JPH04127893A - Controller for synchronous motor - Google Patents

Controller for synchronous motor

Info

Publication number
JPH04127893A
JPH04127893A JP2246241A JP24624190A JPH04127893A JP H04127893 A JPH04127893 A JP H04127893A JP 2246241 A JP2246241 A JP 2246241A JP 24624190 A JP24624190 A JP 24624190A JP H04127893 A JPH04127893 A JP H04127893A
Authority
JP
Japan
Prior art keywords
current
axis
synchronous motor
magnetic flux
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246241A
Other languages
Japanese (ja)
Inventor
Kihei Nakajima
中島 喜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2246241A priority Critical patent/JPH04127893A/en
Publication of JPH04127893A publication Critical patent/JPH04127893A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-performance controller for synchronous motor which is stable even in a high driving frequency domain or under a heavy load by finding a reference voltage value on a dq axis by comparing the calculated reference current value on the dq axis with a detected value and transforming the reference voltage value into a three-phase armature winding shaft by means of a coordinate transformer. CONSTITUTION:The three-phase armature current detected by means of a current detector 11 is calculated as a detected current value on a dq axis by means of a dq axis current computing element 13 together with a position signal from a position computing element 5. A magnetic flux computing element 6 calculates an armature magnetic flux from the calculated detected current value and a detected field current value. A command is given so that a torque amount current can intersect the calculated magnetic flux at right angles. A calculated reference current value is compared with the a detected value and outputted as a reference voltage values vd and vq of the dq axis by means of an amplifier 9. The reference voltage values are given to a coordinate transformer 14 and threephase winding voltages vu, vv, and vw are further obtained from the voltage reference values and the output of the position computing element 5. These values become an AC quantity which varies depending upon a rotational electrical angular frequency.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は同期電動機をサイクロコンバータやインバータ
等の可変電圧可変周波数電源で可変速制御する際の同期
電動機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention] (Industrial Application Field) The present invention relates to a control device for a synchronous motor when variable speed control is performed on the synchronous motor using a variable voltage variable frequency power source such as a cycloconverter or an inverter.

(従来の技術) 同期電動機を可変電圧可変周波数電源で可変速制御する
方式には他励転流を用いた無整流子電動機やベクトル制
御を用いた駆動方式がある。このうちベクトル制御は高
性能な駆動が可能で、速い応答や精密な制御を要する分
野に適用されている。ベクトル制御方式は例えばB、に
、Bose著“Power Electronics 
and ACDrives” Prentice−Ha
ll第8章2節に記載されている。
(Prior Art) Methods for variable speed control of a synchronous motor using a variable voltage variable frequency power source include a commutatorless motor using separately excited commutation and a drive method using vector control. Among these, vector control allows for high-performance driving and is applied to fields that require fast response and precise control. For example, the vector control method is described in Bose's “Power Electronics
and AC Drives” Prentice-Ha
It is stated in Chapter 8, Section 2.

第5図は従来の方式の一実施例であり、1は可変電圧可
変周波数電源である電力変換器、2は三相同期電動機(
以下、単に同期電動機と記す)。
Figure 5 shows an example of a conventional system, in which 1 is a power converter that is a variable voltage variable frequency power source, and 2 is a three-phase synchronous motor (
(hereinafter simply referred to as synchronous motor).

21は同期電動機の界磁巻線、3は位置検出器、4は界
磁用電力変換器、5は位置演算器、6は磁束演算器、7
は電流演算器、8は座標変換器、9゜10は増幅器、1
1.12は電流検出器である。
21 is a field winding of a synchronous motor, 3 is a position detector, 4 is a field power converter, 5 is a position calculator, 6 is a magnetic flux calculator, 7
is a current calculator, 8 is a coordinate converter, 9゜10 is an amplifier, 1
1.12 is a current detector.

