JPS6243436B2 - - Google Patents

Info

Publication number
JPS6243436B2
JPS6243436B2 JP56091410A JP9141081A JPS6243436B2 JP S6243436 B2 JPS6243436 B2 JP S6243436B2 JP 56091410 A JP56091410 A JP 56091410A JP 9141081 A JP9141081 A JP 9141081A JP S6243436 B2 JPS6243436 B2 JP S6243436B2
Authority
JP
Japan
Prior art keywords
voltage
inverter
torque
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56091410A
Other languages
Japanese (ja)
Other versions
JPS57206298A (en
Inventor
Shotaro Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56091410A priority Critical patent/JPS57206298A/en
Publication of JPS57206298A publication Critical patent/JPS57206298A/en
Publication of JPS6243436B2 publication Critical patent/JPS6243436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明はインバータ駆動三相誘導電動機のトル
ク検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torque detection device for an inverter-driven three-phase induction motor.

従来、回転機のトルク測定器として歪みゲージ
を利用したトルク検出装置などが公知である。し
かし、これらの装置は高価であるうえに細い軸が
必要であり測定精度も余り良好とは言い難かつ
た。更に検出されるトルクは軸伝達トルクであり
回転機自身から発生する電磁トルクではないなど
の欠点があつた。然るに最近ではこれらの欠点を
補うものとして、モータにかかる電圧と、その電
流とから直接電磁トルクを求めるトルク検出装置
も検討されている。すなわち、第1図は従来の3
相交流機の電磁トルク検出装置を示す回路例であ
る。図において1ab,1bcは各線間の電圧検出
器、2a,2bは相電流検出器、3は起電力演算
器、4は前記起電力演算機3によつて演算された
起電力を積分する磁束演算器、6a,6b,6c
は乗算器、5,7は加算器、8は交流機の固定子
を示す。
2. Description of the Related Art Conventionally, a torque detection device using a strain gauge as a torque measurement device for a rotating machine is known. However, these devices are expensive, require thin shafts, and have poor measurement accuracy. Furthermore, the detected torque is a shaft-transmitted torque and not an electromagnetic torque generated from the rotating machine itself. However, recently, as a way to compensate for these drawbacks, a torque detection device that directly determines electromagnetic torque from the voltage applied to the motor and its current has been considered. In other words, Figure 1 shows the conventional 3
This is an example of a circuit showing an electromagnetic torque detection device for a phase alternator. In the figure, 1ab and 1bc are voltage detectors between each line, 2a and 2b are phase current detectors, 3 is an electromotive force calculator, and 4 is a magnetic flux calculator that integrates the electromotive force calculated by the electromotive force calculator 3. Vessel, 6a, 6b, 6c
is a multiplier, 5 and 7 are adders, and 8 is a stator of the alternating current machine.

次にこの様に回路構成された従来装置について
以下動作を説明する。第1図に示した従来のトル
ク検出装置は交流機の各相巻線に直交して鎖交す
る磁束を求め各相電流と乗算することによつて得
られる各相トルクを加算して電磁トルクを求める
ものである。各相に直交して鎖交する夫々の磁束
は各々a相の場合はΦbc、b相の場合はΦca、c
相の場合はΦabに相当する。これらの磁束を求め
るために、まず端子電圧が電圧検出器1ab,1
bcまたは相電流が相電流検出器2a,2bの各
検出器によつて検出され起電力演算器3に供給さ
れる。起電力演算器3では端子電圧Vab,Vbc
ら巻線抵抗による電圧降下、および漏れリアクタ
ンスによる誘起電圧が除去されて起電力Eab、E
bcが出力端子から磁束演算器4に入力される。磁
束演算器4に供給された起電力Eab,Ebcは直ち
に積分され、その出力端子から演算された各相に
直交する磁束Φbc,Φca,Φabを出力する。各相
トルクは6a,6b,6cの乗算器を用いて夫々
各相電流とそれに直交して鎖交する磁束の乗算が
行なわれ求められる。この時の電磁トルクは加算
器7を用いて各相トルクの和として求められる。
従つて磁束演算器4の機能構成は積分器とその演
算器とより成る。
Next, the operation of the conventional device having the circuit configuration as described above will be explained below. The conventional torque detection device shown in Figure 1 calculates the magnetic flux that interlinks orthogonally to each phase winding of an alternating current machine, multiplies it by each phase current, and adds the obtained phase torque to generate an electromagnetic torque. This is what we seek. The respective magnetic fluxes that intersect orthogonally to each phase are Φ bc in the case of the a phase, and Φ ca and c in the case of the b phase.
In the case of a phase, it corresponds to Φ ab . In order to obtain these magnetic fluxes, first the terminal voltage is detected by the voltage detectors 1ab and 1.
bc or the phase current is detected by each of the phase current detectors 2a and 2b and supplied to the electromotive force calculator 3. In the electromotive force calculator 3, the voltage drop due to the winding resistance and the induced voltage due to the leakage reactance are removed from the terminal voltages V ab , V bc , and the electromotive force E ab , E
bc is input to the magnetic flux calculator 4 from the output terminal. The electromotive forces E ab and E bc supplied to the magnetic flux calculator 4 are immediately integrated, and the calculated magnetic fluxes Φ bc , Φ ca , and Φ ab orthogonal to each phase are outputted from the output terminal. Each phase torque is obtained by multiplying each phase current by the magnetic flux orthogonally interlinking each phase current using multipliers 6a, 6b, and 6c. The electromagnetic torque at this time is obtained as the sum of the torques of each phase using an adder 7.
Therefore, the functional configuration of the magnetic flux calculator 4 consists of an integrator and its calculator.

