10)式の演算に
より1次電流の無効電流Ireと有効電流工1βが検出
される。
1ta=-b-ia+a-ib='l5inθ 11β=a-ia+b-ib=k'・Icos(1・=(10)Here,k'
: Proportionality constant : Amplitude θ of primary current : Delayed phase angle of signals ia and ib relative to signals a and b Signals a and b of the two-phase oscillator and the primary voltage of the motor 4 match in phase as described below Therefore, the reactive current Ire and the active current 1β of the primary current are detected by the calculation of equation (10).

すベリ周波数演算回路8の詳細な構成図を第6図に示す
。1次遅れ回路81及び割算器82から成り、(4)式
に対応した演算を行いすベリ周波数fSに比例した信号
が求められる。
A detailed configuration diagram of the full frequency calculation circuit 8 is shown in FIG. It consists of a first-order delay circuit 81 and a divider 82, and performs calculations corresponding to equation (4) to obtain a signal proportional to the frequency fS.

すベリ周波数演算回路8で求めたすべり周波数信号と速
度指令回路5から与えられる速度指令信号が加算器9で
加算され周波数指令信号が取り出される。この関係につ
いては(7)(8)式等で述べた通りである。
The slip frequency signal obtained by the slip frequency calculation circuit 8 and the speed command signal given from the speed command circuit 5 are added by an adder 9, and a frequency command signal is taken out. This relationship is as described in equations (7), (8), etc.

2相発振器1oはこの周波数指令信号に比例した周波数
をもつ2指圧弦波信号a、bを発生する。
A two-phase oscillator 1o generates two acupressure string wave signals a and b having frequencies proportional to this frequency command signal.

2相発振器10は例えば周知の積分形態歯状波発振器と
関数発生器からなるものが用いられ、その出力信号a、
bは次式に示すような振巾が一定な正弦波信号である。
As the two-phase oscillator 10, for example, one consisting of a well-known integral type tooth wave oscillator and a function generator is used, and its output signal a,
b is a sine wave signal with a constant amplitude as shown in the following equation.

a =sin (2πftt) b =cos (2x f x t )       
  −(11)掛算器13.14は2相信号aまたはb
と掛算器12からの電圧指令信号を掛算して次式に示す
信号c、dを出力する。
a = sin (2πftt) b = cos (2x f x t)
-(11) Multipliers 13 and 14 are two-phase signals a or b
is multiplied by the voltage command signal from the multiplier 12 to output signals c and d shown in the following equations.

c =Asin (2tc Jtt) d=Acos (2πftt)        ・・(
12)ここに、A:電圧指令信号振幅 相数変換器15は周知の方法により2相信号C9dを3
相宿号に変換する。PWMインバータ3の出力電圧は前
述したようにしてこの3相宿号に比例するように制御さ
れるが、このとき出力電圧Eu”Ewと1次電流工υ〜
Isの位相関係は第4図に示すようになる。この際、1
次電流の無効電流エニーと有効電流工1βは次式で与え
られ、(10)式のi 1g、 i tlと比例関係が
成立する。
c = Asin (2tc Jtt) d = Acos (2πftt) ... (
12) Here, A: Voltage command signal amplitude phase number converter 15 converts the two-phase signal C9d into three
Convert to Aishukugo. The output voltage of the PWM inverter 3 is controlled to be proportional to this three-phase signal as described above, but at this time, the output voltage Eu"Ew and the primary current factor υ~
The phase relationship of Is is as shown in FIG. At this time, 1
The reactive current any of the next current and the active current factor 1β are given by the following equation, and a proportional relationship holds with i 1g and i tl in equation (10).

I 1a= I sinθ IIβ=Icosθ            −(13
)以上のようにして制御するのであるが、電動機4の回
転速度を速度指令信号に比例して精度よく制御すること
ができる。また速度検出器を省略できるので、特にその
取付けが困難な場合において大きな効果が得られる。
I1a=I sinθ IIβ=Icosθ−(13
) The rotational speed of the electric motor 4 can be accurately controlled in proportion to the speed command signal. Furthermore, since the speed detector can be omitted, a great effect can be obtained especially in cases where its installation is difficult.

第1図に示すものでは、磁束指令回路11及び掛算器1
2の働きにより磁束量を任意に制御することができる。
In the one shown in FIG. 1, a magnetic flux command circuit 11 and a multiplier 1
The amount of magnetic flux can be arbitrarily controlled by the function of 2.

しかし磁束量一定の条件で運転する場合には、無効電流
T1αは一定であるため(4)式から明らかなようにf
s=k“iiβ(k′:比例定数)とみなすことができ
る。したがってこの場合は、第1図におけるすべり周波
数演算回路8を省略できる。
However, when operating under conditions where the amount of magnetic flux is constant, the reactive current T1α is constant, so as is clear from equation (4), f
It can be considered that s=k"iiβ (k': proportionality constant). Therefore, in this case, the slip frequency calculation circuit 8 in FIG. 1 can be omitted.