同期電動機2の電機子電流と界磁電流を電流検出器11
.12で検出する。一方、位置検出器3と位置演算器5
では同期電動機の回転子磁極の位置を演算する。磁束演
算器6では、電機子電流の検出電流と磁極位置から回転
子磁極に並行なd軸磁束と、これに直行するq軸磁束を
演算する。電流演算器7ではトルク電流指令i7と前記
磁束演算値とから磁束方向に並行及び直行する電機子電
流基準値1d+lq(直流量)を演算する。座標変換器
8では回転子の位置信号と前記ctq軸の電流基準値と
から三相電機子電流基準値1uvv(交流量)を得る。
A current detector 11 detects the armature current and field current of the synchronous motor 2.
.. Detected at 12. On the other hand, the position detector 3 and the position calculator 5
Now, calculate the position of the rotor magnetic pole of the synchronous motor. The magnetic flux calculator 6 calculates a d-axis magnetic flux parallel to the rotor magnetic poles and a q-axis magnetic flux perpendicular to the rotor magnetic poles from the detected armature current and the magnetic pole position. The current calculator 7 calculates an armature current reference value 1d+lq (DC amount) parallel and orthogonal to the magnetic flux direction from the torque current command i7 and the magnetic flux calculation value. The coordinate converter 8 obtains a three-phase armature current reference value 1uvv (alternating current amount) from the rotor position signal and the ctq axis current reference value.

この基準値と電流検出値の偏差を増幅器9で増幅して電
機子電圧基準?’uy fv、 Vyを得てこの基準に
基づいて電力変換器1が駆動される。
The deviation between this reference value and the detected current value is amplified by the amplifier 9 to obtain the armature voltage reference value. 'uy fv, Vy is obtained and the power converter 1 is driven based on this reference.

同期電動機2の界磁巻線21は、界磁電流基準値17と
検出値からその偏差を増幅して界磁電圧基準を得て、界
磁用電力変換器4により電力を供給する。
The field winding 21 of the synchronous motor 2 amplifies the deviation from the field current reference value 17 and the detected value to obtain a field voltage reference, and the field power converter 4 supplies electric power.

(発明が解決しようとする課題) 第5図で示した実施例では座標変換器8で電機子電流の
基準値(交流量)を演算して電機子電流検出値(交流量
)と比較し、この値に応じて電機子電圧を定める。電機
子電流は回転子が静止している状態以外では交流量であ
るから駆動周波数相当の正弦波電流を流す必要がある。
(Problems to be Solved by the Invention) In the embodiment shown in FIG. 5, the coordinate converter 8 calculates the reference value (alternating current amount) of the armature current and compares it with the armature current detection value (alternating current amount). The armature voltage is determined according to this value. Since the armature current is an alternating current unless the rotor is stationary, it is necessary to flow a sine wave current corresponding to the drive frequency.

電力変換装置としてサイクロコンバータを用いた場合、
その出力周波数は一般にゼロ周波数から電源周波数近く
まで供給可能である。比較的高い出力周波数の場合、電
流制御系の制御応答の関係から、基準値と実際の電流の
大きさが異なったり位相が変化して所望の交流電流波形
が得られない可能性がある。
When using a cycloconverter as a power conversion device,
Its output frequency can generally range from zero frequency to near the power supply frequency. In the case of a relatively high output frequency, there is a possibility that a desired alternating current waveform cannot be obtained because the magnitude of the reference value and the actual current differ or the phase changes due to the relationship between the control response of the current control system.

同期電動機2は回転子の位置に対する電流の位相が特性
に大きな影響を及ぼす。特に重い負荷が加わり大きな電
流が流れている場合、電流位相の少しの変化で電圧や力
率が大きく異なり特性に大きな影響をぼす。また、電流
がひずんでトルク脈動が生じて機械系に悪影響を及ぼす
可能性がある。
The characteristics of the synchronous motor 2 are greatly influenced by the phase of the current relative to the position of the rotor. Particularly when a heavy load is applied and a large current is flowing, a small change in the current phase can cause a large difference in voltage and power factor, which has a large effect on the characteristics. Furthermore, the current may be distorted and torque pulsation may occur, which may adversely affect the mechanical system.

このため、特に同期電動機2では電流基準に対する実際
の電流を精度よく制御する必要がある。
For this reason, especially in the synchronous motor 2, it is necessary to accurately control the actual current relative to the current reference.

