JP2544321B2 - Induction motor controller - Google Patents

Induction motor controller

Info

Publication number
JP2544321B2
JP2544321B2 JP59019958A JP1995884A JP2544321B2 JP 2544321 B2 JP2544321 B2 JP 2544321B2 JP 59019958 A JP59019958 A JP 59019958A JP 1995884 A JP1995884 A JP 1995884A JP 2544321 B2 JP2544321 B2 JP 2544321B2
Authority
JP
Japan
Prior art keywords
magnetic flux
signal
induction motor
command signal
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59019958A
Other languages
Japanese (ja)
Other versions
JPS60167692A (en
Inventor
長瀬  博
信義 武藤
慶次郎 酒井
寿一 二宮
貞之 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP59019958A priority Critical patent/JP2544321B2/en
Publication of JPS60167692A publication Critical patent/JPS60167692A/en
Application granted granted Critical
Publication of JP2544321B2 publication Critical patent/JP2544321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の1次電流を磁束をつくる励磁成
分とそれに直交するトルク成分とにわけて制御する誘導
電動機の制御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an induction motor that controls the primary current of the induction motor by dividing it into an excitation component that creates a magnetic flux and a torque component that is orthogonal thereto.

〔発明の背景〕[Background of the Invention]

誘導電流機の高応答可変速駆動方式としてベクトル制
御方法が知られている。ベクトル制御方法によれば、1
次電流の磁束成分とそれに直交するトルク成分が独立に
制御されるので、電動機の発生トルクを速やかに制御で
きる。ベクトル制御方法を電圧形PWMインバータを用い
て誘導電動機を駆動するものに適用すると、インバータ
の出力電圧に含まれる高調波分が多いので、電動機から
発生する騒音が大きくなる。
A vector control method is known as a high response variable speed drive method for an induction current machine. According to the vector control method, 1
Since the magnetic flux component of the next current and the torque component orthogonal thereto are independently controlled, the generated torque of the electric motor can be quickly controlled. When the vector control method is applied to the one in which an induction motor is driven by using a voltage type PWM inverter, the harmonics contained in the output voltage of the inverter are large, so that the noise generated from the motor becomes large.

この欠点の解決するために、トルクあるいはこれに関
連する速度制御手段に出力信号に比例させて電動機の磁
束を制御する方法が提案されている。この方法は軽負荷
になるにつれて磁束を小さくするので、軽負荷状態で騒
音を小さくできる。しかし、次のような問題点がある。
すなわち、無負荷時で運転している場合に、急に定格ト
ルクが要求されたとき、磁束は急に大きくはならないの
で、所定のトルクが発生するまでに時間がかかり、たと
えば速度がなかなか立上らないという問題を生じる。さ
らに、無負荷運転を行つている場合、微小振動の外乱が
入ることによつて生じる速度振動は、トルクがすぐに出
てこないことから、除去しにくいという問題もある。こ
れらのことはベクトル制御方法によつて高応答化しよう
としたにもかかわらず、その特徴を充分に発揮できなく
なる。
In order to solve this drawback, a method has been proposed in which the magnetic flux of the electric motor is controlled in proportion to the output signal by the torque or speed control means related thereto. Since this method reduces the magnetic flux as the load becomes lighter, the noise can be reduced in the light load state. However, there are the following problems.
That is, when the rated torque is suddenly requested during operation with no load, the magnetic flux does not suddenly increase.Therefore, it takes time until the predetermined torque is generated. Creates the problem of not being. Further, when no-load operation is performed, there is also a problem that it is difficult to remove the velocity vibration generated by the disturbance of the minute vibration because the torque does not immediately come out. Although these things try to make the response high by the vector control method, they cannot fully exhibit their characteristics.

〔発明の目的〕[Object of the Invention]

本発明は前記欠点に対してなされたもので、その目的
とするところは、トルクに応じて磁束を変える際に無負
荷時において定格負荷指令が出されても、トルク応答が
悪化することなく騒音を小さくできる誘導電動機の制御
装置を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to reduce noise without deteriorating torque response even when a rated load command is issued at no load when changing magnetic flux according to torque. An object of the present invention is to provide a control device for an induction motor that can reduce the noise.

