JPS583586A - Torque controller for thyristor motor - Google Patents

Torque controller for thyristor motor

Info

Publication number
JPS583586A
JPS583586A JP56098272A JP9827281A JPS583586A JP S583586 A JPS583586 A JP S583586A JP 56098272 A JP56098272 A JP 56098272A JP 9827281 A JP9827281 A JP 9827281A JP S583586 A JPS583586 A JP S583586A
Authority
JP
Japan
Prior art keywords
torque
current
motor
signal
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56098272A
Other languages
Japanese (ja)
Other versions
JPH0254039B2 (en
Inventor
Takashi Horikita
堀北 隆司
Toshiaki Okuyama
俊昭 奥山
Yuzuru Kubota
久保田 譲
Hiroshi Nagase
博 長瀬
Junichi Takahashi
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP56098272A priority Critical patent/JPS583586A/en
Publication of JPS583586A publication Critical patent/JPS583586A/en
Publication of JPH0254039B2 publication Critical patent/JPH0254039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Abstract

PURPOSE:To accurately suppress a torque ripple by calculating the generated torque of a motor based on a current command signal and a position signal and varying the current command signal in response to the difference between the actual torque value and the torque command value. CONSTITUTION:The firing angle of a cycloconverter 1 is controlled by a current control circuit having a detector 8, an amplifier 9 and an automatic pulse phase shifter 10 and a phase control circuit having a position detector 11 and an automatic pulse phase shifter 12, thereby operating a motor 2. At this time, a current command signal and a position signal are inputted, a torque calculator 7 for calculating the generated torque of the motor 2 is added to feed back the output to the input of a torque deviation amplifier 6, thereby obtaining the difference from the torque command value and varying the current command signal. Accordingly, even if the actual torque value is employed, the current command signal is controlled in reverse phase to the torque pulsation. Accordingly, even if the operating conditions are varied, the torque ripple can be accurately suppressed.

Description

【発明の詳細な説明】 本発明はサイリスタモータのトルクリプルの抑制するト
ルク制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a torque control device that suppresses torque ripple in a thyristor motor.

出力電流が方形波状であるサイリスタ変換器により同期
電動機を駆動するサイリスタモータでは、電流の高調渡
分によりトルクリプルが発生する。
In a thyristor motor that drives a synchronous motor using a thyristor converter whose output current is in the form of a square wave, torque ripple occurs due to harmonic components of the current.

トルクリプルを抑制する方法として電機子巻線を多相化
する方法があるが、サイリスタの相数も増すため、特に
中小容量機では製作コストが上昇する。また、多相化に
よらない方法として、電動機入力からトルクリプルを検
出し、これに基づいて電機子電流をトルクリプルと逆位
相に変化させトルクリプルを打消す制御方法が知られて
いる。しかしフィードバック制御により電流を制御する
ものであるため、速い応答を得ようとすると制御ループ
の応答遅れが原因して系が不安定となり易く、高い周波
数までのトルクリプルを抑制することが難しい。
One way to suppress torque ripple is to make the armature winding multi-phase, but this increases the number of thyristor phases, which increases manufacturing costs, especially in small and medium capacity machines. Furthermore, as a method that does not rely on multiphase, a control method is known in which torque ripple is detected from the motor input, and based on this, the armature current is changed to a phase opposite to the torque ripple to cancel the torque ripple. However, since the current is controlled by feedback control, when trying to obtain a fast response, the system tends to become unstable due to the response delay of the control loop, and it is difficult to suppress torque ripple up to high frequencies.

この点を改善できる方法として、先に特公昭52−50
364号で述べられているよう、な方法が公知である。
As a way to improve this point, we first proposed
Methods such as those described in No. 364 are known.

すなわち、電動機の回転子位置を検出する位置検出器の
位置信号に基づいてトルクリプルの周波数に等しい信号
を検出し、それに従って電動機電流をトルクリプルと逆
位相に変化させることによりそれを抑制する方法である
。しかしこのものでは、電機子電流や界磁電流の大きさ
などの運転条件が一定している場合では問題ないが、運
転条件が変化すると電機子反作用によって位置検出器の
信号位相と実際のトルクリプルの位相が一致しなくなり
、トルクリプル・を十分に除去できないという欠点を有
する。
That is, this method detects a signal equal to the frequency of torque ripple based on the position signal of a position detector that detects the rotor position of the motor, and suppresses it by changing the motor current to the opposite phase of the torque ripple accordingly. . However, with this device, there is no problem when the operating conditions such as the magnitude of the armature current and field current are constant, but when the operating conditions change, the armature reaction causes a difference between the signal phase of the position detector and the actual torque ripple. This has the disadvantage that the phases do not match and torque ripple cannot be sufficiently removed.