本発明は上記欠点を改良するためになされたもので、高
い駆動周波数領域や重い負荷においても安定で高性能な
装置を実現する同期電動機の制御装置を提供することを
目的とする。
The present invention has been made to improve the above-mentioned drawbacks, and an object of the present invention is to provide a synchronous motor control device that realizes a stable and high-performance device even in a high drive frequency range and heavy load.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明では、電機子電流と界磁電流、および回転子の磁
極位置を検出し、回転子の磁極方向(d軸)とこれに直
行する方向(q軸)での磁束を演算し、このdq軸磁束
に基づいて電機子電流基準(直流量)を定める。電流基
準とdq軸上での電流検出値(直流量)を比較し、dq
軸上での電圧基準(直流量)を得る。この値を電機子の
三相巻線軸に変換して電圧基準値(交流量)として与え
電力変換器を駆動する。
(Means for Solving the Problems) In the present invention, the armature current, the field current, and the magnetic pole position of the rotor are detected, and the magnetic pole direction of the rotor (d-axis) and the direction perpendicular thereto (q-axis) are detected. The armature current reference (DC amount) is determined based on this dq-axis magnetic flux. Compare the current detection value (DC amount) on the dq axis with the current reference, and calculate the dq
Obtain the voltage reference (DC amount) on the axis. This value is converted to the three-phase winding axis of the armature and applied as a voltage reference value (alternating current amount) to drive the power converter.

(作 用) 電機子電流と界磁電流とからdq軸上の磁束を演算し、
電機子のトルク分電流を、演算した磁束と直行するよう
に流すことにより、同一の電機子電流でも高いトルクが
得られるが、演算で得られたdq軸上の電流基準値と検
出値とを比較し、ctq軸上での電圧基準を得てこれを
座標変換器により三相電機子巻線軸に変換する。
(Function) Calculate the magnetic flux on the dq axis from the armature current and field current,
High torque can be obtained even with the same armature current by flowing the armature torque current perpendicular to the calculated magnetic flux. By comparison, a voltage reference on the ctq axis is obtained and converted to the three-phase armature winding axis using a coordinate converter.

(実施例) 第1図は本発明の一実施例を示す構成図である。図にお
いて13はdq軸電流演算器、14は座標変換器であり
、他の要素は第5図で示したものと同一要素は同一番号
に相当する。第2図は第1図で示した磁束演算回路6の
詳細なブロック図を示した構成例であり、61.64は
進み遅れ器、62.63゜65、66は比例器、67は
角度演算器である。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the figure, 13 is a dq-axis current calculator, 14 is a coordinate converter, and other elements that are the same as those shown in FIG. 5 correspond to the same numbers. FIG. 2 is a configuration example showing a detailed block diagram of the magnetic flux calculation circuit 6 shown in FIG. It is a vessel.

電流検出器11で検出した三相電機子電流は、dq軸電
流演算器13で位置演算器5からの位置信号とともにc
tq軸上での電流検出値(直流量)として演算される。
The three-phase armature current detected by the current detector 11 is converted to c along with the position signal from the position calculator 5 by the dq-axis current calculator 13.
It is calculated as a current detection value (DC amount) on the tq axis.

この値と界磁電流検量値とから磁来演算器6により電機
子磁束(直流量)が演算される。第2図で示した磁束演
算器は、dq軸上で表した同期電動機の電圧方程式から
出発し、ciq軸りの磁束を演算する演算式をブロック
図で表したものである。d軸磁束Φdとq#!磁束Φ9
は次式%式% ここでSはラプラス演算子、L ad + L aqは
dq軸の相互インダクタンス、18は電機子もれインダ
クタンス、Td、、 T9.はそれぞれdq軸のダンパ
抵抗と同期インダクタンスにかかわる時定数。
The armature magnetic flux (DC amount) is calculated by the magnetic flux calculator 6 from this value and the field current calibration value. The magnetic flux calculator shown in FIG. 2 is a block diagram representing an arithmetic equation for calculating the magnetic flux along the ciq axis starting from the voltage equation of a synchronous motor expressed on the dq axes. d-axis magnetic flux Φd and q#! Magnetic flux Φ9
is the following formula % formula % Here, S is the Laplace operator, L ad + L aq is the mutual inductance of the d and q axes, 18 is the armature leakage inductance, Td,, T9. are the time constants related to the damper resistance and synchronous inductance of the d and q axes, respectively.