〔発明の概要〕[Outline of Invention]

本発明は、誘導電動機の1次電流の励磁電流成分とそ
れに直交するトルク電流成分を各々の指令信号に応じて
独立に制御する誘導電動機の制御装置において、前記ト
ルク電流成分の指令信号の零から定格値までの大きさに
応じて、前記電動機の磁束指令信号を零よりも大きくそ
の定格値以下の所定値から定格値まで可変させる磁束指
令回路と、該磁束指令回路からの磁束指令信号と磁束演
算回路からの磁束信号との偏差から前記励磁電流成分の
指令信号を生成する励磁電流指令手段とを備え、前記磁
束演算回路は、該励磁電流指令手段からの励磁電流成分
指令信号を遅れ要素に入力して前記磁束信号を演算する
ものであることを特徴とする。
The present invention relates to an induction motor control device for independently controlling an exciting current component of a primary current of an induction motor and a torque current component orthogonal thereto in accordance with each command signal. A magnetic flux command circuit that changes the magnetic flux command signal of the electric motor from a predetermined value that is greater than zero and equal to or less than the rated value to a rated value according to the size up to the rated value, and the magnetic flux command signal and the magnetic flux from the magnetic flux command circuit. An exciting current command means for generating a command signal of the exciting current component from a deviation from the magnetic flux signal from the arithmetic circuit, wherein the magnetic flux calculating circuit uses the exciting current component command signal from the exciting current command means as a delay element. It is characterized in that the magnetic flux signal is inputted to calculate the magnetic flux signal.

本発明の概要は上述の通りであるが、本発明の基本理
念を簡単に説明する。高応答制御を行うためには磁束は
できるだけ大きい方がよい。一方、磁束が大きいと騒音
が大きくなる。このように、応答性をよくすることと低
騒音にすることとは相反する関係にある。ところで、騒
音は磁束に比例して発生する電磁音,電動機の回転によ
つて生じる機械音,冷却フアンによる風音等からなる。
そのために、無負荷時に磁束を零にしても、電動機が運
転している限り騒音は発生することになる。このこと
は、無負荷時に磁束を零にしても意味はなく、電磁音が
電動機の回転によつて生ずる音以下の騒音レベルになる
程度まで磁束を減少させればよいことを意味する。
Although the outline of the present invention is as described above, the basic idea of the present invention will be briefly described. The magnetic flux should be as large as possible for high response control. On the other hand, when the magnetic flux is large, the noise is large. As described above, improving the responsiveness and reducing the noise are in a contradictory relationship. By the way, the noise is composed of an electromagnetic noise generated in proportion to the magnetic flux, a mechanical noise generated by the rotation of the electric motor, a wind noise caused by a cooling fan, and the like.
Therefore, even if the magnetic flux is zero when there is no load, noise is generated as long as the electric motor is operating. This means that there is no point in reducing the magnetic flux to zero when there is no load, and it is sufficient to reduce the magnetic flux to such an extent that the electromagnetic noise is at a noise level equal to or lower than the noise generated by the rotation of the electric motor.