この様に従来のトルク検出装置は電圧や電流か
ら磁束を検出してトルクを求める方式であつたか
らトルク検出のために専用の電圧、電流検出器を
複数個設ける必要があり、特に乗算器は3個必要
となるなどのことから装置がどうしても複雑、高
価となるを免れ得ず、更に磁束演算器4には積分
器があるため積分アンプのドリフトが問題となり
低速域ではアンプが飽和しトルク検出に測定誤差
が生ずるなどの欠点があつた。
In this way, conventional torque detection devices have a method of determining torque by detecting magnetic flux from voltage and current, so it is necessary to provide multiple dedicated voltage and current detectors for torque detection. The device becomes complicated and expensive due to the fact that the magnetic flux calculator 4 requires an integrator, and drift of the integrator amplifier becomes a problem, and the amplifier saturates in the low speed range, making it difficult to detect torque. There were drawbacks such as measurement errors.

本発明は上記のような従来の欠点を除去するた
めになされたもので、インバータ、特に電流形イ
ンバータで駆動される誘導電動機の電磁トルクを
検出するために、予め備えられた直流電流検出
器、電動機回転角速度(すべり周波数制御時)検
出器インバータ直流電圧検出器等を用い、これに
2つのオペアンプと2個の乗算器を組合わせるこ
とによつて簡単で安価なインバータ駆動三相誘導
電動機のトルク検出装置を提供することを目的と
する。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art, and includes a DC current detector provided in advance to detect the electromagnetic torque of an induction motor driven by an inverter, particularly a current source inverter. By using a motor rotation angular velocity (slip frequency control) detector, inverter DC voltage detector, etc., and combining it with two operational amplifiers and two multipliers, the torque of an inverter-driven three-phase induction motor can be easily and inexpensively determined. The purpose is to provide a detection device.

以下、本発明の一実施例を以下に説明する。先
ず第2図は電流形インバータ駆動三相誘導電動機
の電磁トルクを検出する装置の構成図である。第
2図において制御装置は直接関係ないので省略し
ている。第2図において11は三相交流電源で1
2は交流/直流コンバータ、13は電流を平滑す
る直流リアクトル、14は直流を矩形波の交流電
流に変換するインバータ、15は三相誘導電動
機、16は電動機の速度を検出する回転角速度検
出器である。次にトルク検出装置として17はイ
ンバータ直流電圧検出器、18は転流時にインバ
ータ直流電圧に重畳されるスパイク電圧を除去す
るスパイク電圧カツト回路、19は直流電流検出
器で、20は電動機の巻線抵抗(固定子巻線抵
抗、回転子巻線抵抗)による電圧降下分を演算す
る演算回路、21は直流電圧から抵抗降下を減ず
る減算器、22は減算器の出力と直流電流idとを
乗算する乗算器、23は回転角速度検出器16の
絶対値を出力し、速度が負にならない様にすると
ともに回転角速度検出器16の出力が零でも速度
が零にならない様にバイアスを与える絶対値バイ
アス回路、24は乗算器22の出力を絶対値バイ
アス回路23の出力で割る除算器、25は対極数
に相当するゲインでありそのゲイン25の出力が
トルクτとなり28の符号判定回路でトルクに
符号を与える。
An embodiment of the present invention will be described below. First, FIG. 2 is a block diagram of a device for detecting electromagnetic torque of a three-phase induction motor driven by a current source inverter. In FIG. 2, the control device is omitted because it is not directly related. In Figure 2, 11 is a three-phase AC power supply.
2 is an AC/DC converter, 13 is a DC reactor that smoothes the current, 14 is an inverter that converts DC to rectangular wave AC current, 15 is a three-phase induction motor, and 16 is a rotational angular velocity detector that detects the speed of the motor. be. Next, as a torque detection device, 17 is an inverter DC voltage detector, 18 is a spike voltage cut circuit that removes the spike voltage superimposed on the inverter DC voltage during commutation, 19 is a DC current detector, and 20 is a motor winding. An arithmetic circuit that calculates the voltage drop due to resistance (stator winding resistance, rotor winding resistance), 21 is a subtracter that subtracts the resistance drop from the DC voltage, and 22 is a multiplier that multiplies the output of the subtracter by the DC current id. The multiplier 23 is an absolute value bias circuit that outputs the absolute value of the rotational angular velocity detector 16 to prevent the velocity from becoming negative, and provides a bias so that the velocity does not become zero even if the output of the rotational angular velocity detector 16 is zero. , 24 is a divider that divides the output of the multiplier 22 by the output of the absolute value bias circuit 23, 25 is a gain corresponding to the number of opposite poles, and the output of the gain 25 becomes torque τ 0 , and the sign determination circuit 28 determines the sign of the torque. give.