Td2.Tq2はそれぞれdq軸のダンパ抵抗とダンパ
もれインダクタンスにかかわる時定数である。
Td2. Tq2 is a time constant related to the damper resistance and damper leakage inductance of the d and q axes, respectively.

d軸磁束は界磁電流とd軸電機子電流の和から演算され
、q軸磁束はq軸電流から演算される。δは磁束のd軸
方向に対する角度で、 δ=jan’−+(Φ、、/Φd) で演算される。
The d-axis magnetic flux is calculated from the sum of the field current and the d-axis armature current, and the q-axis magnetic flux is calculated from the q-axis current. δ is the angle of the magnetic flux with respect to the d-axis direction, and is calculated as follows: δ=jan'-+(Φ, , /Φd).

第1図の電流演算器7は、トルク分電流基!!!i T
からdq軸の電流基準1d+1q(直流量)は次式で演
算される。
The current calculator 7 in FIG. 1 is a torque current base! ! ! iT
The dq-axis current reference 1d+1q (DC amount) is calculated from the following equation.

ld”  −5,7’sinδ j9=−コ丁+cosδ すなわち、トルク分電流は演算された磁束と直行するよ
うに指令する。演算された電流基準値は検出値(直流量
)と比較され、増幅器9によってdq軸の電圧基準値y
d、す、(直流量)として出力される。増幅器9は通常
比例積分器により構成される。この電圧基準値は座標変
換器14に与えられ、更に位置演算器5の出力とで三相
巻線電圧fU+ty、Zryを得る。この値は回転電気
角周波数で変化する交流量となる。
ld"-5,7'sin δ j9 = -kodyo + cos δ In other words, the torque current is commanded to run orthogonally to the calculated magnetic flux. The calculated current reference value is compared with the detected value (DC amount), and the amplifier 9 determines the dq-axis voltage reference value y
It is output as d, s, (DC amount). Amplifier 9 is usually constituted by a proportional integrator. This voltage reference value is given to the coordinate converter 14, and is further combined with the output of the position calculator 5 to obtain the three-phase winding voltage fU+ty, Zry. This value becomes an alternating current amount that changes with the rotational electrical angular frequency.

一方同期電動機の界磁電流は基準値j−fと検出値とを
比較し、その偏差に応じて増幅器10により界磁電圧基
準を得て、界磁用電力変換器4が駆動される。
On the other hand, the field current of the synchronous motor is compared with a reference value jf and a detected value, and a field voltage reference is obtained by the amplifier 10 according to the deviation, and the field power converter 4 is driven.

以トの説明により本実施例では、同期電動機の電圧基準
をdq軸上で演算し、これを座標変換器で三相交流量に
変換する。これにより制御の諸量が直流で扱オうれるた
め、高い駆動周波数においても電流が精度よく制御でき
、従来の方式に比へて広い速度範囲や広い負荷範囲で性
能の良い駆動装置が実現できる。
As described above, in this embodiment, the voltage reference of the synchronous motor is calculated on the dq axis, and the coordinate converter converts this into a three-phase alternating current amount. This allows various control quantities to be handled by direct current, so the current can be controlled accurately even at high drive frequencies, making it possible to realize a drive device with good performance over a wider speed range and wider load range than conventional methods. .

第3図は本発明の他の実施例を示す構成図である。図に
おいて、15は速度演算器、16は電圧演算器である。
FIG. 3 is a block diagram showing another embodiment of the present invention. In the figure, 15 is a speed calculator, and 16 is a voltage calculator.

他の要素は第1図で示し7た要素と同一要素は同一番号
に対応する。第4図は第3図で示した電圧演算器16の
詳細な構成で、161.162は掛算器である。
Other elements that are the same as those shown in FIG. 1 correspond to the same numbers. FIG. 4 shows a detailed configuration of the voltage calculator 16 shown in FIG. 3, and 161 and 162 are multipliers.

本実施例ではdq軸電流基準と検出値とを比較しその偏
差に応じて増幅器9でudltVqxを出力する。電圧
演算器16は逆起電力補償を行うブロックで、増幅器9
カ・らの出力とdq軸磁束Φd、Φ9および速度ωから
ciq軸の電圧基準を出力する。
In this embodiment, the dq-axis current reference and the detected value are compared, and the amplifier 9 outputs udltVqx according to the deviation. The voltage calculator 16 is a block that performs back electromotive force compensation, and the amplifier 9
The ciq-axis voltage reference is output from the outputs of F and R, the dq-axis magnetic fluxes Φd, Φ9, and the speed ω.

