JPS5972990A - Detecting method for induction electromotive force - Google Patents

Detecting method for induction electromotive force

Info

Publication number
JPS5972990A
JPS5972990A JP57182778A JP18277882A JPS5972990A JP S5972990 A JPS5972990 A JP S5972990A JP 57182778 A JP57182778 A JP 57182778A JP 18277882 A JP18277882 A JP 18277882A JP S5972990 A JPS5972990 A JP S5972990A
Authority
JP
Japan
Prior art keywords
electromotive force
current
phase
induced electromotive
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57182778A
Other languages
Japanese (ja)
Other versions
JPH0413953B2 (en
Inventor
Toshiaki Okuyama
奥山 俊明
Kimio Kono
河野 公生
Koji Miki
孝司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57182778A priority Critical patent/JPS5972990A/en
Publication of JPS5972990A publication Critical patent/JPS5972990A/en
Publication of JPH0413953B2 publication Critical patent/JPH0413953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To accurately detect the prescribed induction electromotive force without influence of the impedance drop by obtaining by claculating the orthogonal component of a voltage detecting signal to the magnetic flux phase signal. CONSTITUTION:A phase number changer 5 calculates 2-phase AC voltage detection signals V1alpha, V1beta, multipliers 6, 7 and an adder 9 detect induced electromotive force E, and the detected force E includes leakage impedance drop component in addition to the secondary inducted electromotive force E2 to be detected. It can be readily compensated by subtracting the resistance drop r1it corresponding component from the force E2 by using the torque current i*t.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は周波数変換器によp制御される誘導電動機の誘
導起電力の検出方法に関し、特に電動機巻線の漏れイン
ピーダンス降下による検出誤差が少なく、所要の誘導起
電力を高精度に検出するための誘導起電力検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for detecting induced electromotive force in an induction motor that is P-controlled by a frequency converter, and in particular has a method that reduces detection errors due to drop in leakage impedance of the motor windings. The present invention relates to an induced electromotive force detection method for detecting a required induced electromotive force with high precision.

〔従来技術〕[Prior art]

交流電動機のトルク及び磁束を各指令信号に応じ独立に
制御可能なベクトル制御が知られている。
Vector control is known that can independently control the torque and magnetic flux of an AC motor according to each command signal.

ベクトル制御方式によれば、電動機電流をトルク分電流
及び励磁分、電流に分離して制御することができるため
、各電流成分を直流電動機における電機子電流及び界磁
電流に対応させて制御することができる。このため、直
流電動機により専ら行われていた各種の制御が交流電動
機によシ可能となる。圧延ラインにおいて使われる巻取
機の制御もその1つであるが、このものでは回転速度に
かかわらず電動機出力を一定に保つ定出力制御を行うこ
とから電動機入力電力を鞘就よく制御する必要がある。
According to the vector control method, the motor current can be controlled by separating it into torque component current, excitation component current, and current, so each current component can be controlled in correspondence with the armature current and field current in the DC motor. Can be done. Therefore, various types of control that were previously performed exclusively by DC motors can now be performed by AC motors. One example of this is the control of the winding machines used in rolling lines, and since this requires constant output control to keep the motor output constant regardless of the rotation speed, it is necessary to effectively control the motor input power. be.