この様な構成からなる本発明においてインバー
タで駆動される誘導電動機のトルクを検出するに
は直流中間回路から三相誘導電動機15へ供給さ
れる瞬時パワーP0、すなわちインバータ直流電圧
Idから巻線抵抗による電圧降下分、及び転流時
発生するスパイク電圧を減じたものとインバータ
直流入力電流idの積を回転角速度ωrで除したも
のが誘導電動機の発生トルクとして近似できるこ
とに着目し、この原理を利用して三相誘導電動機
のトルク検出をするものである。以下、d―q軸
座標変換された誘導電動機の基礎方程式を用いて
瞬時トルクを導出し基本的には上記の考え方で瞬
時トルクの近似が可能であることを理論的に詳述
する。すなわち2次誘導体短絡した誘導電動機の
固定子にd―q軸座標変換された基礎方程式を示
すと、(1)、及び(2)式で与えられる。第3図におい
てはd―q軸と固定子巻線軸a,b,c相との位
置関係が示されている。q軸はa相巻線軸と等し
い方向であり、d軸はq軸より90°位相の遅れた
位相にあるとする。
In the present invention having such a configuration, in order to detect the torque of an induction motor driven by an inverter, the instantaneous power P 0 supplied from the DC intermediate circuit to the three-phase induction motor 15, that is, the inverter DC voltage e Id, is determined from the winding. Focusing on the fact that the product of the voltage drop due to resistance and the spike voltage generated during commutation and the inverter DC input current id divided by the rotational angular speed ω r can be approximated as the generated torque of an induction motor, this principle was developed. This is used to detect the torque of a three-phase induction motor. In the following, we will theoretically explain in detail how instantaneous torque can be derived using the basic equations of an induction motor whose d-q axis coordinates have been transformed, and how instantaneous torque can basically be approximated using the above concept. That is, the basic equations converted to the d-q axis coordinates for the stator of the induction motor with the secondary inductor short-circuited are given by equations (1) and (2). FIG. 3 shows the positional relationship between the dq axes and the a, b, and c phases of the stator winding axes. It is assumed that the q-axis is in the same direction as the a-phase winding axis, and the d-axis is in a phase delayed by 90 degrees from the q-axis.

τ=M/L(3/2)・P・(iqsΦdr−idsΦqr
……(2) ここにVds:固定子d軸電圧、Vqs:固定子q
軸電圧、ids:固定子d軸電流、ids:固定子q
軸電流、Φdr:回転子d軸磁束、Φqr:回転子q
軸磁束、τ:トルク、P:対極数、M:固定子回
転子相互インダクタンス、L1:固定子自己イン
ダクタンス、L2:回転子自己インダクタンス、
r1:固定子巻線抵抗、r2:回転子巻線抵抗、ωr
電動機回転角速度(電気角)、p:微分演算子、
また、d,q軸と各相軸との関係は第3図より(3)
式のように表わされる。
τ=M/L 2 (3/2)・P・(i qs Φ dr −i ds Φ qr )
...(2) Here, V ds : Stator d-axis voltage, V qs : Stator q
Axis voltage, i ds : Stator d-axis current, i ds : Stator q
Axial current, Φ dr : Rotor d-axis magnetic flux, Φ qr : Rotor q
Axial magnetic flux, τ: torque, P: number of counter poles, M: stator-rotor mutual inductance, L 1 : stator self-inductance, L 2 : rotor self-inductance,
r 1 : Stator winding resistance, r 2 : Rotor winding resistance, ω r :
Motor rotation angular velocity (electrical angle), p: differential operator,
Also, the relationship between the d and q axes and each phase axis is shown in Figure 3 (3)
It is expressed as the formula.