すなわち電動機の逆起電力は、磁束に対して90度進み
の方向で、その大きさは電気角速度ωと磁束の大きさに
比例するので、この成分を電圧基準の一部としてつくり
だす。電気角速度ωは位置信号を微分して速度演算器1
5により得られる。
In other words, the back electromotive force of the motor is in a direction that leads the magnetic flux by 90 degrees, and its magnitude is proportional to the electrical angular velocity ω and the magnitude of the magnetic flux, so this component is created as part of the voltage reference. The electrical angular velocity ω is calculated by differentiating the position signal and using the velocity calculator 1.
5.

上記作用により、増幅器9の出力は電機子電流の変化や
電機子巻線抵抗に対応する電圧を出力するだけでよい。
Due to the above operation, the output of the amplifier 9 only needs to be a voltage corresponding to a change in armature current or armature winding resistance.

したがって、この部分は比較的小さな振幅の出力となり
、第1図で示した実施例に対しでより安定な制御が行え
る。
Therefore, this portion provides an output with a relatively small amplitude, and more stable control can be achieved than in the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明により本発明では比較的高い駆動周波数や重
い負荷状態においても電動機の電機子電流を精度よく制
御でき、高性能な同期電動機の可変速駆動装置が実現で
きる。
As explained above, in the present invention, the armature current of the motor can be controlled accurately even under relatively high drive frequencies and heavy load conditions, and a high-performance variable speed drive device for a synchronous motor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の磁束演算器のブロック図、第3図は本発明の他の実
施例を示す構成図、第4図は第3図の電圧演算器の詳細
な構成図、第5図は従来の実施例を示す構成図である。 1・・・電力変換器    2・・・同期電動機3・・
・位置検出器 5・・・位置演算器 7・・・電流演算器 9.10・・・増幅器 13・・・dq軸電流演算器 4・・・界磁用電力変換器 6・・・磁束演算器 8.14・・・座標変換器 11、12・・・電流検出器
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
3 is a block diagram of the magnetic flux calculator shown in the figure, FIG. 3 is a configuration diagram showing another embodiment of the present invention, FIG. 4 is a detailed configuration diagram of the voltage calculator of FIG. 3, and FIG. 5 is a conventional example. FIG. 1...Power converter 2...Synchronous motor 3...
・Position detector 5...Position calculator 7...Current calculator 9.10...Amplifier 13...DQ axis current calculator 4...Field power converter 6...Magnetic flux calculation Device 8.14...Coordinate converter 11, 12...Current detector

Claims (1)

【特許請求の範囲】[Claims] 可変電圧可変周波数電源により三相同期電動機を可変速
制御する同期電動機の制御装置において、該同期電動機
の電機子電流を検出する電流検出器と、該同期電動機の
回転子位置を検出する位置検出器と、前記電流検出器か
らの電流を前記位置検出器からの信号により回転子の磁
極と同一方向(d軸)と直行する方向(q軸)の成分の
電流を演算する電流演算器と、前記同期電動機の界磁電
流を検出する界磁電流検出器と、前記電流演算器と前記
界磁電流検出器との出力から前記同期電動機の磁束を演
算する磁束演算器と、前記同期電動機へのトルク電流指
令信号と前記磁束演算器とから前記同期電動機のd軸及
びq軸電流指令信号を演算する電流指令演算器と、該電
流指令演算器の出力信号と前記電流検出器の出力信号と
の偏差から得られるd軸及びq軸上での電圧基準信号と
前記位置検出器からの信号から三相電機子巻線電圧基準
信号を出力する座標変換器を具備し、前記可変電圧可変
周波数電源を前記三相電機子巻線電圧基準信号に基いて
制御することを特徴とする同期電動機の制御装置。
In a synchronous motor control device that controls a three-phase synchronous motor at variable speed using a variable voltage variable frequency power source, a current detector detects an armature current of the synchronous motor, and a position detector detects a rotor position of the synchronous motor. and a current calculator that calculates a current component of the current from the current detector in the same direction as the magnetic poles of the rotor (d-axis) and in a direction (q-axis) perpendicular to the magnetic poles of the rotor, based on the signal from the position detector; a field current detector that detects a field current of the synchronous motor; a magnetic flux calculator that calculates the magnetic flux of the synchronous motor from the outputs of the current calculator and the field current detector; and a torque to the synchronous motor. A current command calculator that calculates the d-axis and q-axis current command signals of the synchronous motor from the current command signal and the magnetic flux calculator, and a deviation between the output signal of the current command calculator and the output signal of the current detector. a coordinate converter that outputs a three-phase armature winding voltage reference signal from the voltage reference signals on the d-axis and q-axis obtained from the position detector and the signal from the position detector; A control device for a synchronous motor, characterized in that control is performed based on a three-phase armature winding voltage reference signal.
JP2246241A 1990-09-18 1990-09-18 Controller for synchronous motor Pending JPH04127893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246241A JPH04127893A (en) 1990-09-18 1990-09-18 Controller for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246241A JPH04127893A (en) 1990-09-18 1990-09-18 Controller for synchronous motor