〔発明の実施例〕Example of Invention

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において、周波数変換器2は整流器、平滑用の
コンデンサ、インバータから構成されるPWMインバータ
で、交流電源1から電力を受け、誘導電動機3の駆動に
必要な周波数及び電圧の交流電流を出力する。誘導電動
機3は周波数変換器2に接続され、周波数変換器2から
交流電流の供給をうけて駆動される。速度検出器4は誘
導電動機3の軸端に機械的に直結され、その回転速度を
検出する。速度指令回路5の速度指令信号Nと速度検
出器4の速度検出信号Nの偏差信号が速度制御回路6に
入力される。速度制御回路6は速度偏差に応じて誘導電
動機3の1次電流のトルク成分(以下、トルク電流とす
る)を指令するトルク電流指令信号It を出力する。ト
ルク電流指令信号It は磁束指令回路7、ベクトル演算
回路12および、割算器9に入力される。磁束指令回路7
はその入力信号に応じて磁束指令信号Φを出力する。
磁束指令信号Φは磁束制御回路8に入力される。磁束
制御回路8は磁束指令信号Φに応じて磁束を作るため
の1次電流の励磁成分(以下、励磁電流と略す)の指令
信号Im と誘導電動機3における実際の磁束信号Φを演
算する。励磁電流指令信号Im はベクトル演算回路12に
入力される。トルク電流指令信号It は割算器9におい
て磁束信号Φで除せられる。割算器9の出力信号は誘導
電動機3のすべり角周波数信号ωとなつて、加算器10
に入力される。加算器10ではすべり角周波数信号ω
速度検出信号Nが加算され、1次角周波数信号ωとな
る。1次角周波数信号ωは発振器11に入力され、発振
器11からは一定振幅で、角周波数ωの正弦信号と余弦
信号が出力される。この両信号はベクトル演算回路12に
入力される。ベクトル演算回路12では正弦,余弦信号を
基準にして、トルク電流指令信号It と励磁電流指令信
号Im のベクトル加算を行い、誘導電動機3に流れる交
流の1次電流指令信号iを演算する。1次電流指令信
号iと電流検出器13の電流検出信号iの偏差に応じた
信号が電流制御回路14に入力される。電流制御回路14は
電流偏差に応じた信号を出力する。その信号はPWM制御
回路15に入力される。PWM制御回路15は電流制御回路14
の出力信号と三角波信号(搬送波)とを比較し、周波数
変換器2のスイツテング素子を制御するPWMパルスを作
成する。PWM制御回路15のPWMパルスは周波数変換器2の
点弧制御を行う。
In FIG. 1, a frequency converter 2 is a PWM inverter composed of a rectifier, a smoothing capacitor, and an inverter, which receives electric power from an AC power source 1 and outputs an AC current having a frequency and a voltage necessary for driving the induction motor 3. To do. The induction motor 3 is connected to the frequency converter 2 and driven by being supplied with an alternating current from the frequency converter 2. The speed detector 4 is mechanically directly connected to the shaft end of the induction motor 3 and detects its rotation speed. A deviation signal between the speed command signal N * of the speed command circuit 5 and the speed detection signal N of the speed detector 4 is input to the speed control circuit 6. Speed control circuit 6 torque component of the primary current of the induction motor 3 in accordance with the speed deviation (hereinafter referred to as torque current) and outputs a torque current command signal I t * for commanding. Torque current command signal I t * is the magnetic flux command circuit 7, the motion vector computing circuit 12 and is inputted to the divider 9. Magnetic flux command circuit 7
Outputs a magnetic flux command signal Φ * according to the input signal.
The magnetic flux command signal Φ * is input to the magnetic flux control circuit 8. The magnetic flux control circuit 8 calculates the command signal I m * of the excitation component of the primary current (hereinafter, abbreviated as excitation current) for creating the magnetic flux according to the magnetic flux command signal Φ * and the actual magnetic flux signal Φ in the induction motor 3. To do. The exciting current command signal I m * is input to the vector calculation circuit 12. The torque current command signal I t * is divided by the magnetic flux signal Φ in the divider 9. The output signal of the divider 9 becomes the slip angular frequency signal ω s of the induction motor 3 and the adder 10
Is input to The adder 10 adds the slip angular frequency signal ω s and the speed detection signal N to form a primary angular frequency signal ω 1 . The primary angular frequency signal ω 1 is input to the oscillator 11, and the oscillator 11 outputs a sine signal and a cosine signal with a constant amplitude and an angular frequency ω 1 . Both signals are input to the vector operation circuit 12. The vector calculation circuit 12 performs vector addition of the torque current command signal I t * and the exciting current command signal I m * on the basis of the sine and cosine signals to obtain the AC primary current command signal i * flowing through the induction motor 3. Calculate A signal corresponding to the deviation between the primary current command signal i * and the current detection signal i of the current detector 13 is input to the current control circuit 14. The current control circuit 14 outputs a signal according to the current deviation. The signal is input to the PWM control circuit 15. The PWM control circuit 15 is the current control circuit 14
And the triangular wave signal (carrier wave) are compared, and a PWM pulse for controlling the switching element of the frequency converter 2 is created. The PWM pulse of the PWM control circuit 15 controls the firing of the frequency converter 2.

次に動作を説明する。 Next, the operation will be described.