ここでfは電圧、電流、磁束、などに相当し、
3相と2相の関係を示している。(1)式の方程式を
(4)式を用いて座標変換すると、各ベクトル間の方
程式は(5),(6)式のようになる。
Here, f corresponds to voltage, current, magnetic flux, etc.
It shows the relationship between three phases and two phases. The equation (1) is
When the coordinates are transformed using equation (4), the equations between each vector become as shown in equations (5) and (6).

V〓=〔r1+Lσp〕I〓+M/LPΦ〓r……(5) P〓Φr〔−r/L+jωr〕〓Φr+r/L
M〓I……(6) ただしLσ=L1−M/L (6)式を5式に代入して磁束〓Φrを求めると(7)式
のようになる。
V〓=[r 1 +Lσp]I〓+M/L 2 PΦ〓 r …(5) P〓Φ r [−r 2 /L 2 +jω r ]〓Φ r +r 2 /L 2
M〓I...(6) However, Lσ=L 1 −M 2 /L 2 When formula (6) is substituted into formula 5 to find magnetic flux 〓Φ r , formula (7) is obtained.

今、誘導電動機の2次時定数T2(=L/r)が一 般に0.5ないし1秒と大きいことに着目すると、
電動機回転角周波数(電気角)ωrが2次時定数
の逆数1/T2(=r/L)より十分大きな場合、(7
) 式は(8)式のように近似され、さらにd軸、q軸成
分は(9)および(10)式のように表わされる。
Now, if we pay attention to the fact that the secondary time constant T 2 (=L 2 /r 2 ) of an induction motor is generally as large as 0.5 to 1 second,
When the motor rotational angular frequency (electrical angle) ω r is sufficiently larger than the reciprocal of the quadratic time constant 1/T 2 (=r 2 /L 2 ), (7
) is approximated as shown in equation (8), and the d-axis and q-axis components are expressed as shown in equations (9) and (10).

Φdr=L/M〓(Vqs −(r1+(M/L2r2+Lσp)ids) ……(9) Φqr=−L/M〓(Vds −(r1+(M/L2r2+Lσp)ids)……(10) さて、電流形インバータで駆動される誘導電動
機にはインバータのスイツチング作用によつて
120度通電矩形波電流が流れる。従つて、転流時
の短い時間を除いて、全く電流が流れていない固
定子巻線が1つ存在しておりa,b,c,a,b
……相巻線と順番になつているはずである。本発
明はこのことを利用してトルクを求めるものであ
る。すなわち、第2図において、今サイリスタの
b相とc相のサイリスタが導通している場合、直
流電流idは固定子巻線b相からc相へ流れてお
り固定子巻線電流はia=0,ib=id,ic=−
dとなつている。この三相固定子電流を(3)式を
用いてd―q軸電流成分を求めると(11)、(12)式のよ
うになりq軸成分の電流は零となる。すなわち、 発生トルクτは(2)式より(11),(12)式の関係を用い
て整理し(10)式を代入すると(13)式のようにな
る。
Φ dr =L 2 /M〓 r (V qs −(r 1 + (M/L 2 ) 2 r 2 +Lσp)ids) ...(9) Φ qr = −L 2 /M〓 r (V ds −( r 1 + (M/L 2 ) 2 r 2 +Lσp)ids)...(10) Now, in an induction motor driven by a current source inverter, due to the switching action of the inverter,
120 degree conduction square wave current flows. Therefore, there is one stator winding in which no current flows except for a short time during commutation, and a, b, c, a, b
...They should be in order with the phase windings. The present invention utilizes this fact to determine torque. That is, in Fig. 2, if the thyristors of phase B and C of the thyristor are conducting, DC current i d flows from the stator winding phase B to c phase, and the stator winding current is i a =0, i b = i d , i c =-
It is written as id . When the d- and q-axis current components of this three-phase stator current are determined using equation (3), the equations (11) and (12) are obtained, and the q-axis component current becomes zero. That is, The generated torque τ is rearranged from equation (2) using the relationship of equations (11) and (12), and by substituting equation (10), it becomes equation (13).