ところで、入力電力は電動機の誘導起電力と電流の積に
比例することは直流電動機と同様でおるが、起電力が交
流であるため、それを検出する際には一次巻線の漏れイ
ンピーダンス降下による検出誤差を考慮する必要がおる
。従来、起電力検出法としては、電動機電圧を検出しそ
れを全波整流して直流信号として取シ出す方法が用いら
れれている。しかし、漏れインピーダンス降下がそのま
ま検出誤差となシ精度良い検出ができないという問題点
を有する。
By the way, the input power is proportional to the product of the induced electromotive force and the current in the motor, similar to a DC motor, but since the electromotive force is alternating current, when detecting it, it is necessary to detect it due to the drop in leakage impedance of the primary winding. It is necessary to consider detection error. Conventionally, as an electromotive force detection method, a method has been used in which a motor voltage is detected, full-wave rectified, and extracted as a DC signal. However, there is a problem in that the drop in leakage impedance directly causes a detection error, making it impossible to perform accurate detection.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこの問題を解決することにあシ、誘導起
電力を漏れインピーダンス降下の影響を受けることなく
高精度に検出することのできる誘導起電力検出方法を提
供することにある。
An object of the present invention is to solve this problem, and to provide an induced electromotive force detection method that can detect induced electromotive force with high accuracy without being affected by leakage impedance drop.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、電動機電圧を検出すると
共に電動機磁束位相を演算によシ求め、電圧検出信号の
磁束位相信号に対する直交成分を演算によシ求めること
によシ、所要の誘導起電力を検出するようにしたことに
おる。
The present invention is characterized by detecting the motor voltage, calculating the motor magnetic flux phase, and calculating the orthogonal component of the voltage detection signal to the magnetic flux phase signal. The reason is that it detects electric power.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において、1は商用電源電圧を可変周波可変電圧
の交流に変換する周波数変換器、2は誘導電動機、3は
速度検出器、4は電動機の回転速度に応じて誘導起電力
の指令信号E”と−次電流のトルク成分の指令信号It
を出力する運転指令回路、5は電圧検出器20で検出し
た一次電圧検出信号(3相信号)を2相信号に変換する
相数変換器、6,7は2相信号と後述する発振器8から
の磁束位相信号を乗算する乗算器、9は乗算器6゜7の
出力信号を加算し、誘導起電力検出信号(直流信号)を
出力する加算器、loは起電力の偏差を一取シ出す加算
器、11は該起電力偏差を増巾する起電力偏差増巾器、
12はトルク分電流指令Itを励磁分電流指令1mで割
算し、電動機2のすべり周波数指令f、を取シ出す割算
器、13は周波数指令f、と速度検出信号を加算し、電
動機−欠周波数指令fIk出力する加算器、L4゜15
は電流指令1゜′あるいはi、′と磁束位相信号を各々
乗算する乗算器、16は乗算器14.15の出力信号を
加算し、−次電流の瞬時値指令i1″′を出力する加算
器、17は一次電流の瞬時値を検出する電流検出器、1
8は前述した一次電流指令と電流検出信号の偏差に応じ
て変換器1を制御し、−次電流を指令値通シに制御する
電流制御器である。
In Fig. 1, 1 is a frequency converter that converts the commercial power supply voltage into alternating current with variable frequency and variable voltage, 2 is an induction motor, 3 is a speed detector, and 4 is a command signal for induced electromotive force according to the rotational speed of the motor. E" and the command signal It of the torque component of the next current
5 is a phase number converter that converts the primary voltage detection signal (3-phase signal) detected by the voltage detector 20 into a 2-phase signal, 6 and 7 are 2-phase signals from an oscillator 8, which will be described later. 9 is an adder that adds the output signal of multiplier 6゜7 and outputs an induced electromotive force detection signal (DC signal). lo is an adder that takes out the deviation of the electromotive force. an adder; 11 is an electromotive force deviation amplification device that amplifies the electromotive force deviation;
12 is a divider that divides the torque component current command It by the excitation component current command 1m and obtains the slip frequency command f of the motor 2. 13 adds the frequency command f and the speed detection signal, and calculates the motor 2 by adding the frequency command f and the speed detection signal. Adder that outputs missing frequency command fIk, L4゜15
16 is a multiplier that multiplies the current command 1゜' or i,' by the magnetic flux phase signal, and 16 is an adder that adds the output signals of the multipliers 14 and 15 and outputs the -order current instantaneous value command i1'''. , 17 is a current detector that detects the instantaneous value of the primary current, 1
Reference numeral 8 denotes a current controller that controls the converter 1 according to the deviation between the above-mentioned primary current command and the current detection signal, and controls the negative primary current according to the command value.

次、にその動作を説明する。Next, its operation will be explained.

割算器12において次式に従いすベシ周波数指令f、が
取シ出される。
The divider 12 takes out a frequency command f according to the following equation.