本発明の目的は、運転条件が変化してもトルクリプルを
精度良く抑制できるサイリスタモータのトルク制御装置
を提供することにある。
An object of the present invention is to provide a torque control device for a thyristor motor that can accurately suppress torque ripple even when operating conditions change.

本発明の特徴とするところは、電流指令信号と位置信号
に基づいて電動機の発生トルクを求め、このトルク実際
値とトルク指令値の差に応じて、電動機電流を変化させ
るようにしたことにある。
The feature of the present invention is that the torque generated by the motor is determined based on the current command signal and the position signal, and the motor current is changed according to the difference between the actual torque value and the torque command value. .

第1図に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

第1図において、1は可変電圧可変周波の交流を出力す
るサイクロコンバータ、2は同期電動機、3は電動機2
の回転速度を検出するだめの速度検出器、4は速度指令
回路、5は速度偏差増巾器で、この出力はトルク指令値
となる。6はトルク偏差増巾器、7は増巾器6と自動パ
ルス移相器12の出力信号に基づいて電動機の発生トル
クを演算するトルク演算回路、8はサイクロコンバータ
1の交流入力電流を検出する電流検出器、9は電流偏差
増巾器、10はサイクロコンバータ1の電源側点弧角(
制御遅れ角)を制御するだめの自動パルス移相器、11
は界磁と電機子の相対位置を検出するだめの位置検出器
、12は電動機側点弧角(制御進み角)を制御するため
の自動パルス移相器、13は自動パルス移相器10.1
2の出力信号の論理積に従ってサイリスタのゲート信号
を発生するゲート出力回路である。
In Figure 1, 1 is a cycloconverter that outputs alternating current with variable voltage and variable frequency, 2 is a synchronous motor, and 3 is a motor 2.
4 is a speed command circuit, and 5 is a speed deviation amplification device, the output of which becomes a torque command value. 6 is a torque deviation amplifier; 7 is a torque calculation circuit that calculates the torque generated by the motor based on the output signals of the amplifier 6 and the automatic pulse phase shifter 12; and 8 is a torque calculation circuit that detects the AC input current of the cycloconverter 1. 9 is a current deviation amplifier; 10 is a firing angle on the power supply side of the cycloconverter 1 (
automatic pulse phase shifter for controlling the control delay angle), 11
12 is an automatic pulse phase shifter for controlling the firing angle (control advance angle) on the motor side; 13 is an automatic pulse phase shifter 10. for detecting the relative position of the field and the armature; 1
This is a gate output circuit that generates a thyristor gate signal according to the AND of two output signals.

第2図にトルク演算回路7の詳細な構成図を示す。FIG. 2 shows a detailed configuration diagram of the torque calculation circuit 7.

第2図において14は増巾器6の出力信号である電流指
令信号工、と自動パルス移相器12の出力信号りに基づ
いて電動機の電機子電流を演算する電流演算回路、15
はその演算された電流信号に基づいて電流のd軸分およ
びq軸分を演算するdq軸電流演算回路、16は磁束演
算回路、17゜18は掛算器、19″は加算器でこの出
、力信号が増巾器60人力に加えられる。
In FIG. 2, reference numeral 14 denotes a current command signal generator which is the output signal of the amplifier 6, and a current calculation circuit 15 which calculates the armature current of the motor based on the output signal of the automatic pulse phase shifter 12.
16 is a magnetic flux calculation circuit, 17° and 18 are multipliers, and 19″ is an adder. A power signal is applied to the amplifier 60 power.

次に本発明の動作について説明する。Next, the operation of the present invention will be explained.

トルク偏差増巾器6とトルク演算回路7を除く構成要素
は、周知の交流方式サイリスタモータの制御装置と同一
である。すなわち、検出器8?増巾器9および自動パル
ス移相器10からなる電流制御回路は、サイクロコンバ
ータ1の電源側点弧角を制御することによって、電動機
電流を増巾器5の出力信号(速度偏差)に比例するよう
制御する。一方、位置検出器11および自動パルス移相
器12からなる位相制御回路はサイクロコンバータ1の
電動機側点弧角を制御することにより、電動機電流を誘
起々電力に対し所定位相に制御する。
The components except for the torque deviation amplification device 6 and the torque calculation circuit 7 are the same as those of a well-known AC type thyristor motor control device. That is, detector 8? A current control circuit consisting of an amplifier 9 and an automatic pulse phase shifter 10 makes the motor current proportional to the output signal (speed deviation) of the amplifier 5 by controlling the firing angle on the power supply side of the cycloconverter 1. control like this. On the other hand, a phase control circuit including a position detector 11 and an automatic pulse phase shifter 12 controls the motor current to a predetermined phase with respect to the induced electromotive force by controlling the firing angle on the motor side of the cycloconverter 1.