(13)式よりトルクτは導通している2相の端
子電圧からもれインダクタンスと固定子・回転子
抵抗降下を引いたものに直流電流idを掛け回転
角速度ωrで割り極対数倍したものとなる。
From equation (13), the torque τ is obtained by multiplying the terminal voltage of the two conducting phases minus the leakage inductance and stator/rotor resistance drop by the DC current i d , dividing by the rotational angular velocity ω r , and multiplying by the polar logarithm. Become something.

電流形インバータは60゜ごとに転流が行なわれ
る。そして直流電流が流れる固定子の巻線相は
b,c相、b,a相、c,a相、c,b相、a,
b相、a,c相、b,c相…と移相して行き、(11)
式のような関係は保たれなくなるが、第3図の
d,q軸の破線で示すように転流と共にd―q軸
を60゜づつステツプ状に進ませてゆけば(11)式の関
係が保たれる。その場合、トルクを計算するのに
必要なd軸の電圧VdsはVbc,Vba,Vca,Vcb
ab,Vac,Vbc…と変つて行きインバータのス
イツチングに着目した場合、それらの電圧はイン
バータ直流電圧瞬時値と等しいことに気づく。つ
まり、インバータ直流電圧eIdは常時、直流電流
dが漏れている2相の端子電圧と等しくなつて
いることになる。従つて、前記(12)式のeds
(14)式のように表わされトルクτは(15)式の
ようになりスイツチングに関係ない直流電流id
とインバータ直流電圧eIdとで求められることに
なる。
In a current source inverter, commutation is performed every 60°. The winding phases of the stator through which direct current flows are b, c phase, b, a phase, c, a phase, c, b phase, a,
The phase shifts from phase b, phase a, c, phase b, c, etc., (11)
Although the relationship shown in equation (11) is no longer maintained, if the d- and q-axes are advanced in steps of 60 degrees with commutation as shown by the broken lines of the d and q axes in Figure 3, the relationship of equation (11) can be obtained. is maintained. In that case, the d-axis voltages V ds necessary to calculate the torque are V bc , V ba , V ca , V cb ,
When we pay attention to the switching of the inverter by changing to V ab , V ac , V bc . . . , we notice that these voltages are equal to the instantaneous value of the inverter DC voltage. In other words, the inverter DC voltage e Id is always equal to the terminal voltage of the two phases from which the DC current i d is leaking. Therefore, e ds in equation (12) can be expressed as equation (14), and torque τ can be expressed as equation (15) .
and the inverter DC voltage e Id .

τ=P・id/ω(eId −2(r1+(M/L2r2+pLσ)id) …… (15) 実際には、転流時の短い時間eIdにはスパイク
電圧が発生し、また2Lσdtd/dtのスパイク電圧も
発 生する。したがつて、これらのスパイク電圧は転
流コンデンサとの無効電力のやりとりであるから
トルクには関与せず無視すればよいことになる。
そこで漏れインダクタンスLσを無視し、かつイ
ンバータ直流電圧eIdに重畳するスパイク電圧を
除去するため低域フイルタを用いる場合、その時
定数Tは時間遅れの影響がでない程度となる。第
2図は(15)式をもとにして示したトルク検出回
路の構成図である。ここで第4図に第2図の回路
の要部波形を示す。まずaは電動機相電流ia
bはインバータ直流電圧eId、cは直流電流i
a、dはトルク検出器の出力τ、eは(2)式より
厳密に求めた発生トルクτの波形を示す。構成か
ら容易にわかるように、トルク検出器の出力dは
bの直流電圧からスパイク電圧が除去されてお
り、cの直流電流と掛算され回転角度ωrで除し
て求められたもので発生トルクeに非常によく一
致している。上記の結果より瞬時トルクが近似で
きることが理解できる。
τ=P・id/ω r (e Id −2(r 1 +(M/L 2 ) 2 r 2 +pLσ) i d ) ... (15) In reality, during the short time e Id during commutation, A spike voltage is generated, and a spike voltage of 2Lσd td /dt is also generated. Therefore, since these spike voltages are an exchange of reactive power with the commutating capacitor, they do not affect the torque and can be ignored.
Therefore, when the leakage inductance Lσ is ignored and a low-pass filter is used to remove the spike voltage superimposed on the inverter DC voltage e Id , the time constant T is such that there is no effect of time delay. FIG. 2 is a configuration diagram of a torque detection circuit based on equation (15). Here, FIG. 4 shows waveforms of essential parts of the circuit of FIG. 2. First, a is the motor phase current i a ,
b is the inverter DC voltage e Id and c is the DC current i
a and d represent the output τ 0 of the torque detector, and e represents the waveform of the generated torque τ determined strictly from equation (2). As can be easily seen from the configuration, the output d of the torque detector is obtained by removing the spike voltage from the DC voltage at b, multiplying it by the DC current at c, and dividing by the rotation angle ω r to determine the generated torque. It agrees very well with e. It can be seen from the above results that the instantaneous torque can be approximated.