速度制御回路6はトルク電流指令信号It を出力す
る。磁束指令信号Φはトルク電流指令信号It に応じ
て決められる。第2図(a)(b)(c)にそれぞれそ
の特性の一例を示す。αは入力信号(It )の定格値、
βは定格磁束を指令する磁束指令の値である。入力信号
αが零になつても磁束指令は零ではなく、定格値βより
弱められたτなる値を保つている。磁束制御回路8では
磁束指令信号Φに従つて、励磁電流指令信号Im を作
成する。第3図はに磁束指令回路8の一例を示す。磁束
偏差増幅器101は磁束指令信号Φと磁束演算回路102に
よる磁束信号Φの偏差に応じて動き、その出力信号は励
磁電流指令信号Im となる。磁束演算回路102は次の演
算により磁束信号Φを求める。
Speed control circuit 6 outputs a * torque current command signal I t. The magnetic flux command signal Φ * is determined according to the torque current command signal I t * . 2 (a), (b) and (c) show examples of the characteristics, respectively. α is the rated value of the input signal (I t * ),
β is the value of the magnetic flux command that commands the rated magnetic flux. Even if the input signal α becomes zero, the magnetic flux command is not zero, and the value τ weakened from the rated value β is maintained. Flux control circuit 8, the magnetic flux command signal [Phi * in accordance connexion, to create the excitation current command signal I m *. FIG. 3 shows an example of the magnetic flux command circuit 8. The magnetic flux deviation amplifier 101 moves according to the deviation between the magnetic flux command signal Φ * and the magnetic flux signal Φ by the magnetic flux calculation circuit 102, and its output signal becomes the exciting current command signal I m * . The magnetic flux calculation circuit 102 obtains the magnetic flux signal Φ by the following calculation.

ここで、Mは誘導電動機3の励磁インダクタンス、T2
は同じく2次回路の時定数、Sはラプラス演算子であ
る。こうしてトルク電流指令信号It 、磁束信号Φが演
算されると、すべり角周波数ωは次式によつて求めら
れる。
Here, M is the exciting inductance of the induction motor 3, T 2
Is the time constant of the secondary circuit and S is the Laplace operator. When the torque current command signal I t * and the magnetic flux signal Φ are calculated in this way, the slip angular frequency ω s is obtained by the following equation.

(2)式の演算は割算器9で行なわれる。次に加算器
10では、すべり角周波数信号ωと速度検出信号Nによ
り1次角周波数信号ωを演算する。
The operation of the equation (2) is performed by the divider 9. Next adder
At 10, the primary angular frequency signal ω 1 is calculated from the slip angular frequency signal ω s and the speed detection signal N.

ω=ω+N ……(3) 発振器11は次式に示す正弦信号pと余弦信号qを出力
する。
ω 1 = ω s + N (3) The oscillator 11 outputs the sine signal p and the cosine signal q shown in the following equations.

ベクトル演算回路12では信号p,qを基準にしてトルク
電流指令信号It 、励磁電流指令信号Im のベクトル和
をとり、3相の交流の1次電流指令iを演算する。そ
のうち、1相分について記すと次式のようになる。
The vector calculation circuit 12 calculates the vector sum of the torque current command signal I t * and the exciting current command signal I m * on the basis of the signals p and q to calculate a three-phase AC primary current command i * . Of these, one phase is expressed by the following equation.

=Im ・p+It ・q ……(5) =I1 sin(ω1t+θ) ……(6) ここで、 である。第4図に(5)式を実行するための構成例を示
す。掛算器103,104及び加算器105によつて(5)式の演
算が行なわれる。発振器11およびベクトル演算回路12の
構成はアナログ回路で実現する場合に便利であるが、マ
イクロコンピユータを用いたデイジタル回路で実現する
場合には、トルク電流指令信号It 、励磁電流指令信号
Im および1次角周波数信号ωを入力として、(7)
式ついで(6)式の演算を実行して交流の1次電流指令
を求めてもよい。このようにして1次電流指令i
が出力されると、電流制御回路14の働きにより電流検出
信号i、すなわち誘導電動機3の1次電流はその指令i
に比例するように制御される。
i * = I m * · p + I t * · q (5) = I 1 * sin (ω 1 t + θ) (6) where Is. FIG. 4 shows a configuration example for executing the equation (5). The multipliers 103 and 104 and the adder 105 perform the calculation of the equation (5). Although configuration of the oscillator 11 and the motion vector computing circuit 12 is useful for implementing an analog circuit, when implemented in digital circuits using microcomputer, a torque current command signal I t *, the excitation current command signal
With I m * and the primary angular frequency signal ω 1 as input, (7)
The AC primary current command i * may be obtained by executing the formula and then the formula (6). In this way, the primary current command i *
Is output, the current control circuit 14 works to detect the current detection signal i, that is, the primary current of the induction motor 3 is the command i.
Controlled to be proportional to * .