このようにして電動機2は所定力率で運転され、電動機
2のトルクは速度偏差に応じて制御されて速度制御が行
われる。
In this way, the electric motor 2 is operated at a predetermined power factor, and the torque of the electric motor 2 is controlled according to the speed deviation to perform speed control.

次に、トルク演算回路7およびトルク偏差増巾器6の動
作を第3図に示す波形図を用いて説明する。
Next, the operations of the torque calculation circuit 7 and the torque deviation amplifier 6 will be explained using the waveform diagram shown in FIG.

電流演算回路14は自動・くルス移相器12とトルク偏
差増巾器6の出力信号から電動機電流に相当した電流信
号i U−i Wを出力する。その関係を式で示すと次
の通りである。
The current calculation circuit 14 outputs a current signal iU-iW corresponding to the motor current from the output signals of the automatic/Curus phase shifter 12 and the torque deviation amplifier 6. The relationship is expressed as follows.

io= (a−b) l i−p 1 iv= (c−d) 1i、、1 1w= (e−f)l  ’ap  l    −−−
−−−tlノここで、信号a−fは第3図に示すような
ノ<717幅が120度の信号であって、サイクロコン
バータ夕1の電動機側の転流を制御する信号で、信号J
d、fに付記した負号は極性°反転して加算することを
示している。またIl、plはトルク偏差増巾器6の出
力信号(電流指令信号)の絶対値である。これらの演算
は例えば第4図に示すような絶対値回路20、アナログ
ゲート21〜26および減算器27〜29から成る回路
で行われる。このようにして第3図に示す信号iU〜I
Wが得られる。さらに次式に示す演算を行い、i U 
−i wの3相信号を2相信号ia、iβに変換する。
io= (a-b) l i-p 1 iv= (c-d) 1i,, 1 1w= (e-f) l 'ap l ---
---tl Here, the signals a-f are signals with a <717 width of 120 degrees as shown in FIG. J
The negative sign appended to d and f indicates that the polarities are reversed and added. Moreover, Il and pl are the absolute values of the output signal (current command signal) of the torque deviation amplifier 6. These operations are performed, for example, in a circuit as shown in FIG. 4, which includes an absolute value circuit 20, analog gates 21-26, and subtracters 27-29. In this way, the signals iU to I shown in FIG.
W is obtained. Furthermore, the calculation shown in the following formula is performed, and i U
-i Convert the three-phase signal of w into two-phase signals ia and iβ.

この変換は後の演算を簡単にするために行うもので、周
知の直交2軸変換により行える。
This conversion is performed to simplify subsequent calculations, and can be performed by well-known orthogonal two-axis conversion.

なお、2相信号!α、iβへの変換は(1)、(2)式
から明らかなように次式によって一度に行うこともでき
る。
In addition, 2-phase signal! As is clear from equations (1) and (2), the conversion to α and iβ can also be performed at once using the following equation.

1次に、dq軸電流演算回路15において、次式ここで
、CO5ωt 、 sinωtは位置検出器11の信号
に基づいて取り出される正弦波信号であって、電動機2
の無負荷誘起々電力eUと第3図に示す位相関係にある
。(4)式の演算は、第5図に示すように掛算器30〜
33および加減算器34.35によシ行える。d軸電流
1−およびq軸電流19の波形は第3図示のようになる
First, in the dq-axis current calculation circuit 15, the following equation is given, where CO5ωt and sinωt are sine wave signals extracted based on the signal of the position detector 11, and the motor 2
It has a phase relationship with the no-load induced electric power eU shown in FIG. The calculation of equation (4) is performed by multipliers 30 to 30 as shown in FIG.
33 and adders/subtractors 34 and 35. The waveforms of the d-axis current 1- and the q-axis current 19 are as shown in the third diagram.

次に、磁束演算回路16において、d軸およびq軸の磁
束φd、φ9を次式に従い演算する。
Next, the magnetic flux calculation circuit 16 calculates the d-axis and q-axis magnetic fluxes φd and φ9 according to the following equations.