第2図において、インバータ直流電圧17によ
つて検出された直流電圧eIdをスパイク電圧カツ
ト回路18に通してスパイク電圧を除去し、直流
電流検出器19によつて検出された直流電流id
の固定子、回転子による抵抗降下分を減算器21
によつて演算し、乗算器22、除算器24により
それぞれidの乗算、ωrの除算を行い極対数倍し
て最終的に特別判定回路によつて符号が与えられ
トルクτが求められる。回転数はωr≪1/Tでは一 定として除算器は正の値しか演算できないので絶
対値回路23を設けている。
In FIG. 2, the DC voltage e Id detected by the inverter DC voltage 17 is passed through the spike voltage cut circuit 18 to remove the spike voltage, and the DC current i d detected by the DC current detector 19 is
The subtractor 21 calculates the resistance drop caused by the stator and rotor.
The multiplier 22 and the divider 24 respectively multiply by i d and divide by ω r , multiply by the pole logarithm, and finally a special judgment circuit gives a sign to obtain the torque τ. Since the rotation speed is constant when ω r <<1/T 2 and the divider can only calculate positive values, the absolute value circuit 23 is provided.

第5図は上述した原理のトルク検出回路を実際
に回路構成して示したものである。図中、第2図
と同一部分は同一の符号で表わしているので重復
部分の説明は省略する。すなわち、直流電流id
は電流変成器19aによつてコンバータ入力電流
を検出し全波整流回路19bで整流して求められ
る。この直流電流検出回路は通常、インバータ制
御装置26には必ず備えられているものであるか
ら直流電流を検出するのに何ら新たな装置は必要
ない。インバータ直流電圧eIdは抵抗器17aで
分圧した値を差動増幅器で増幅して求められる。
また、スパイク電圧カツト回路18は低域RCフ
イルタ回路で構成され、減算器21はオペアンプ
で実行され、オペアンプの入力抵抗を変えること
によつて第2図の演算回路20の抵抗降下分は引
き算が行われる。回転角速度検出器16は速度発
電機で実現されており、すべり周波数制御を行う
場合には頭初から備えられるものである。又符号
判定回路28は回転角速度検出器の符号によりト
ルクに符号を与えるが簡単な論理回路で実現でき
る。このようにトルク検出装置を実現するのに、
オペアンプ2個と乗算器2個ですむので回路も簡
単に構成できることがわかる。
FIG. 5 shows an actual circuit configuration of the torque detection circuit based on the above-mentioned principle. In the figure, parts that are the same as those in FIG. 2 are indicated by the same reference numerals, so a description of overlapping parts will be omitted. That is, the direct current i d
is determined by detecting the converter input current by the current transformer 19a and rectifying it by the full-wave rectifier circuit 19b. This DC current detection circuit is usually always included in the inverter control device 26, so no new device is required to detect the DC current. The inverter DC voltage e Id is obtained by amplifying the voltage divided by the resistor 17a with a differential amplifier.
The spike voltage cut circuit 18 is composed of a low-frequency RC filter circuit, and the subtracter 21 is implemented by an operational amplifier, and by changing the input resistance of the operational amplifier, the resistance drop of the arithmetic circuit 20 shown in FIG. 2 can be subtracted. It will be done. The rotational angular velocity detector 16 is realized by a velocity generator, and is provided from the beginning when performing slip frequency control. Further, the sign determination circuit 28 gives a sign to the torque based on the sign of the rotational angular velocity detector, and can be realized by a simple logic circuit. In order to realize a torque detection device in this way,
It can be seen that the circuit can be configured easily since it only requires two operational amplifiers and two multipliers.

また、上記の実施例では電流形インバータで駆
動される誘導電動機のトルクを検出する装置につ
て述べたが、電圧形インバータで駆動される誘導
電動機のトルクも同様に求めることができる。す
なわち、インバータのスイツチングに着目し転流
ごとにd―q座標を60度ステツプ状に進ませて考
えればd軸成分の電圧Vdsは常に零となりVqs
一定で2/3eIdとなりトルクは抵抗分降下の部分を 近似すれば(15)式と同一になる。
Further, in the above embodiment, a device for detecting the torque of an induction motor driven by a current source inverter has been described, but the torque of an induction motor driven by a voltage source inverter can be similarly determined. In other words, if we focus on inverter switching and advance the d-q coordinates in 60 degree steps for each commutation, the d-axis component voltage V ds will always be zero, V qs will be constant, 2/3e Id , and the torque will be If we approximate the resistance drop part, it becomes the same as equation (15).

