JPS6331939B2 - - Google Patents

Info

Publication number
JPS6331939B2
JPS6331939B2 JP59028518A JP2851884A JPS6331939B2 JP S6331939 B2 JPS6331939 B2 JP S6331939B2 JP 59028518 A JP59028518 A JP 59028518A JP 2851884 A JP2851884 A JP 2851884A JP S6331939 B2 JPS6331939 B2 JP S6331939B2
Authority
JP
Japan
Prior art keywords
layer
polyamic acid
formula
wiring structure
acid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59028518A
Other languages
Japanese (ja)
Other versions
JPS60121740A (en
Inventor
Kazunari Takemoto
Fumio Kataoka
Fusaji Shoji
Mitsuo Nakatani
Ataru Yokono
Tokio Isogai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2851884A priority Critical patent/JPS60121740A/en
Publication of JPS60121740A publication Critical patent/JPS60121740A/en
Publication of JPS6331939B2 publication Critical patent/JPS6331939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は半導体集積回路または混成集積回路の
配線構造体、とくに配線構造が2層以上に及ぶ多
層配線構造体に関するものである。 〔発明の背景〕 半導体集積回路または混成集積回路におけるポ
リイミド樹脂を用いた多層配線構造体は従来、第
1図に示す方法で製造されている。すなわち、必
要な素子が形成された基板1上に所定のパターン
の下部導体層2を周知のフオトエツチング技術に
より形成する。しかる後、ポリアミド酸(ポリイ
ミド前駆体)ワニスを塗布、硬化してポリイミド
樹脂層3とする(第1図a)。次いでポリイミド
樹脂層3上にフオトレジスト4を塗布、乾燥する
(第1図b)。フオトレジスト4は所定のフオトマ
スクを用いて露光、現像、乾燥し、所定のパター
ンを得る(第1図c)。ポリイミド樹脂層3はエ
ツチングにより所定の部分を選択的に除去して、
貫通孔5とし、この部分の下部導体層2を露出さ
せる(第1図d)。さらに不要となつたフオトレ
ジスト4を除去することでポリイミド樹脂層3の
パターンが形成される(第1図e)。上部導体層
6は真空蒸着法などの手段で基板全面に堆積さ
れ、フオトエツチング技術によつて下部導体層2
とポリイミド樹脂層3の貫通孔5の部分で電気的
に接続された所定のパターンに形成される(第1
図f)。かかる従来技術においては、ポリイミド
樹脂層はフオトレジストを用いて間接的にパター
ン化を行わねばならず、上記の如く工数が多いた
めコストが高くなるという問題がある。また、上
記問題点を解決すべく種々検討が行われ、例えば
特開昭54−149754に示される耐熱性感光材料が提
案された。しかしながら、この材料は感度が数千
mj/cm3と低いうえに、現像すると膜が割れやす
く、多層配線構造体を製造するには実用的でなか
つた。一方、感度を改良したポリアミド酸組成物
が感光性耐熱重合体組成物として出願されている
(特願昭54−99421)。しかし、この組成物は現像
時に露光部のパターンが溶出され易く、特に微細
パターンが形成されないという別の問題が生じ、
実用に供するには不十分であつた。 〔発明の目的〕 本発明の目的は、上記した従来技術の種々の問
題点を解決するとともに耐湿信頼性の高い多層配
線構造体を提供するにある。 〔発明の概要〕 上記目的は層間絶縁層を高感度で現像時に変質
しない光もしくは放射線感応性ポリアミド酸組成
物とすることで達成される。 そして、上記の多層配線構造体は、基板上の少
なくとも一部に所定のパターンを有する下部導体
層を形成する第1工程と、該下部導体層上に光ま
たは放射線で反応するポリアミド酸組成物〔A〕
の溶液を塗布し、室温以上120℃以下の温度で乾
燥する第2工程と、該ポリアミド酸組成物を所定
のマスクを用いて露光、次いで現像し、少なくと
も所定の場所に貫通孔を有するポリアミド酸組成
物層を形成する第3工程と、該ポリアミド酸組成
物層を150℃以上500℃以下の温度で加熱硬化して
ポリイミド樹脂層に転化する第4工程と、該ポリ
イミド樹脂層の貫通孔の部分で該下部導体層と電
気的に接続され、かつ該ポリイミド樹脂層上の少
なくともその一部が延在する所定のパターンの上
部導体層を形成する第5工程と、必要に応じて上
記第2工程から第5工程に至る工程を繰り返して
複数層の配線導体層を形成することで多層配線構
造体が製造される。 〔A〕(1) 一般式 (但し、式中R1は3価または4価の有機基、
R2は2価の有機基、Mは水素またはアンモ
ニウムイオン、nは1または2を表わす。)
で示される繰り返し単位を有するポリマと、 (2) 一般式 N3−R3−N3 〔〕 (但し、式中R3は2価または3価の有機基
を表わす。)で示されるビスアジド化合物と、 (3) 分子内に3級炭素に結合した水素を有する
基または2級炭素に結合した水素を有する基
または不飽和結合を有するアミン化合物
〔〕と、 (4) 必要に応じて加える増感剤とから成るポリ
アミド酸組成物。 なお、上記のビスアジド化合物〔〕は前記
〔〕で示される繰り返し単位を有するポリマ100
重量部に対して0.1重量部以上100重量部以下、前
記アミン化合物〔〕は前記〔〕で示される繰
り返し単位を有するポリマ100重量部に対して1
重量部以上400重量部以下の割合で配合されたも
のが好ましい。 本発明の多層配線構造体の製造方法を第2図を
用いて述べる。 必要な素子が作り込まれた基板7上に、導体金
属を真空蒸着法などにより堆積し、周知のフオト
エツチング技術により所定のパターンの下部導体
層8を形成する。次に前記ポリアミド酸組成物
〔A〕の溶液を塗布し、室温以上100℃以下で溶媒
を蒸発させて、ポリアミド酸組成物層9を形成す
る(第2図a)。次に、所定のフオトマスクを用
いて露光、次いで現像し、貫通孔10を形成す
る。しかる後、ポリアミド酸組成物層9を150℃
以上500℃以下の範囲の温度でポリイミド樹脂層
11に転化する(第2図b)。上部導体層12は
真空蒸着法などの手段で基板全面に堆積され、フ
オトエツチング技術によつて下部導体層8とポリ
イミド樹脂層11の貫通孔10の部分で電気的に
接続された所定のパターンに形成される(第2図
c)。 前記組成物〔A〕はポリアミド酸〔〕のカル
ボキシル基とアミン化合物〔〕のアミノ基をイ
オン結合によつて反応させ、これにビスアジド化
合物〔〕を配合したもので、光または放射線照
射時にビスアジドから生じたビスナイトレンが不
飽和結合等と反応することによりポリマを架橋さ
せ、溶媒に不溶化せしめんとするものである。し
たがつて〔A〕はネガ型の画像を与える。 本発明に用いる基板はシリコンウエハ、ガラ
ス、セラミツクなどであり、目的に応じてSiO2
Ta2O5、In2O3などの金属酸化膜を設けることが
できる。 下部導体層および上部導体層は真空蒸着、スパ
ツタリング等の手段で堆積される。導体金属とし
ては主としてAlが用いられるが、Cu、Au、Pt、
Cr、Ti、Mo、W、Ta、Mnなどの金属あるいは
これらの2種以上の合金膜または多重膜であつて
もよい。 本発明に用いるポリアミド酸は繰り返し単位
〔〕のみからなるものであつても良いし、他の
繰り返し単位との共重合体であつてもよい。〔〕
式中、R1、R2はポリイミドとしたときの耐熱性
の面から含芳香族有機基、含複素環有機基が望ま
しいがこれに限定はされない。R1としては