以上のような構成により制御すると、誘導電動機3の
磁束は、速度制御回路6の出力に比例しながらも、この
出力が零の場合にもあい値を保つように制御される。
When controlled by the above-mentioned configuration, the magnetic flux of the induction motor 3 is controlled so as to be proportional to the output of the speed control circuit 6 and to maintain the threshold value even when this output is zero.

第5図はこのときの動作波形を示す。(a)〜(c)
は従来の場合、(d)〜(f)は本発明の場合の特性を
示す。無負荷運転中に時刻t1でステップ状の速度指令N
が加えられたとする。(a),(d)は磁束信号Φ、
(b),(e)は誘導電動機3の発生トルク、(c),
(f)は回転速度を表わす。図からわかるように、従来
の場合加速終了は時刻t3までの時間が必要である。一方
本発明の場合は時刻t1において多くのトルクを発生する
ので、加速終了時間はt2までと短くなる。このように、
本発明によれば加速特性がよくなる。
FIG. 5 shows operation waveforms at this time. (A)-(c)
Shows the characteristics in the conventional case, and (d) to (f) show the characteristics in the case of the present invention. Stepless speed command N at time t 1 during no-load operation
* Is added. (A) and (d) are magnetic flux signals Φ,
(B), (e) are torques generated by the induction motor 3, (c),
(F) represents the rotation speed. As can be seen from the figure, in the conventional case, the time until the time t 3 is required to complete the acceleration. On the other hand, in the case of the present invention, since a large amount of torque is generated at time t 1 , the acceleration end time is shortened to t 2 . in this way,
According to the present invention, acceleration characteristics are improved.

第6図は騒音特性を示す。横軸は回転速度N、縦軸は
騒音Sを示す。また、NLは無負荷時、FLは定格負荷時の
特性で、aは従来、bは本発明の場合の騒音特性を示
す。図より無負荷時NLは定格負荷時FLと比較して騒音が
低下し、また、定格負荷時FLでは従来aと本発明bの差
はなく、無負荷時NLにおいても第2図における最小値τ
の値を調整するとaとbの差は小さくなることがわか
る。
FIG. 6 shows noise characteristics. The horizontal axis represents the rotation speed N and the vertical axis represents the noise S. Further, NL is a characteristic under no load, FL is a characteristic under rated load, a is a conventional noise characteristic, and b is a noise characteristic in the case of the present invention. From the figure, the noise at NL under no load is lower than that at FL at rated load, and there is no difference between conventional a and invention b in FL at rated load, and the minimum value in Fig. 2 is also for NL at no load. τ
It can be seen that the difference between a and b is reduced by adjusting the value of.

以上からわかるように、本発明によれば高応答制御で
きるだけでなく、低騒音で誘導電動機を運転できる。
As can be seen from the above, according to the present invention, not only high response control can be performed, but also the induction motor can be operated with low noise.

第7図に本発明の他の実施例を示す。第7図において
第1図と同一記号のものは相当物を示す。第7図の実施
例は速度制御回路6の出力をすべり角周波数信号ω
している点に特徴がある。掛算器16は速度制御回路6の
出力信号ωと、磁束制御回路8の磁束信号Φとを掛け
あわせる。その出力信号はトルク電流指令信号It とな
る。ωs,Φ,It には(2)式の関係があるので、掛算
器16では の演算を行う。このように構成しても第1図の例と様の
効果があり、さらに割算器を用いていないので、マイク
ロコンピユータで実施する場合に適する。すなわち、演
算時間のかかる割算をなくし、掛算だけで構成するの
で、制御系全体の演算時間が短縮され、その結果、高応
答制御が実施しやすくなる。
FIG. 7 shows another embodiment of the present invention. In FIG. 7, the same symbols as in FIG. 1 indicate the equivalents. The embodiment of FIG. 7 is characterized in that the output of the speed control circuit 6 is the slip angular frequency signal ω s . The multiplier 16 multiplies the output signal ω s of the speed control circuit 6 and the magnetic flux signal Φ of the magnetic flux control circuit 8. The output signal becomes the torque current command signal I t * . Since ω s , Φ, I t * has the relation of equation (2), the multiplier 16 Is calculated. Even with this configuration, the same effect as in the example of FIG. 1 can be obtained, and since no divider is used, it is suitable for implementation in a micro computer. That is, since the division that requires the calculation time is eliminated and only the multiplication is performed, the calculation time of the entire control system is shortened, and as a result, the high response control is easily implemented.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、電動機のトルク
電流の大きさに比例して磁束の大きさ及び励磁電流大き
さが制御されることから、無負荷時での電動機1次電流
を小さくできるので騒音の低減が図れるという効果があ
る。
As described above, according to the present invention, since the magnitude of the magnetic flux and the magnitude of the exciting current are controlled in proportion to the magnitude of the torque current of the electric motor, it is possible to reduce the electric motor primary current when there is no load. Therefore, there is an effect that noise can be reduced.

