JPH0413953B2 - - Google Patents

Info

Publication number
JPH0413953B2
JPH0413953B2 JP57182778A JP18277882A JPH0413953B2 JP H0413953 B2 JPH0413953 B2 JP H0413953B2 JP 57182778 A JP57182778 A JP 57182778A JP 18277882 A JP18277882 A JP 18277882A JP H0413953 B2 JPH0413953 B2 JP H0413953B2
Authority
JP
Japan
Prior art keywords
electromotive force
phase
induced electromotive
motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57182778A
Other languages
Japanese (ja)
Other versions
JPS5972990A (en
Inventor
Toshiaki Okuyama
Kimio Kono
Koji Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57182778A priority Critical patent/JPS5972990A/en
Publication of JPS5972990A publication Critical patent/JPS5972990A/en
Publication of JPH0413953B2 publication Critical patent/JPH0413953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は周波数変換器により抑制される誘導電
動機の誘導起電力の検出方法に関し、特に電動機
巻線の漏れインピーダンス降下による検出誤差が
少なく、所要の誘導起電力を高精度に検出するた
めの誘導起電力検出方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for detecting the induced electromotive force of an induction motor that is suppressed by a frequency converter, and in particular, the detection error due to a drop in leakage impedance of the motor windings is small, and the required The present invention relates to an induced electromotive force detection method for detecting induced electromotive force with high accuracy.