[Field of Application of the Invention] The present invention relates to a wiring structure for a semiconductor integrated circuit or a hybrid integrated circuit, and particularly to a multilayer wiring structure in which the wiring structure has two or more layers. [Background of the Invention] Multilayer wiring structures using polyimide resin in semiconductor integrated circuits or hybrid integrated circuits have conventionally been manufactured by the method shown in FIG. That is, a lower conductor layer 2 having a predetermined pattern is formed on a substrate 1 on which necessary elements are formed by a well-known photoetching technique. Thereafter, a polyamic acid (polyimide precursor) varnish is applied and cured to form a polyimide resin layer 3 (FIG. 1a). Next, a photoresist 4 is applied onto the polyimide resin layer 3 and dried (FIG. 1b). The photoresist 4 is exposed using a predetermined photomask, developed, and dried to obtain a predetermined pattern (FIG. 1c). Predetermined portions of the polyimide resin layer 3 are selectively removed by etching.
A through hole 5 is formed to expose this portion of the lower conductor layer 2 (FIG. 1d). Further, by removing unnecessary photoresist 4, a pattern of polyimide resin layer 3 is formed (FIG. 1e). The upper conductor layer 6 is deposited on the entire surface of the substrate by means such as vacuum evaporation, and the lower conductor layer 2 is deposited by a photo-etching technique.
and are formed in a predetermined pattern electrically connected at the through holes 5 of the polyimide resin layer 3 (first
Figure f). In this conventional technique, the polyimide resin layer must be patterned indirectly using a photoresist, and as mentioned above, there is a problem that the cost is high due to the large number of steps. In addition, various studies have been made to solve the above problems, and for example, a heat-resistant photosensitive material has been proposed as disclosed in Japanese Patent Application Laid-Open No. 149754/1983. However, this material has a low sensitivity of several thousand mj/cm 3 and the film easily cracks when developed, making it impractical for manufacturing multilayer wiring structures. On the other hand, a polyamic acid composition with improved sensitivity has been filed as a photosensitive heat-resistant polymer composition (Japanese Patent Application No. 1983-99421). However, this composition has another problem in that the pattern in the exposed area is easily eluted during development, and particularly fine patterns are not formed.
It was insufficient for practical use. [Object of the Invention] An object of the present invention is to solve the various problems of the prior art described above and to provide a multilayer wiring structure with high moisture resistance and reliability. [Summary of the Invention] The above object is achieved by forming the interlayer insulating layer from a light- or radiation-sensitive polyamic acid composition that has high sensitivity and does not change in quality during development. The above multilayer wiring structure includes a first step of forming a lower conductor layer having a predetermined pattern on at least a portion of the substrate, and a polyamic acid composition that reacts with light or radiation on the lower conductor layer. A]
a second step of applying a solution of and drying at a temperature above room temperature and below 120°C, and exposing the polyamic acid composition using a predetermined mask and then developing it to form a polyamic acid composition having through holes at least at predetermined locations. A third step of forming a composition layer, a fourth step of heating and curing the polyamic acid composition layer at a temperature of 150°C or higher and 500°C or lower to convert it into a polyimide resin layer, and forming a through-hole in the polyimide resin layer. a fifth step of forming an upper conductor layer having a predetermined pattern that is electrically connected to the lower conductor layer at a portion thereof and extending at least a portion of the upper conductor layer on the polyimide resin layer; A multilayer wiring structure is manufactured by repeating the steps from step to fifth step to form a plurality of wiring conductor layers. [A](1) General formula (However, in the formula, R 1 is a trivalent or tetravalent organic group,