Publications (1)

Publication Number Publication Date
JPH04127893A true JPH04127893A (en) 1992-04-28

Family

ID=17145608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246241A Pending JPH04127893A (en) 1990-09-18 1990-09-18 Controller for synchronous motor

Country Status (1)

Country Link
JP (1) JPH04127893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961291A (en) * 1996-08-30 1999-10-05 Hitachi, Ltd. Turbo vacuum pump with a magnetically levitated rotor and a control unit for displacing the rotator at various angles to scrape deposits from the inside of the pump
US6710495B2 (en) * 2001-10-01 2004-03-23 Wisconsin Alumni Research Foundation Multi-phase electric motor with third harmonic current injection
JP2011024276A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Controller for winding field type synchronous machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136889A (en) * 1979-04-10 1980-10-25 Fuji Electric Co Ltd Magnetic-flux operator for synchronous motor
JPH02111281A (en) * 1988-10-18 1990-04-24 Toshiba Corp Current controller of power conversion device
JPH02133090A (en) * 1988-11-14 1990-05-22 Toshiba Corp Speed controller for induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136889A (en) * 1979-04-10 1980-10-25 Fuji Electric Co Ltd Magnetic-flux operator for synchronous motor
JPH02111281A (en) * 1988-10-18 1990-04-24 Toshiba Corp Current controller of power conversion device
JPH02133090A (en) * 1988-11-14 1990-05-22 Toshiba Corp Speed controller for induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961291A (en) * 1996-08-30 1999-10-05 Hitachi, Ltd. Turbo vacuum pump with a magnetically levitated rotor and a control unit for displacing the rotator at various angles to scrape deposits from the inside of the pump
US6710495B2 (en) * 2001-10-01 2004-03-23 Wisconsin Alumni Research Foundation Multi-phase electric motor with third harmonic current injection
JP2011024276A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Controller for winding field type synchronous machine

Similar Documents

Publication Publication Date Title
JP3686474B2 (en) Brushless permanent magnet motor control system and method
US7800337B2 (en) Control apparatus for AC rotary machine and method for measuring electrical constant of AC rotary machine using the control apparatus
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JPH06165561A (en) Controller for synchronous motor
JP4010195B2 (en) Control device for permanent magnet synchronous motor
JP2000166278A (en) Control device of synchronous motor
JP3570467B2 (en) Control device for synchronous motor
JPH05308793A (en) Control circuit for power conversion device
JP2579119B2 (en) Vector controller for induction motor
JPH04127893A (en) Controller for synchronous motor
JP2003250293A (en) Method and apparatus for controlling motor
JPH06225574A (en) Method and apparatus for controlling motor
JP3124019B2 (en) Induction motor control device
JP2856564B2 (en) Control device for synchronous motor
CN112019114A (en) Method for measuring zero offset angle of motor control system
JPH0344509B2 (en)
JP3309520B2 (en) Induction motor control method
JP3118940B2 (en) Induction motor vector control device
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPH05146191A (en) Controller for synchronous motor
JP6923801B2 (en) Observer control device for induction motors
JPH03222686A (en) Torque detecting method for synchronous motor
JP2897373B2 (en) DC brushless motor controller
JP4984057B2 (en) Control device for permanent magnet type synchronous motor
JPH06319285A (en) Vector controller for induction motor