また、すベリ周波数fsは(5)式に従っても求めるこ
とが可能である。したがってすベリ周波数演算回路8の
代りに有効電流11βを磁束指令信号で割算してすベリ
周波数fsを演算して加算器9に加えるようにしても同
一の効果が得られる。
Further, the slip frequency fs can also be determined according to equation (5). Therefore, the same effect can be obtained by calculating the full frequency fs by dividing the effective current 11β by the magnetic flux command signal and adding it to the adder 9 instead of using the full frequency calculation circuit 8.

第7図は本発明を他の制御装置に適用した例を示す。FIG. 7 shows an example in which the present invention is applied to another control device.

第7図において、第1図と異なる点は、速度制御回路を
設は速度制御応答を改善するようにしたことである。第
7図において19は速度検出用減算器、20は速度偏差
増巾器、21はすべり周波数偏差増巾器であり、他の部
品は第1図に示したものと同一である。減算器19にお
いて2相発振器10の入力信号である駆動周波数fiに
比例する信号とすべり周波数演算回路8の出力信号の差
から、(11)式の関係に従い速度信号を検出する。増
巾器20において速度指令と速度信号の偏差が増巾され
、その出力信号は増巾器21のすべり周波数指令として
加えられる。なお、通常誘導電動機4の過負荷過電流を
防止するため、すベリ周波数指令の振巾を制限しすベリ
周波数の最大値を制限するためのすべり周波数制限器が
増巾器2oに設けるのが望ましい。増巾器21は積分器
の動作を行うもので、前記すべり周波数指令とすべり周
波数信号の偏差に応じて周波数指令信号が変化する。な
お、偏差が零の場合は駆動周波数f1は一定値に保持さ
れる。
The difference between FIG. 7 and FIG. 1 is that a speed control circuit is provided to improve the speed control response. In FIG. 7, 19 is a speed detection subtracter, 20 is a speed deviation amplifier, and 21 is a slip frequency deviation amplifier, and the other parts are the same as those shown in FIG. The subtracter 19 detects a speed signal from the difference between the input signal of the two-phase oscillator 10, which is a signal proportional to the drive frequency fi, and the output signal of the slip frequency calculation circuit 8, according to the relationship of equation (11). The amplifier 20 amplifies the deviation between the speed command and the speed signal, and its output signal is added to the amplifier 21 as a slip frequency command. Note that in order to prevent overload and overcurrent of the induction motor 4, the amplifier 2o is usually provided with a slip frequency limiter for limiting the amplitude of the slip frequency command and limiting the maximum value of the slip frequency. desirable. The amplifier 21 operates as an integrator, and the frequency command signal changes depending on the deviation between the slip frequency command and the slip frequency signal. Note that when the deviation is zero, the drive frequency f1 is maintained at a constant value.

第7図の実施例では、速度偏差増巾器20の働きにより
速度偏差が十分に増巾され、その偏差信号に応じて電動
機のトルクと比例関係にあるすべり周波数を制御するた
め優れた速度応答性能が得られる。
In the embodiment shown in FIG. 7, the speed deviation is sufficiently amplified by the action of the speed deviation amplifier 20, and the slip frequency, which is proportional to the motor torque, is controlled in accordance with the deviation signal, resulting in excellent speed response. Performance can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は電圧型周波数変換器の出力
電流と出力電圧位相に相応する正弦値および余弦値との
演算によって、出力電流の有効成分及び無効成分を検出
するようにしているので電圧型周波数変換器の出力電圧
の波形歪みの影響を受けることがなく、高精度な検出が
行える。
As explained above, the present invention detects the active component and the reactive component of the output current by calculating the output current of the voltage type frequency converter and the sine value and cosine value corresponding to the output voltage phase. Highly accurate detection is possible without being affected by waveform distortion of the output voltage of the type frequency converter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路構成図、第2〜4
図は第1図の装置の動作を説明するための図、第5図、
第6図は第1図の回路部品の詳細な回路構成図、第7図
は本発明の他の適用例を示す回路構成図である。 1・・・ダイオード整流器、2・・・平滑コンデンサ、
3・・・PWMインバータ、4・・・誘導電動機、5・
・・速度指令回路、6・・・電流検出器、7・・・電流
成分検出器、8・・・すべり周波数演算回路、9・・・
加算器、10・・2相発振器、11・・・磁束指令回路
、12・・・掛算器、13.14・・・掛算器、15・
・・相数変換器、16・・・  −r゛\
Figure 1 is a circuit configuration diagram showing one embodiment of the present invention, and Figures 2-4
The figures are diagrams for explaining the operation of the device in Figure 1, Figure 5,
FIG. 6 is a detailed circuit configuration diagram of the circuit components shown in FIG. 1, and FIG. 7 is a circuit configuration diagram showing another example of application of the present invention. 1... Diode rectifier, 2... Smoothing capacitor,
3... PWM inverter, 4... induction motor, 5...
... Speed command circuit, 6... Current detector, 7... Current component detector, 8... Slip frequency calculation circuit, 9...
Adder, 10... Two-phase oscillator, 11... Magnetic flux command circuit, 12... Multiplier, 13.14... Multiplier, 15...
...Phase number converter, 16... -r゛\