ここに、Tea 、 T2d、TIq 、 T2Q  
は電動機2のダンパ巻線の時定数、1 、/は界磁電流
(電機子側換算)に比例しだ信号である。これらの演算
は例えば第6図に示すよう演算増巾器A1抵抗Rおよび
コンデンサを用いて容易に行える。
Here, Tea, T2d, TIq, T2Q
is the time constant of the damper winding of the motor 2, 1, and / is a signal proportional to the field current (converted to the armature side). These calculations can be easily performed using, for example, the operational amplifier A1, resistor R, and capacitor as shown in FIG.

さらに、掛算器17.18と減算器1.9において次式
の演算を行い、電動機2の発生トルクτ。
Furthermore, multipliers 17.18 and subtractor 1.9 calculate the following equation to obtain the generated torque τ of electric motor 2.

を演算する。Calculate.

τ、=φ、−1.−φ、・蓋、     ・・・・・川
・(7)(7)式で求めたトルクτ、はトルク実際値と
してはトルク偏差増巾器6に加えられる。
τ,=φ,−1. -Φ, lid, torque τ obtained by equation (7) (7) (7) (7) (7), the torque actual value is added to the torque deviation increased width.

トルク演算回路7はフィードバック系を形成しており、
かつ増巾器6は通常ゲインが高くなっている。したがっ
て、トルク演算回路7のトルク実際値は強制的に増巾器
5の出力信号であるトルク指令値に比例するようになる
。この結果、増巾器6の電流指令信号1.pは第3図に
示す如くトルク脈動と逆位相に匍↓御される。したがっ
て、電流指令信号IAFに比例して電動機電流を変化さ
せることにより発生トルクの脈動を抑制することができ
る。その際、トルク実際値を演算は電機子電流、界磁電
流および制御進み角を考慮して行っているので、運転条
件に関係なく十分な精度でトルクリプルを抑制すること
ができる。
The torque calculation circuit 7 forms a feedback system,
In addition, the amplifier 6 usually has a high gain. Therefore, the actual torque value of the torque calculation circuit 7 is forced to be proportional to the torque command value which is the output signal of the amplifier 5. As a result, the current command signal 1. As shown in FIG. 3, p is controlled in the opposite phase to the torque pulsation. Therefore, by changing the motor current in proportion to the current command signal IAF, it is possible to suppress pulsations in the generated torque. At this time, since the actual torque value is calculated in consideration of the armature current, field current, and control advance angle, torque ripple can be suppressed with sufficient accuracy regardless of the operating conditions.

以上のように本発明によれば、運転条件が変化しても高
い精度でトルクリプルを抑制することができる。
As described above, according to the present invention, torque ripple can be suppressed with high accuracy even if operating conditions change.

なお前記実施例では、サイリスタ変換器に一定周波の交
流を可変周波の交流に直接変換するサイクロコンバータ
を用いた例について述べたが、順変換器と逆変換器によ
り直流回路を介在して周波数変換を行う、いわゆる直流
方式サイリスタモータにも本発明は適用でき同様の効果
が得られるのは勿論である。
In the above embodiment, an example was described in which a cycloconverter that directly converts constant frequency alternating current to variable frequency alternating current is used as a thyristor converter. Of course, the present invention can also be applied to a so-called DC type thyristor motor that performs the following, and similar effects can be obtained.