〔従来技術〕 交流電動機のトルク及び磁束を各指令信号に応
じ独立に制御可能なベクトル制御が知られてい
る。ベクトル制御方式によれば、電動機電流をト
ルク分電流及び励磁分電流に分離して制御するこ
とができるため、各電流成分を直流電動機におけ
る電機子電流及び界磁電流に対応させて制御する
ことができる。このため、直流電動機により専ら
行われていた各種の制御が交流電動機により可能
となる。圧延ラインにおいて使われる巻取機の制
御もその1つであるが、このものでは回転速度に
かかわらず電動機出力を一定に保つ定出力制御を
行うことから電動機入力電力を精度よく制御する
必要がある。ところで、入力電力は電動機の誘導
起電力と電流の積に比例することは直流電動機と
同様であるが、起電力が交流であるため、それを
検出する際には一次巻線の漏れインピーダンス降
下による検出誤差を考慮する必要がある。従来、
起電力検出法としては、電動機電圧を検出しそれ
を全波整流して直流信号として取り出す方法が用
いられれている。しかし、漏れインピーダンス降
下がそのまま検出誤差となり精度良い検出ができ
ないという問題点を有する。
[Prior Art] Vector control is known that can independently control the torque and magnetic flux of an AC motor according to each command signal. According to the vector control method, the motor current can be controlled by separating it into the torque component current and the excitation component current, so it is possible to control each current component by making it correspond to the armature current and field current in the DC motor. can. Therefore, various types of control that were previously performed exclusively by DC motors can now be performed by AC motors. One example of this is the control of winding machines used in rolling lines, but since this requires constant output control to keep the motor output constant regardless of the rotation speed, it is necessary to accurately control the motor input power. . By the way, the input power is proportional to the product of the induced electromotive force and the current in the motor, similar to a DC motor, but since the electromotive force is alternating current, when detecting it, it is necessary to detect it due to the drop in leakage impedance of the primary winding. Detection error must be taken into account. Conventionally,
As an electromotive force detection method, a method is used in which a motor voltage is detected, full-wave rectified, and extracted as a DC signal. However, there is a problem in that the drop in leakage impedance directly causes a detection error, making it impossible to perform accurate detection.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこの問題を解決することにあ
り、誘導起電力を漏れインピーダンス降下の影響
を受けることなく高精度に検出することのできる
誘導起電力検出方法を提供することにある。
An object of the present invention is to solve this problem, and to provide an induced electromotive force detection method that can detect induced electromotive force with high accuracy without being affected by leakage impedance drop.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、電動機電圧を検
出すると共に電動機磁束位相を演算により求め、
電圧検出信号の磁束位相信号に対する直交成分を
演算により求めることにより、所要の誘導起電力
を検出するようにしたことにある。
The present invention is characterized by detecting the motor voltage and calculating the motor magnetic flux phase.
The required induced electromotive force is detected by calculating the orthogonal component of the voltage detection signal to the magnetic flux phase signal.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において、1は商用電源電圧を可変周波
可変電圧の交流に変換する周波数変換器、2は誘
導電動機、3は速度検出器、4は電動機の回転速
度に応じて誘導起電力の指令信号E*と一次電流
のトルク成分の指令信号It *を出力する運転指令
回路、5は電圧検出器20で検出した一次電圧検
出信号(3相信号)を2相信号に変換する相数変
換器、6,7は2相信号と後述する発振器8から
の磁束位相信号を乗算する乗算器、9は乗算器
6,7の出力信号を加算し、誘導起電力検出信号
(直流信号)を出力する加算器、10は起電力の
偏差を取り出す加算器、11は該起電力偏差を増
巾する起電力偏差増巾器、12はトルク分量流指
令it *を励磁分電流指令in *で割算し、電動機2の
すべり周波数指令fs *を取り出す割算器、13は
周波数指令fs *と速度検出信号を加算し、電動機
一次周波数指令fi *を出力する加算器、14,1
5は電流指令in *あるいはit *と磁束位相信号を
各々乗算する乗算器、16は乗算器14,15の
出力信号を加算し、一次電流の瞬時値指令il *を出
力する加算器、17は一次電流の瞬時値を検出す
る電流検出器、18は前述した一次電流指令と電
流検出信号の偏差に応じて変換器1を制御し、一
次電流を指令値通りに制御する電流制御器であ
る。
In Fig. 1, 1 is a frequency converter that converts the commercial power supply voltage into alternating current with variable frequency and variable voltage, 2 is an induction motor, 3 is a speed detector, and 4 is a command signal for induced electromotive force according to the rotational speed of the motor. E * and a driving command circuit that outputs a command signal I t * of the torque component of the primary current; 5 is a phase number converter that converts the primary voltage detection signal (three-phase signal) detected by the voltage detector 20 into a two-phase signal; , 6 and 7 are multipliers that multiply the two-phase signal by a magnetic flux phase signal from an oscillator 8, which will be described later. 9 adds the output signals of the multipliers 6 and 7, and outputs an induced electromotive force detection signal (DC signal). An adder, 10 is an adder for extracting the deviation of the electromotive force, 11 is an electromotive force deviation amplification device for amplifying the electromotive force deviation, and 12 is for dividing the torque component flow command i t * by the excitation component current command i n *. 13 is an adder that adds the frequency command f s * and the speed detection signal and outputs the motor primary frequency command f i * ; 14; 1;
5 is a multiplier that multiplies the current command i n * or i t * by the magnetic flux phase signal, and 16 is an adder that adds the output signals of the multipliers 14 and 15 and outputs the instantaneous value command i l * of the primary current. , 17 is a current detector that detects the instantaneous value of the primary current, and 18 is a current controller that controls the converter 1 according to the deviation between the aforementioned primary current command and the current detection signal, and controls the primary current according to the command value. It is.

次にその動作を説明する。 Next, its operation will be explained.

割算器12おいて次式に従いすべり周波数指令
fa *が取り出される。
The divider 12 calculates the slip frequency command according to the following formula:
f a * is retrieved.

fa *=1/2πT2・it */in * ………(1) ここに、T2は電動機二次時定数である。次に
加算器13においてすべり周波数指令fs *と速度
検出信号frが加算され一次周波数指令f1 *が取り出
される。発振器8は一次周波数指令f1 *に比例し
た周波数の2相正弦波信号(cosω1t、Sinω1t)
を出力する。(1)式の関係に従い電動機2のすべり
周波数fsを制御すると、2相正弦波信号の一方は
電動機磁束と位相が一致し、他方は磁束に対し90
度位相差の信号となり、磁束位相の演算検出信号
となる。
f a * = 1/2πT 2 · i t * / i n * (1) Here, T 2 is the motor secondary time constant. Next, the adder 13 adds the slip frequency command f s * and the speed detection signal fr , and extracts the primary frequency command f 1 * . The oscillator 8 generates a two-phase sine wave signal (cosω 1 t, Sinω 1 t) with a frequency proportional to the primary frequency command f 1 *.
Output. When the slip frequency f s of the motor 2 is controlled according to the relationship in equation (1), one of the two-phase sine wave signals is in phase with the motor magnetic flux, and the other is 90° with respect to the magnetic flux.
It becomes a signal of the degree phase difference, and becomes a calculation detection signal of the magnetic flux phase.