Claims (1)

【特許請求の範囲】 1、出力電圧の大きさと周波数を可変できる電圧型周波
数変換器と、該電圧型周波数変換器により駆動される交
流電動機と、前記電圧型周波数変換器の出力電流を検出
する電流検出手段と、前記電圧型周波数変換器を構成す
るスイッチング素子を制御する信号から少なくとも1つ
の出力相の瞬時電圧位相に相応する正弦値および余弦値
を出力する関数信号発生手段とを具備して電流検出信号
を得る方法において、前記電圧型周波数変換器の出力電
流の実際値と前記電圧位相に相応する正弦値および余弦
値と演算により、前記電圧型周波数変換器の出力相の有
効電流または無効電流を求めるようにしたことを特徴と
する交流電動機の電流検出方法。 2、特許請求の範囲第1項において、前記交流電動機は
誘導電動機であつて、演算により求めた有効電流と無効
電流は前記誘導電動機のすべり周波数の演算に用いられ
ることを特徴とする交流電動機の電流検出方法。
[Claims] 1. A voltage type frequency converter capable of varying the magnitude and frequency of an output voltage, an AC motor driven by the voltage type frequency converter, and detecting the output current of the voltage type frequency converter. It comprises a current detection means and a function signal generation means for outputting a sine value and a cosine value corresponding to the instantaneous voltage phase of at least one output phase from a signal controlling a switching element constituting the voltage type frequency converter. In the method for obtaining a current detection signal, the effective or invalid current of the output phase of the voltage type frequency converter is calculated by calculating the actual value of the output current of the voltage type frequency converter and a sine value and a cosine value corresponding to the voltage phase. A current detection method for an AC motor, characterized in that the current is determined. 2. In claim 1, the AC motor is characterized in that the AC motor is an induction motor, and the active current and reactive current obtained by calculation are used to calculate the slip frequency of the induction motor. Current detection method.
JP61288841A 1986-12-05 1986-12-05 Detecting method for current of ac motor Granted JPS62171493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288841A JPS62171493A (en) 1986-12-05 1986-12-05 Detecting method for current of ac motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288841A JPS62171493A (en) 1986-12-05 1986-12-05 Detecting method for current of ac motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15807079A Division JPS5683291A (en) 1979-12-07 1979-12-07 Speed controller of induction motor

Publications (2)

Publication Number Publication Date
JPS62171493A true JPS62171493A (en) 1987-07-28
JPS6334719B2 JPS6334719B2 (en) 1988-07-12

Family

ID=17735437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288841A Granted JPS62171493A (en) 1986-12-05 1986-12-05 Detecting method for current of ac motor

Country Status (1)

Country Link
JP (1) JPS62171493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182800A (en) * 2007-01-24 2008-08-07 Toyo Electric Mfg Co Ltd Induction machine controller
WO2020208787A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2020208785A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182800A (en) * 2007-01-24 2008-08-07 Toyo Electric Mfg Co Ltd Induction machine controller
WO2020208787A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2020208785A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JPWO2020208787A1 (en) * 2019-04-11 2021-12-02 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
JPWO2020208785A1 (en) * 2019-04-11 2021-12-02 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer

Also Published As

Publication number Publication date
JPS6334719B2 (en) 1988-07-12

Similar Documents

Publication Publication Date Title
US4361794A (en) Induction motor drive apparatus
US4967135A (en) Induction motor vector control
CN101647186B (en) Power conversion system
JP3762915B2 (en) Induction motor and method for correcting induction motor
JPS5850119B2 (en) Control device for commutatorless motor
JPS6137864B2 (en)
EP0082303B1 (en) Method and apparatus for controlling induction motor
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
US20130119904A1 (en) Method and system for controlling motor
US4510430A (en) Vector control method and system for an induction motor
JPH05308793A (en) Control circuit for power conversion device
EP0121792A2 (en) Vector control method and system for an induction motor
JPS62171493A (en) Detecting method for current of ac motor
RU99671U1 (en) DEVICE FOR CONTROL OF THE DUAL POWER ENGINE
JPH0344509B2 (en)
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS62171492A (en) Speed controller for induction motor
JPS6333399B2 (en)
JP3124019B2 (en) Induction motor control device
JPS6329518B2 (en)
JPS60219983A (en) Drive controller of induction motor
JPH0561876B2 (en)
JP2609229B2 (en) Controller for circulating current type cycloconverter
JPS6355314B2 (en)
JPS61128790A (en) Slip frequency calculator of induction motor