また、制御演算手段にアナログ回路を用いる場合につい
て説明したが、ディジタル演算による場合でも本発明は
適用できるのは明らかであろう。
Further, although the case where an analog circuit is used as the control calculation means has been described, it is clear that the present invention can be applied even when digital calculation is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、サイリスタモ
ータ装置の回路構成図、第2図および第4〜6図は第1
図に示す回路要素の詳細な回路図、第3図は本装置の動
作を説明するための波形図である。 1・・・サイクロコンバータ、2・・・同期電動機、3
・・・速度検出器、4・・・速度指令回路、5・・・速
度偏差増巾器、6・・−トルク偏差増巾器、7・・・ト
ルク演算回路、8・・・電流検出器、9・・・電流偏差
増巾器、10・・・自動パルス移相器、11・・・位置
検出器、12・・・自動パルス移相器、13・・・ゲー
ト出力回路。
Fig. 1 is a block diagram showing one embodiment of the present invention, a circuit block diagram of a thyristor motor device, and Figs.
A detailed circuit diagram of the circuit elements shown in the figure, and FIG. 3 is a waveform diagram for explaining the operation of the present device. 1...Cycloconverter, 2...Synchronous motor, 3
...Speed detector, 4...Speed command circuit, 5...Speed deviation amplifier, 6...-Torque deviation amplifier, 7...Torque calculation circuit, 8...Current detector , 9... Current deviation amplifier, 10... Automatic pulse phase shifter, 11... Position detector, 12... Automatic pulse phase shifter, 13... Gate output circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、可変電圧可変周波の交流を出力するサイリスク変換
器と、該変換器により駆動される同期電動機と前記変換
器の出力電流を電流指令信号に応じて制御するための電
流制御手段と、前記電動機の界磁と電機子の相対位置を
検出する位置検出器と、該位置検出器の位置信号に基づ
いて前記サイリスク変換器の点弧位相を制御する位相制
御手段と、前記電流指令信号と位−信号に基づいて電動
機の発生トルクを求めるトルク演算手段と、該トルク演
算手段で求めたトルク実際値とトルク指令値の差に応じ
て前記電流指令信号を変化させるようにしたことを特徴
とするサイリスタモータのトルク制御装置。
1. A cyrisk converter that outputs a variable voltage variable frequency alternating current, a synchronous motor driven by the converter, a current control means for controlling the output current of the converter according to a current command signal, and the motor a position detector for detecting the relative position of the field and the armature; a phase control means for controlling the firing phase of the cyrisk converter based on the position signal of the position detector; A thyristor comprising: a torque calculation means for calculating the torque generated by the electric motor based on the signal; and a thyristor that changes the current command signal according to the difference between the actual torque value calculated by the torque calculation means and the torque command value. Motor torque control device.
JP56098272A 1981-06-26 1981-06-26 Torque controller for thyristor motor Granted JPS583586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098272A JPS583586A (en) 1981-06-26 1981-06-26 Torque controller for thyristor motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098272A JPS583586A (en) 1981-06-26 1981-06-26 Torque controller for thyristor motor

Publications (2)

Publication Number Publication Date
JPS583586A true JPS583586A (en) 1983-01-10
JPH0254039B2 JPH0254039B2 (en) 1990-11-20

Family

ID=14215299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098272A Granted JPS583586A (en) 1981-06-26 1981-06-26 Torque controller for thyristor motor

Country Status (1)

Country Link
JP (1) JPS583586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581254A (en) * 1994-03-30 1996-12-03 Burr-Brown Corporation Electric motor control chip and method
JP2004289926A (en) * 2003-03-20 2004-10-14 Nissan Motor Co Ltd Motor controller
JP2017063518A (en) * 2015-09-24 2017-03-30 学校法人 東洋大学 Rotary electric machine system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413919A (en) * 1977-07-04 1979-02-01 Hitachi Ltd Preventive controller for torque pulsation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413919A (en) * 1977-07-04 1979-02-01 Hitachi Ltd Preventive controller for torque pulsation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581254A (en) * 1994-03-30 1996-12-03 Burr-Brown Corporation Electric motor control chip and method
JP2004289926A (en) * 2003-03-20 2004-10-14 Nissan Motor Co Ltd Motor controller
JP2017063518A (en) * 2015-09-24 2017-03-30 学校法人 東洋大学 Rotary electric machine system

Also Published As

Publication number Publication date
JPH0254039B2 (en) 1990-11-20

Similar Documents

Publication Publication Date Title
RU2392732C1 (en) Device for control of asynchronous motor vector, method for control of asynchronous motor vector and device for control of asynchronous motor drive
JPS5850119B2 (en) Control device for commutatorless motor
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
EP1035645B1 (en) Control device of induction motor
JPH0548079B2 (en)
JP2001309697A (en) Electric motor control device
JPS5911271B2 (en) Control method of induction motor
US4509003A (en) Vector control method and system for an induction motor
US4510430A (en) Vector control method and system for an induction motor
JPH05308793A (en) Control circuit for power conversion device
EP0121792B1 (en) Vector control method and system for an induction motor
JPS591077B2 (en) Kouriyudendo Kinoseigiyosouchi
JPS583586A (en) Torque controller for thyristor motor
JPH0884500A (en) Speed sensorless vector controller for induction motor
JPH06225574A (en) Method and apparatus for controlling motor
EP1406378A2 (en) Step motor driving device
JP3124019B2 (en) Induction motor control device
JPH0576278B2 (en)
JPH06319285A (en) Vector controller for induction motor
JP2017153273A (en) Control device for induction motor
JPS5828831B2 (en) Induction motor control device
JP2909736B2 (en) Induction motor control device
JPS6332032B2 (en)
JPH02276494A (en) Controller for synchronous motor
JPH04127893A (en) Controller for synchronous motor