ここに Ip2は電動機二次時定数である。次に加算器
13においてすべり周波数指令f、と速度検出信号f、
が加算され一次周波数指令f1”が取シ出される。発振
器8は一次周波数指令f1に比例した周波数の2相正弦
波信号(cosωIt、sinω+1を出力する。(1
)式の関係に従い電動機2のすべυ周波数f、を制御す
ると、2相正弦波信号の一方は電動機磁束と位相が一致
し、他方は磁束に対し90度位相差の信号となシ、磁束
位相の演算検出信号となる。
Here, Ip2 is the motor secondary time constant. Next, in the adder 13, the slip frequency command f, the speed detection signal f,
is added and a primary frequency command f1'' is taken out.The oscillator 8 outputs a two-phase sine wave signal (cosωIt, sinω+1) with a frequency proportional to the primary frequency command f1.(1
), when the total υ frequency f of the motor 2 is controlled according to the relationship of equation 2, one of the two-phase sine wave signals has the same phase as the motor magnetic flux, and the other has a phase difference of 90 degrees with respect to the magnetic flux. becomes the calculation detection signal.

次に乗算器14.15及び加算器16において次式に示
す演算を行い、−次電流指令11″が取シ出される。
Next, the multipliers 14, 15 and the adder 16 perform the calculation shown in the following equation, and a negative current command 11'' is obtained.

11:l、CoSω+1  i*5to6)lt   
 −・”  (2)電流調節器18は、−次電流IIが
一次電流指令i】に比例して流れるように周波数変換器
1を制御する。なお、電動機、各相電流の他の2相の電
流は、図示しない回路により一次電流指令1に対して各
々120度ずつ位イ目が異なる電流指令信号が演算され
同様に制御される。
11:l, CoSω+1 i*5to6)lt
-.'' (2) The current regulator 18 controls the frequency converter 1 so that the -order current II flows in proportion to the primary current command i. The current is controlled in the same way by calculating current command signals that differ by 120 degrees from the primary current command 1 by a circuit not shown.

以上のようにして、−次電流の励磁分及びトル夛分は電
流指令1.、Itの各々に比例するよう制御され、%動
機磁束及びトルクが制御される。
As described above, the excitation component and torque addition component of the -order current are determined by the current command 1. , It, and the percent motive flux and torque are controlled.

このようなベクトル制御の動作はすでによく知られてい
ることである。
Such vector control operation is already well known.

次に、本発明の要部における動作を説明する。Next, the operation of the main part of the present invention will be explained.

相数変換器5において2相交流の電圧検出信号vlff
+ vlβが次式に従い演算される。
In the phase number converter 5, the two-phase AC voltage detection signal vlff
+vlβ is calculated according to the following equation.

なお、vU、vy、vyは相電圧で、2相信号に変換す
るのは演算f、簡単にするためである。
Note that vU, vy, and vy are phase voltages, which are converted into two-phase signals for the purpose of simplifying the calculation f.

次に乗算器6.7及び加算器9によって次式の演算を行
い誘導起電力Eを検出する。
Next, the multiplier 6.7 and the adder 9 calculate the following equation to detect the induced electromotive force E.

E =−Vl、 (sinωlす+v、 、g(cos
ωIt)  −f4)ここに、sinω、1  及びc
osω、1  は発振器8の出力信号である。このよう
にして検出された誘導起電力Eには検出すべき2次誘導
起電力E2の他に、次式に示すように漏れインピーダン
ス降下成分を含んでいる。
E = -Vl, (sinωl+v, ,g(cos
ωIt) −f4) Here, sin ω, 1 and c
osω,1 is the output signal of the oscillator 8. In addition to the secondary induced electromotive force E2 to be detected, the induced electromotive force E thus detected includes a leakage impedance drop component as shown in the following equation.