次に乗算器14,15及び加算器16において
次式に示す演算を行い、一次電流指令i1 *が取り
出される。
Next, the multipliers 14 and 15 and the adder 16 perform the calculation shown in the following equation, and the primary current command i 1 * is extracted.

I1 *=in *cosωt−it *sinω1t ………(2) 電流調節器18は、一次電流i1が一次電流指令
i1 *に比例して流れるように周波数変換器1を制
御する。なお、電動機各相電流の他の2相の電流
は、図示しない回路により一次電流指令i1 *に対
して各々120度ずつ位相が異なる電流指令信号が
演算され同様に制御される。
I 1 * = i n * cosωt−i t * sinω 1 t ………(2) The current regulator 18 sets the primary current i 1 as the primary current command.
The frequency converter 1 is controlled so that the flow is proportional to i 1 * . The other two phase currents of the motor phase currents are similarly controlled by calculating current command signals having phases different by 120 degrees from the primary current command i 1 * by a circuit not shown.

以上のようにして、一次電流の励磁分及びトル
ク分は電流指令in *,it *の各々に比例するよう制
御され、電動機磁束及びトルクが制御される。こ
のようなベクトル制御の動作はすでによく知られ
ていることである。
As described above, the excitation and torque components of the primary current are controlled to be proportional to each of the current commands i n * and i t * , and the motor magnetic flux and torque are controlled. Such vector control operation is already well known.

次に、本発明の要部における動作を説明する。
相数変換器5において2相交流の電圧検出信号
v1〓,v1〓が次式に従い演算される。
Next, the operation of the main part of the present invention will be explained.
Two-phase AC voltage detection signal in phase number converter 5
v 1 〓 and v 1 〓 are calculated according to the following formula.

なお、vU,vV,vWは相電圧で、2相信号に変
換するのは演算を簡単にするためである。
Note that v U , v V , and v W are phase voltages, and the purpose of converting them into two-phase signals is to simplify calculations.

次に乗算器6,7及び加算器9によつて次式の
演算を行い誘導起電力Eを検出する。
Next, the multipliers 6 and 7 and the adder 9 calculate the following equation to detect the induced electromotive force E.

E=−v1〓(sinω1t)+v1〓(cosω1t) ………(4) ここに、sinω1t及びcosω1tは発振器8の出力信
号である。このようにして検出された誘導起電力
Eは第2図に示すように固定子座標上における2
相交流電圧v1〓,v1〓を磁束位相θ(=ω1t)を用い
て回転子座標上の電圧に変換して得られるもの
で、その出力電圧の基本波成分は直流量で検出さ
れる。なお、この検出された誘導起電力Eには検
出すべき2次誘導起電力E2の他に、次式に示す
ように漏れインピーダンス降下成分を含んでい
る。
E=−v 1 〓(sin ω 1 t)+v 1 〓(cos ω 1 t) (4) where sin ω 1 t and cos ω 1 t are the output signals of the oscillator 8. The induced electromotive force E detected in this way is 2 on the stator coordinates as shown in Figure 2.
It is obtained by converting the phase AC voltages v 1 〓, v 1 〓 to voltage on the rotor coordinates using the magnetic flux phase θ (= ω 1 t), and the fundamental wave component of the output voltage is detected by the DC amount. be done. The detected induced electromotive force E includes a leakage impedance drop component in addition to the secondary induced electromotive force E 2 to be detected, as shown in the following equation.

EE2+r1it+ω1l1in ………(5) ここに、 r1:一次抵抗 l1:一次漏れインダクタンス ω1:一次角周波数 it:トルク分電流 in:励磁分電流 しかしながら、右辺第3項の漏れリアクタンス
降下は、一般にE2≫ω1l1inであるため、無視する
ことができる。また第2項の抵抗降下r1itは一次
周波数f1が低い運転範囲において影響度合が大き
いが、これは第1図に破線で示すように、トルク
分電流it *を用いて、誘導起電力E2より抵抗降下
r1it相当分を差し引くことにより容易に補償する
ことができる。
EE 2 + r 1 i t + ω 1 l 1 i n ………(5) where, r 1 : Primary resistance l 1 : Primary leakage inductance ω 1 : Primary angular frequency i t : Torque component current i n : Excitation component current However, the leakage reactance drop in the third term on the right side can be ignored since generally E 2 ≫ω 1 l 1 i n . In addition, the resistance drop r 1 i t in the second term has a large influence in the operating range where the primary frequency f 1 is low, but this can be explained by using the torque component current i t * as shown by the broken line in Figure 1. Resistance drop from electromotive force E 2
It can be easily compensated by subtracting the amount corresponding to r 1 i t .