従つて電圧形インバータで駆動される誘導電動
機のトルク検出装置も同様な原理で第6図のよう
に実現することができる。すなわち、第6図は電
圧形インバータで駆動される誘導電動機であり主
回路において第5図の電流形インバータと異なる
点は電圧を平滑する平滑コンデンサ27があるこ
とである。また、検出回路として直流電流を検出
するシヤフト抵抗19c、および主回路と制御回
路を絶縁する絶縁アンプ19dが付加されること
のみである。
Therefore, a torque detection device for an induction motor driven by a voltage source inverter can also be realized using the same principle as shown in FIG. That is, FIG. 6 shows an induction motor driven by a voltage source inverter, and the main circuit differs from the current source inverter shown in FIG. 5 in that it includes a smoothing capacitor 27 for smoothing the voltage. Further, only a shaft resistor 19c for detecting direct current and an isolation amplifier 19d for insulating the main circuit and the control circuit are added as a detection circuit.

従つて本発明によればインバータで駆動される
誘導電動機のトルクを検出する場合に、予じめイ
ンバータ回路に通常備つている検出器、すなわち
直流電流、インバータ直流電圧、回転角度検出器
(すべり周波数制御時)に乗算器2回路を用いる
のみでそれ以外、特に必要とする検出器等もな
く、かつ簡単な回路でインバータ駆動される三相
誘導電動機のトルク検出を行うことができるので
装置が安価となる効果がある。また、本装置で検
出されるトルクは瞬時トルクであるため、制御対
象としても扱うことができ、トルク制御を行なう
場合などにフイードバツク信号として利用できる
効果もある。
Therefore, according to the present invention, when detecting the torque of an induction motor driven by an inverter, it is possible to detect the torque of an induction motor driven by an inverter in advance using the detectors normally provided in the inverter circuit, that is, the DC current, the inverter DC voltage, and the rotation angle detector (slip frequency). The device is inexpensive because only two multiplier circuits are used (during control), no other detectors are required, and the torque of a three-phase induction motor driven by an inverter can be detected with a simple circuit. This has the effect of Furthermore, since the torque detected by this device is an instantaneous torque, it can also be treated as a control target, and has the advantage that it can be used as a feedback signal when performing torque control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトルク検出装置の構成図、第2
図は本発明によるトルク検出装置の構成図、第3
図は本発明の原理を説明するための説明図、第4
図は本発明によるトルク検出装置の出力と各部の
波形を示す波形図、第5図は本発明を電流形イン
バータで駆動する誘導電動機に実施した場合の回
路図、第6図は本発明を電圧形インバータで駆動
する誘導電動機に実施した場合の回路図である。 14……インバータ、15……三相誘導電動
機、16……回転角速度検出器、17……インバ
ータ直流電圧検出器、18……スパイク電圧カツ
ト回路、19……直流電流検出器、20……演算
回路、21……減算器、22……乗算器、23…
…絶対値バイアス回路、24……除算器、28…
…符号判定回路。なお、図中同一符号は同一又は
相当部分を示す。
Figure 1 is a configuration diagram of a conventional torque detection device, Figure 2
The figure is a configuration diagram of the torque detection device according to the present invention,
Figure 4 is an explanatory diagram for explaining the principle of the present invention.
The figure is a waveform diagram showing the output of the torque detecting device according to the present invention and the waveforms of various parts. Figure 5 is a circuit diagram when the present invention is applied to an induction motor driven by a current source inverter. FIG. 2 is a circuit diagram when the present invention is implemented in an induction motor driven by a type inverter. 14... Inverter, 15... Three-phase induction motor, 16... Rotation angular velocity detector, 17... Inverter DC voltage detector, 18... Spike voltage cut circuit, 19... DC current detector, 20... Calculation Circuit, 21... Subtractor, 22... Multiplier, 23...
... Absolute value bias circuit, 24 ... Divider, 28 ...
...Sign determination circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 インバータで駆動される三相誘導電動機のイ
ンバータ直流電圧を検出するインバータ直流電圧
検出器と、前記インバータ直流電圧検出器によつ
て検出されたインバータ直流電圧からスパイク電
圧を除去するスパイク電圧カツト回路と、前記イ
ンバータ直流電流を検出する直流電流検出器と、
電動機の巻線抵抗による電圧降下分を演算する演
算回路と、前記スパイク電圧カツト回路の出力か
ら巻線抵抗による電圧降下分を減ずる減算器と、
前記減算器の出力及び前記直流電流検出器の出力
を乗算する乗算器と、前記三相誘導電動機の回転
角速度を検出する回転角速度検出器と、その回転
角速度検出器の出力が零、あるいは負にならない
ようにした絶対値バイアス回路と、前記乗算器の
出力を前記絶対値バイアス回路の出力で除算して
トルクを検出する除算器と回転角速度の符号を判
定してトルクに符号をつける符号判定回路とを備
えたことを特徴とするインバータ駆動三相誘導電
動機のトルク検出装置。
1. An inverter DC voltage detector that detects the inverter DC voltage of a three-phase induction motor driven by an inverter, and a spike voltage cut circuit that removes spike voltage from the inverter DC voltage detected by the inverter DC voltage detector. , a DC current detector that detects the inverter DC current;
an arithmetic circuit that calculates the voltage drop due to the winding resistance of the motor; a subtracter that subtracts the voltage drop due to the winding resistance from the output of the spike voltage cut circuit;
a multiplier that multiplies the output of the subtracter and the output of the DC current detector; a rotational angular velocity detector that detects the rotational angular velocity of the three-phase induction motor; and an output of the rotational angular velocity detector that is zero or negative. an absolute value bias circuit that detects torque by dividing the output of the multiplier by the output of the absolute value bias circuit, and a sign determination circuit that determines the sign of the rotational angular velocity and assigns a sign to the torque. A torque detection device for an inverter-driven three-phase induction motor, comprising:
JP56091410A 1981-06-11 1981-06-11 Torque detecting device for inverter driven three-phase induction motor Granted JPS57206298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56091410A JPS57206298A (en) 1981-06-11 1981-06-11 Torque detecting device for inverter driven three-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56091410A JPS57206298A (en) 1981-06-11 1981-06-11 Torque detecting device for inverter driven three-phase induction motor