E;E2+r11 t 十(t)、t、l m   ”
””  (5)ここに、rl ニー次抵抗 t1ニー次漏れインダクタンス ω1 ニー次角周波数 ft :  )ルク分電流 iよ:励磁分電流 しかしながら、右辺第3項の漏れリアクタンス降下は、
一段にE2>ω1t1i、であるため、無視することが
できる。また第2項の抵抗降下rli、は一次周波数f
+が低い運転範囲において影響度合が大きいが、これは
第1図に破線で示すように、トルク分電流itを用いて
、誘導起電力E2よシ抵抗降下r、i、  相当分を差
し引くことによシ容易に補償することができる。
E; E2+r11 t 10(t), t, l m ”
”” (5) Here, rl Knee-order resistance t1 Knee-order leakage inductance ω1 Knee-order angular frequency ft: ) Luke component current i: Excitation component current However, the leakage reactance drop in the third term on the right side is
Since E2>ω1t1i, it can be ignored. Also, the second term resistance drop rli is the primary frequency f
The degree of influence is large in the operating range where + is low, but this can be done by subtracting the induced electromotive force E2 by the resistance drop r, i, using the torque component current it, as shown by the broken line in Figure 1. It can be easily compensated.

なお、加算器9から得られる信号は、電動機の回転方向
(−次電流の相順)が逆転すると(4)式のvI、l 
とv1βの極性が反転する。したがって、必要に応じ加
算器9あるいi、j:19の出力側に絶対値演算器を設
け、その出力を加算器10に加えるようにすることが行
われる。
Note that the signals obtained from the adder 9 are expressed as vI and l in equation (4) when the rotation direction of the motor (phase order of the -order current) is reversed.
and the polarity of v1β is reversed. Therefore, if necessary, an absolute value calculator is provided on the output side of the adder 9 or i, j: 19, and its output is added to the adder 10.

電動機入力Pは次式にて与えられるため、P ”:; 
3 E 2・it         ・・・・・・・・
・ (6)E2及び1tを所定匝に保つことによシ、電
動機入力Pを所定値に制御することができる。
Since the motor input P is given by the following equation, P'':;
3 E 2・it・・・・・・・・・
- (6) By keeping E2 and It at predetermined values, the motor input P can be controlled to a predetermined value.

以上のようにして誘導起電力を検出するのであるが、従
来の1次電圧を検出し整流して誘導起電力を検出するも
のに比べ高精度に検出できる理由を第2図に示すベクト
ル図を用いて説明する。
The induced electromotive force is detected as described above, and the vector diagram shown in Figure 2 explains why it can be detected with higher precision than the conventional method that detects the primary voltage and rectifies it to detect the induced electromotive force. I will explain using

従来の1次電圧を検出し整流して誘導起電力を検出する
ものにおいては、検出電圧E1は第2因に示すベクトル
図から明らかなように次式にて示される。なお、第2図
においてP2は電動機磁束である。
In the conventional system that detects and rectifies the primary voltage to detect the induced electromotive force, the detected voltage E1 is expressed by the following equation, as is clear from the vector diagram shown in the second factor. In addition, in FIG. 2, P2 is the motor magnetic flux.

B】=V (E2+ωI41m +v1it )2+(
ω1t2 + > 十〇) tI+t  ’I1m)2
・・・・・・ (7) 検出すべき誘導起電力E2に比べると、1次漏れインピ
ーダンス降下r+i+及びω+l+i+  並ぴに2次
漏れリアクタンス降下ω1t21tによシ検出誤差が大
きくなる。一方、本発明の検出法における検出電圧Eは
図示するものでアリ、従来の電圧E+  よυ検出誤差
は少ない。このことは励磁成分1.がトルク成分Itの
1/3〜1/6であることからも理解し得よう。また、
起電力E2と比べるとrH1會及びω+t+iつ だけ
が誤差となるが、rl’tは容易に補償することができ
る。またω+t+i−/Ezは常にほぼ一定した値であ
るので、ω】!−+ i mの影響は実害ない。なぜな
ら、誘導起電力E2 を制御する場合、指令値E”をω
1t1imの分だけ大きく指令しておけば誘導起電力E
2は所定値に制御できるからである。
B】=V (E2+ωI41m +v1it )2+(
ω1t2 + > 10) tI+t 'I1m)2
(7) Compared to the induced electromotive force E2 to be detected, the detection error becomes large due to the primary leakage impedance drops r+i+ and ω+l+i+ and the secondary leakage reactance drop ω1t21t. On the other hand, the detection voltage E in the detection method of the present invention is as shown in the figure, and the detection error of υ is smaller than that of the conventional voltage E+. This means that the excitation component 1. This can be understood from the fact that is 1/3 to 1/6 of the torque component It. Also,
Compared to the electromotive force E2, only rH1 and ω+t+i are errors, but rl't can be easily compensated for. Also, since ω+t+i-/Ez is always a nearly constant value, ω]! The effect of −+ i m is not harmful. This is because when controlling the induced electromotive force E2, the command value E'' is set to ω
If the command is increased by 1t1im, the induced electromotive force E
2 can be controlled to a predetermined value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、所要の誘導起電力
をインピーダンス降下の影響を受けることなく高精度に
検出することができる。
As explained above, according to the present invention, a required induced electromotive force can be detected with high precision without being affected by impedance drop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路構成図、第2図は
本発明を説明するためのベクトル図である。 l・・・周波数変換器、2・・・誘導電動機、6.7・
・・乗算器、8・・・発振器。 葬2図
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, and FIG. 2 is a vector diagram for explaining the present invention. l...Frequency converter, 2...Induction motor, 6.7.
... Multiplier, 8... Oscillator. Funeral 2