なお、加算器9から得られる信号は、電動機の
回転方向(一次電流の相順)が逆転すると(4)式の
v1〓とv1〓の極性が反転する。したがつて、必要に
応じ加算器9あるいは19の出力側に絶対値演算
器を設け、その出力を加算器10に加えるように
することが行われる。
Note that the signal obtained from the adder 9 becomes
The polarities of v 1 〓 and v 1 〓 are reversed. Therefore, if necessary, an absolute value calculator is provided on the output side of adder 9 or 19, and its output is added to adder 10.

電動機入力Pは次式にて与えられるため、 P3E2・it ………(6) E2及びitを所定値に保つことにより、電動機入
力Pを所定値に制御することができる。
Since the motor input P is given by the following equation, P3E 2 ·i t (6) By keeping E 2 and i t at predetermined values, the motor input P can be controlled to a predetermined value.

以上のようにして誘導起電力を検出するのであ
るが、従来の1次電圧を検出し整流して誘導起電
力を検出するものに比べ高精度に検出できる理由
を第2図に示すベクトル図を用いて説明する。
The induced electromotive force is detected as described above, and the vector diagram shown in Figure 2 explains why it can be detected with higher precision than the conventional method that detects the primary voltage and rectifies it to detect the induced electromotive force. I will explain using

従来の1次電圧を検出し整流して誘導起電力を
検出するものにおいては、検出電圧E1は第2図
に示すベクトル図から明らかなように次式にて示
される。なお、第2図においてφ2は電動機磁束
である。
In the conventional system that detects and rectifies the primary voltage to detect the induced electromotive force, the detected voltage E1 is expressed by the following equation, as is clear from the vector diagram shown in FIG. In addition, in FIG. 2, φ 2 is the motor magnetic flux.

E1=√(21 1 n1 t2+(1
2 t1 1 t1 n2………(7) 検出すべき誘導起電力E2に比べると、1次漏
れインピーダンス降下r1i1及びω1l1i1並びに2次
漏れリアクタンス降下ω1l2itにより検出誤差が大
きくなる。一方、本発明の検出法における検出電
圧Eは図示するものであり、従来の電圧E1より
検出誤差は少ない。このことは励磁成分inがトル
ク成分itの1/3〜1/6であることからも理解し得よ
う。また、起電力E2と比べるとr1it及びω1l1in
けが誤差となるが、r1itは容易に補償することが
できる。またω1l1in/E2は常にほぼ一定した値で
あるので、ω1l1inの影響は実害ない。なぜなら、
誘導起電力E2を制御する場合、指令値E*をω1l1in
の分だけ大きく指令しておけば誘導起電力E2
所定値に制御できるからである。
E 1 =√( 2 + 1 1 n + 1 t ) 2 + ( 1
2 t + 1 1 t1 n ) 2 ………(7) Compared to the induced electromotive force E 2 to be detected, the primary leakage impedance drop r 1 i 1 and ω 1 l 1 i 1 and the secondary leakage reactance The detection error increases due to the drop ω 1 l 2 i t . On the other hand, the detection voltage E in the detection method of the present invention is as shown in the figure, and has a smaller detection error than the conventional voltage E1 . This can be understood from the fact that the excitation component i n is 1/3 to 1/6 of the torque component i t . Furthermore, compared to the electromotive force E 2 , only r 1 i t and ω 1 l 1 i n are errors, but r 1 i t can be easily compensated for. Moreover, since ω 1 l 1 i n /E 2 is always a substantially constant value, the influence of ω 1 l 1 i n does not cause any real harm. because,
When controlling the induced electromotive force E 2 , the command value E * is ω 1 l 1 i n
This is because the induced electromotive force E 2 can be controlled to a predetermined value by instructing it to be larger by that amount.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、所要の誘
導起電力をインピーダンス降下の影響を受けるこ
となく高精度に検出することができる。
As explained above, according to the present invention, a required induced electromotive force can be detected with high accuracy without being affected by impedance drop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路構成図、
第2図は本発明を説明するためのベクトル図であ
る。 1……周波数変換器、2……誘導電動機、6,
7……乗算器、8……発振器。
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention;
FIG. 2 is a vector diagram for explaining the present invention. 1... Frequency converter, 2... Induction motor, 6,
7... Multiplier, 8... Oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 出力電圧の大きさと周波数を可変できる周波
数変換器により駆動され3相交流電動機の誘導起
電力検出方法において、前記周波数変換器の出力
電圧からu相電圧成分とこれに直交する電圧成分
を検出し、前記周波数変換器の出力周波数の指令
信号から2相正弦波位相信号の正弦値及び余弦値
を求め、前記u相電圧成分と前記正弦値の乗算値
と、前記u相電圧成分に直交な電圧成分と前記余
弦値の乗算値との加算値から、前記交流電動機の
誘導起電力を検出するようにしたことを特徴とす
る誘導起電力検出方法。
1. In a method for detecting induced electromotive force in a three-phase AC motor driven by a frequency converter that can vary the magnitude and frequency of the output voltage, the u-phase voltage component and the voltage component orthogonal thereto are detected from the output voltage of the frequency converter. , find the sine value and cosine value of the two-phase sine wave phase signal from the command signal of the output frequency of the frequency converter, and calculate the product value of the u-phase voltage component and the sine value, and the voltage orthogonal to the u-phase voltage component. A method for detecting induced electromotive force, characterized in that the induced electromotive force of the AC motor is detected from an added value of a component and a multiplication value of the cosine value.
JP57182778A 1982-10-20 1982-10-20 Detecting method for induction electromotive force Granted JPS5972990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182778A JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182778A JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Publications (2)