また、トルク電流の急峻な変動に対しても、直接に励
磁電流を制御せずに、磁束演算回路と励磁電流指令手段
により一旦磁束の変動に変換したのちに励磁電流を制御
することから、結果的にトルク電流変動分に対して励磁
電流が急峻に立ち上げられ、磁束の立ち上りに伴う遅れ
が補償されるので、トルク電流と磁束との積で得られる
電動機発生トルクが向上し、無負荷時でも負荷(トルク
電流)の急峻な変動に対して高応答なトルク特性が得ら
れるという効果もある。
Further, even when the torque current is changed suddenly, the exciting current is not directly controlled, but is converted into the fluctuation of the magnetic flux by the magnetic flux calculation circuit and the exciting current command means, and then the exciting current is controlled. The exciting current rises steeply with respect to the torque current fluctuation, and the delay due to the rising of the magnetic flux is compensated for, so the torque generated by the motor obtained by the product of the torque current and the magnetic flux improves, and there is no load. However, there is also an effect that a torque characteristic with high response can be obtained with respect to a sudden change in load (torque current).

なお、周波数変換器はPWMインバータとして説明した
が、他の変換器、たとえばサイクロコンバータや電流形
インバータで誘導電動機を駆動するものに本発明を用い
ても同様な効果を奏し得るのは明らかなことである。ま
た、上述の実施例はアナログ回路等ハード回路で説明し
たが、マイクロコンピュータ等でソフト的に実行しても
よいのは勿論である。
Although the frequency converter has been described as a PWM inverter, it is obvious that the same effect can be obtained even if the present invention is used in another converter, for example, one that drives an induction motor with a cycloconverter or a current source inverter. Is. Further, although the above-described embodiment has been described by using a hardware circuit such as an analog circuit, it is needless to say that the embodiment may be executed by software by a microcomputer or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す構成図、第2図(a)
〜(c)は磁束制御回路の特性図、第3図,第4図は第
1図に示す部品の一例を示す詳細構成図、第5図は動作
波形図、第6図は回転速度と騒音の関係を示す特性図、
第7図は本発明の他の実施例を示す構成図である。 2……周波数変換器、3……誘導電動機、6……速度制
御回路、7……磁束指令回路、8……磁束制御回路、12
……ベクトル演算回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 (a).
(C) is a characteristic diagram of the magnetic flux control circuit, FIGS. 3 and 4 are detailed configuration diagrams showing an example of the parts shown in FIG. 1, FIG. 5 is an operation waveform diagram, and FIG. 6 is a rotation speed and noise. Characteristic diagram showing the relationship of
FIG. 7 is a block diagram showing another embodiment of the present invention. 2 ... Frequency converter, 3 ... Induction motor, 6 ... Speed control circuit, 7 ... Flux command circuit, 8 ... Flux control circuit, 12
... Vector operation circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 信義 日立市幸町3丁目1番1号 株式会社日 立製作所日立研究所内 (72)発明者 酒井 慶次郎 日立市幸町3丁目1番1号 株式会社日 立製作所日立研究所内 (72)発明者 二宮 寿一 習志野市東習志野7丁目1番1号 株式 会社日立製作所習志野工場内 (72)発明者 五十嵐 貞之 習志野市東習志野7丁目1番1号 日立 京葉エンジニアリング株式会社内 (56)参考文献 特開 昭57−88891(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyoshi Muto 3-1-1 Sachimachi, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd. (72) Keijiro Sakai 3-1-1 Sachimachi, Hitachi Stock Hitachi Institute of Hitachi, Ltd. (72) Inventor, Juichi Ninomiya 7-1-1, Higashi-Narashino, Narashino City, Ltd. Hitachi, Ltd., Narashino Factory, (72) Inventor, Sadayuki Igarashi, 7-1-1, Higashi Narashino, Hitachi Narashino Hitachi Keiyo Engineering Co., Ltd. In-house (56) References JP-A-57-88891 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘導電動機の1次電流の励磁電流成分とそ
れに直交するトルク電流成分を各々の指令信号に応じて
独立に制御する誘導電動機の制御装置において、 前記トルク電流成分の指令信号の零から定格値までの大