Claims (1)

【特許請求の範囲】[Claims] 1、周波数変換器によって駆動される誘導電動機の端子
電圧を検出すると共に前記誘導電動機の磁束位相を演算
によシ求め、前記電圧検出信号の磁束位相信号に対する
直交成分を演算によυ求め前記誘導電動機の誘導起電力
を検出するようにしたことを特徴とする誘導起電力検出
方法。
1. Detecting the terminal voltage of an induction motor driven by a frequency converter, calculating the magnetic flux phase of the induction motor, and calculating the orthogonal component υ of the voltage detection signal to the magnetic flux phase signal of the induction motor. A method for detecting induced electromotive force, characterized in that the induced electromotive force of an electric motor is detected.
JP57182778A 1982-10-20 1982-10-20 Detecting method for induction electromotive force Granted JPS5972990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182778A JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182778A JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Publications (2)

Publication Number Publication Date
JPS5972990A true JPS5972990A (en) 1984-04-25
JPH0413953B2 JPH0413953B2 (en) 1992-03-11

Family

ID=16124247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182778A Granted JPS5972990A (en) 1982-10-20 1982-10-20 Detecting method for induction electromotive force

Country Status (1)

Country Link
JP (1) JPS5972990A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017014917A (en) 2015-05-21 2018-08-15 Corning Inc Methods for inspecting cellular articles.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678375A (en) * 1979-11-26 1981-06-27 Fuji Electric Co Ltd Control circuit for inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678375A (en) * 1979-11-26 1981-06-27 Fuji Electric Co Ltd Control circuit for inverter

Also Published As

Publication number Publication date
JPH0413953B2 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US5796235A (en) Process and circuits for determining machine-related electro-magnetic and mechanical state variables on electrodynamic induction machines supplied via converters
EP0117514A2 (en) Method for controlling induction motor and apparatus therefor
JPS5972990A (en) Detecting method for induction electromotive force
US4484129A (en) Speed control apparatus for polyphase induction motors
JP3053121B2 (en) Control method of induction motor
JP2971762B2 (en) Simple vector controller for three-phase induction motor
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS6243436B2 (en)
JP2634959B2 (en) Speed sensorless speed control method
JPH06315291A (en) Computing method for position of magnetic flux of induction motor, and its control method using the same
JP3309520B2 (en) Induction motor control method
JPS6152176A (en) Vector controlling method of induction motor
JPH01308187A (en) Calculating method for secondary resistance of induction motor, control method, presuming method for secondary winding temperature protecting method and controller thereof
JP3118940B2 (en) Induction motor vector control device
SU817880A1 (en) Device for measuring induction motor slipping
JPH0866099A (en) Induction-motor control apparatus
JPS6047839B2 (en) AC motor magnetic flux detection device
JPS6035914B2 (en) Control method of induction motor
JPH0213555B2 (en)
JPH02142379A (en) Speed control device of induction motor
JPS6334719B2 (en)
JPS59159688A (en) Controlling method of induction motor
JPH05276779A (en) Vector controller for induction motor
JPH11206200A (en) Induction motor control equipment
JPH0531391B2 (en)