R 2 represents a divalent organic group, M represents hydrogen or ammonium ion, and n represents 1 or 2. )
A polymer having a repeating unit represented by (2) a bisazide compound represented by the general formula N 3 −R 3 −N 3 [] (wherein R 3 represents a divalent or trivalent organic group) and (3) an amine compound having a group having hydrogen bonded to a tertiary carbon, a group having hydrogen bonded to a secondary carbon, or an unsaturated bond in the molecule, and (4) an additive added as necessary. A polyamic acid composition comprising a sensitizing agent. In addition, the above bisazide compound [] is a polymer 100 having the repeating unit shown in the above [].
0.1 parts by weight or more and 100 parts by weight or less based on parts by weight, and the amine compound [ ] is 1 part by weight per 100 parts by weight of the polymer having the repeating unit shown in [ ] above.
It is preferable that the amount is blended in a proportion of not less than 400 parts by weight. A method of manufacturing a multilayer wiring structure according to the present invention will be described with reference to FIG. A conductive metal is deposited by vacuum evaporation or the like on the substrate 7 on which the necessary elements are formed, and a lower conductive layer 8 having a predetermined pattern is formed by a well-known photo-etching technique. Next, a solution of the polyamic acid composition [A] is applied, and the solvent is evaporated at a temperature above room temperature and below 100°C to form a polyamic acid composition layer 9 (FIG. 2a). Next, exposure is performed using a predetermined photomask, followed by development to form the through hole 10. After that, the polyamic acid composition layer 9 was heated to 150°C.
It is converted into a polyimide resin layer 11 at a temperature in the range from above to 500° C. (FIG. 2b). The upper conductor layer 12 is deposited on the entire surface of the substrate by means such as vacuum evaporation, and is formed into a predetermined pattern electrically connected to the lower conductor layer 8 at the through-holes 10 of the polyimide resin layer 11 by photo-etching. formed (Fig. 2c). The composition [A] is a product in which the carboxyl group of polyamic acid [] and the amino group of an amine compound [] are reacted through ionic bonding, and a bisazide compound [] is blended with this, and the bisazide is separated from the bisazide when irradiated with light or radiation. The produced bisnitrene reacts with unsaturated bonds and the like to crosslink the polymer and make it insolubilized in the solvent. Therefore, [A] gives a negative type image. The substrate used in the present invention is silicon wafer, glass, ceramic, etc., and depending on the purpose, SiO 2 ,
A metal oxide film such as Ta 2 O 5 or In 2 O 3 can be provided. The lower conductor layer and the upper conductor layer are deposited by vacuum evaporation, sputtering, or the like. Al is mainly used as the conductor metal, but Cu, Au, Pt,
It may be a metal such as Cr, Ti, Mo, W, Ta, Mn, or an alloy film or multiple film of two or more of these metals. The polyamic acid used in the present invention may consist only of repeating units [ ] or may be a copolymer with other repeating units. []
In the formula, R 1 and R 2 are preferably aromatic organic groups or heterocyclic organic groups from the viewpoint of heat resistance when used as polyimide, but are not limited thereto. As R 1