Publications (2)

Publication Number Publication Date
JPS57206298A JPS57206298A (en) 1982-12-17
JPS6243436B2 true JPS6243436B2 (en) 1987-09-14

Family

ID=14025602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56091410A Granted JPS57206298A (en) 1981-06-11 1981-06-11 Torque detecting device for inverter driven three-phase induction motor

Country Status (1)

Country Link
JP (1) JPS57206298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122530A (en) * 1987-11-06 1989-05-15 Mitsubishi Electric Corp Breaking performance deterioration predicting device for vacuum breaker

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153495A (en) * 1983-02-21 1984-09-01 Hitachi Ltd Contoller for ac motor
JPS6028796A (en) * 1983-07-28 1985-02-13 Mitsubishi Electric Corp Controller of induction motor
JPS618640A (en) * 1984-06-22 1986-01-16 Mitsubishi Electric Corp Torque detecting device of alternating current electric motor
FR2953077B1 (en) * 2009-11-26 2013-07-05 Michelin Soc Tech INVERTER FOR DRIVING A SYNCHRONOUS ELECTRIC MOTOR COMPRISING AN INTEGRATED REGULATOR.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122530A (en) * 1987-11-06 1989-05-15 Mitsubishi Electric Corp Breaking performance deterioration predicting device for vacuum breaker

Also Published As

Publication number Publication date
JPS57206298A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
Gabriel et al. Field-oriented control of a standard ac motor using microprocessors
JP3257566B2 (en) PG-less vector control device for induction motor
JP3435975B2 (en) Current control unit of rotating electric machine and control device using the same
US4510430A (en) Vector control method and system for an induction motor
JPS5953796B2 (en) Induction motor control device
JPS6243436B2 (en)
EP0121792A2 (en) Vector control method and system for an induction motor
JP3173022B2 (en) Control device for brushless DC motor
JP2702936B2 (en) Method and apparatus for controlling voltage source inverter
JP2738721B2 (en) Induction motor speed control device
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
KR20200059507A (en) Inverter control apparatus
JP2634959B2 (en) Speed sensorless speed control method
JPH0344509B2 (en)
JPS5838077B2 (en) Control device for commutatorless motor
JPH0572195B2 (en)
JP2914997B2 (en) Inverter control device
JPS6355313B2 (en)
JPH0785672B2 (en) Three-phase synchronous motor speed controller
JP2523504B2 (en) Power converter controller
JPH0570395B2 (en)
JPS6042709B2 (en) induction motor control device
JP3755567B2 (en) Induction motor generated torque calculation device
JPH0413953B2 (en)
KR920011005B1 (en) Nector control method and system for an induction motor