きさに応じて、前記電動機の磁束指令信号を零よりも大
きくその定格値以下の所定値から定格値まで可変させる
磁束指令回路(7)と、 該磁束指令回路からの磁束指令信号と磁束演算回路(10
2)からの磁束信号との偏差から前記励磁電流成分の指
令信号を生成する励磁電流指令手段(101)とを備え、 前記磁束演算回路は、該励磁電流指令手段からの励磁電
流成分指令信号を遅れ要素に入力して前記磁束信号を演
算するものである ことを特徴とする誘導電動機の制御装置。
1. An induction motor controller for independently controlling an exciting current component of a primary current of an induction motor and a torque current component orthogonal to the exciting current component in accordance with each command signal. To the rated value, a magnetic flux command circuit (7) for varying the magnetic flux command signal of the electric motor from a predetermined value greater than zero to the rated value to a rated value, and a magnetic flux from the magnetic flux command circuit. Command signal and magnetic flux calculation circuit (10
2) Excitation current command means (101) for generating the excitation current component command signal from the deviation from the magnetic flux signal from the magnetic flux calculation circuit, and the excitation current component command signal from the excitation current command means. An induction motor control device, wherein the magnetic flux signal is calculated by inputting it to a delay element.
JP59019958A 1984-02-08 1984-02-08 Induction motor controller Expired - Lifetime JP2544321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019958A JP2544321B2 (en) 1984-02-08 1984-02-08 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019958A JP2544321B2 (en) 1984-02-08 1984-02-08 Induction motor controller

Publications (2)

Publication Number Publication Date
JPS60167692A JPS60167692A (en) 1985-08-31
JP2544321B2 true JP2544321B2 (en) 1996-10-16

Family

ID=12013702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019958A Expired - Lifetime JP2544321B2 (en) 1984-02-08 1984-02-08 Induction motor controller

Country Status (1)

Country Link
JP (1) JP2544321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658067B2 (en) * 1987-07-29 1997-09-30 株式会社安川電機 Vector control magnetic flux controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788891A (en) * 1980-11-20 1982-06-02 Yaskawa Electric Mfg Co Ltd Control device for induction motor

Also Published As

Publication number Publication date
JPS60167692A (en) 1985-08-31

Similar Documents

Publication Publication Date Title
EP0293915B1 (en) Inverter control apparatus
SU1114358A3 (en) A.c. electric drive
US4327315A (en) Induction motor drive apparatus
US4137489A (en) Feedback control for reduction of cogging torque in controlled current AC motor drives
EP0279415B1 (en) Induction motor control apparatus
EP0117558A2 (en) Method and apparatus for controlling PWM inverter
RU2313895C1 (en) Alternating current motor
JP2544321B2 (en) Induction motor controller
JPS6387195A (en) Controller for synchronous motor
JPS6035913B2 (en) Control device for inverter equipment
JPH027241B2 (en)
SU866679A1 (en) Frequency-controllable electric drive
JP2909736B2 (en) Induction motor control device
JPS6334719B2 (en)
JPH0570396B2 (en)
JPS626878Y2 (en)
JPS583586A (en) Torque controller for thyristor motor
JPS6042711B2 (en) Transmission motor rotation control device
SU1160519A1 (en) Rectifier drive
JP2594917B2 (en) Power converter control device
JPS6355314B2 (en)
KR830001751A (en) Induction motor drive device
JPS6333399B2 (en)
JPS6412194B2 (en)
JPS5936517B2 (en) AC motor control device