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】 (式中、結合手はポリマ主鎖のカルボニル基との
結合を表わし、カルボキシル基は結合手に対して
オルト位に位置する。)が好ましいが、これらに
限定されない。R2の例としては、
[Formula] (In the formula, the bond represents a bond with the carbonyl group of the polymer main chain, and the carboxyl group is located at the ortho position to the bond.), but is not limited thereto. As an example of R 2 ,

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例により説明する。あらかじ
め下記の如くして第1表No.1、No.2に示すポリア
ミド酸組成物の溶液を得た。 窒素気流下に4,4′−ジアミノジフエニルエー
テル100g(0.5モル)をN−メチル−2−ピロリ
ドン1791gに溶解した。次にこの溶液を氷冷によ
つて約15℃の温度に保ちながら撹拌下にピロメリ
ツト酸二無水物109g(0.5モル)を加えた。加え
終えてからさらに約15℃で3時間反応させて、粘
度60ポイズ(30℃)のポリアミド酸の溶液〔B〕
を得た。 溶液〔B〕20gに2−(N,N−ジメチルアミ
ノ)エチルメタクリレート1.57g、2,6−ジ
(4′−アジドベンザル)−4−メチルシクロヘキサ
ノン0.37gと溶解し、次いで5μm孔のフイルタを
用いて加圧過しポリアミド酸組成物第1表のNo.
1の溶液を得た。 同様にして、窒素気流下、ジアミノジフエニル
エーテル90g(0.45モル)、4,4′−ジアミノジ
フエニルエーテル−3−アルボンアミド11.4g
(0.05モル)をN−メチル−2−ピロリドンとN,
N−ジメチルアセトアミドの同容量比の混合溶媒
1764gに溶解し、この溶液を氷冷によつて約15℃
の温度に保ちながら、撹拌下にピロメリツト酸二
無水物54.5g(0.25モル)、3,3′,4,4′−ベン
ゾフエノンテトラカルボン酸二無水物80.5g
(0.25モル)を加えた。加え終えてから、さらに
約15℃で3時間反応させて粘度55ポイズ(30℃)
ホリアミド酸
The present invention will be explained below with reference to Examples. Solutions of polyamic acid compositions shown in Table 1 No. 1 and No. 2 were obtained in advance in the following manner. 100 g (0.5 mol) of 4,4'-diaminodiphenyl ether was dissolved in 1791 g of N-methyl-2-pyrrolidone under a nitrogen stream. Next, 109 g (0.5 mol) of pyromellitic dianhydride was added to the solution while stirring and maintaining the temperature at about 15° C. by cooling with ice. After the addition was completed, the reaction was continued for 3 hours at about 15°C to form a polyamic acid solution with a viscosity of 60 poise (30°C) [B].
I got it. 1.57 g of 2-(N,N-dimethylamino)ethyl methacrylate and 0.37 g of 2,6-di(4'-azidobenzal)-4-methylcyclohexanone were dissolved in 20 g of solution [B], and then filtered using a 5 μm pore filter. The polyamic acid composition No. 1 in Table 1 was filtered under pressure.
A solution of 1 was obtained. Similarly, under a nitrogen stream, 90 g (0.45 mol) of diaminodiphenyl ether, 11.4 g of 4,4'-diaminodiphenyl ether-3-albonamide
(0.05 mol) with N-methyl-2-pyrrolidone and N,
Mixed solvent of N-dimethylacetamide in the same volume ratio
1764g, and cooled this solution to about 15℃ by ice-cooling.
While stirring at a temperature of
(0.25 mol) was added. After the addition is complete, let the reaction continue for 3 hours at approximately 15°C until the viscosity is 55 poise (30°C).
foliamic acid