Publication Number Publication Date
JPS5972990A JPS5972990A (en) 1984-04-25
JPH0413953B2 true JPH0413953B2 (en) 1992-03-11

Family

ID=16124247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182778A Granted JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Country Status (1)

Country Link
JP (1) JPS5972990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10769772B2 (en) 2015-05-21 2020-09-08 Corning Incorporated Methods for inspecting cellular articles
JP2021047098A (en) * 2019-09-19 2021-03-25 日本電信電話株式会社 Sensing direction estimation device, sensing direction estimation method and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678375A (en) * 1979-11-26 1981-06-27 Fuji Electric Co Ltd Control circuit for inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678375A (en) * 1979-11-26 1981-06-27 Fuji Electric Co Ltd Control circuit for inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10769772B2 (en) 2015-05-21 2020-09-08 Corning Incorporated Methods for inspecting cellular articles
JP2021047098A (en) * 2019-09-19 2021-03-25 日本電信電話株式会社 Sensing direction estimation device, sensing direction estimation method and program

Also Published As

Publication number Publication date
JPS5972990A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
JP3410451B2 (en) Speed controller for synchronous reluctance motor
EP0117514A2 (en) Method for controlling induction motor and apparatus therefor
KR0138730B1 (en) Vector control system for induction motor
JP3707528B2 (en) AC motor control method and control apparatus therefor
JPH07250500A (en) Variable speed controller for induction motor
JPH0413953B2 (en)
JPH0773438B2 (en) Variable speed controller for induction motor
JP3053121B2 (en) Control method of induction motor
JP2971762B2 (en) Simple vector controller for three-phase induction motor
JP2847092B2 (en) Automatic adjustment method of vector control device
JP3309520B2 (en) Induction motor control method
JPH06315291A (en) Computing method for position of magnetic flux of induction motor, and its control method using the same
JPH0344509B2 (en)
JP2634959B2 (en) Speed sensorless speed control method
JPS6243436B2 (en)
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS6159071B2 (en)
JPH0254039B2 (en)
JPS6334719B2 (en)
JP2738721B2 (en) Induction motor speed control device
JPS6047839B2 (en) AC motor magnetic flux detection device
JPH0793839B2 (en) Induction motor controller
JPH088799B2 (en) Variable speed drive of induction motor
JPH0531391B2 (en)
JP2010057210A (en) Device for controlling ac motor