【式】 (但し、R4[Formula] (However, R 4 is

【式】と[Formula] and

【式】が1:1、R5[Formula] is 1:1, R 5 is

【式】と[Formula] and

【式】が9:1)の溶 液〔C〕を得た。 溶液〔C〕20gに2−(N,N−ジメチルアミ
ノ)エチルメタクリレート1.57g、2,6−ジ
(4′−アジドベンザル)−4−メチルシクロヘキサ
ノン0.74gを溶解し、次いで5μm孔のフイルタを
用いて加圧過しポリアミド酸組成物第1表No.2
の溶液を得た。 以下同様にして第1表No.3〜No.9に示すポリア
ミド酸組成物の溶液を得た。 実施例 1 第3図に本発明により製造した感熱記録ヘツド
の断面図を示す。グレーズドアルミナ基板13上
にエツチングバリアとして約1000ÅのTa2O5層1
4を設け、スパツタリングにより順次約1000Åの
Cr−Si層15、約1000ÅのCr層16、約2μmの
Al層17を堆積し、OMR−83(東京応化製ネガ
型レジスト)を用いてレジストパターンを得た。
次いでリン酸、硫酸、酢酸、水からなるエツチン
グ液でAl層17を、硝酸第2セリウムアンモニ
ウム水溶液でCr層16を、沸酸、硝酸の混酸で
Cr−Si層15を順次選択エツチングした。しか
る後S−502(東京応化製)でレジストを除去し、
配線幅90μm、配線間隔35μmの第1層配線導体
層を形成する。次に別のマスクを用い上記と同様
にAl、Crをエツチングして一辺が90μmもう一辺
が250μmの矩形のCr−Siのの抵抗体パターンを
得た。抵抗体上にマスクスパツタで順次2μmの
SiO2、3μmのTa2O5を設けて抵抗体保護層18
とする。 ポリイミド層と下地との接着強度を増すため1
%のアルミニウムモノエチルアセトアセテートジ
イソプロピレートの溶液を塗布し、酸素雰囲気中
350℃で熱処理してAlの酸化皮膜を得た。 ポリイミド層19は以下の如くにして形成し
た。第1表No.1の組成物溶液を回転塗布し、80℃
で30分間乾燥した4μm厚の塗膜として、所定の
乳剤マスクを用いて紫外線露光した。次いでN−
メチル−2−ピロリドン4容、エタノール1容か
らなる混液で現像し、エタノールでリンスして直
径50μmの円形の貫通孔20を得た。なお感度は
118mj/cm2でありパターンエツジは鮮明で
A solution [C] having the formula [formula] of 9:1) was obtained. 1.57 g of 2-(N,N-dimethylamino)ethyl methacrylate and 0.74 g of 2,6-di(4'-azidobenzal)-4-methylcyclohexanone were dissolved in 20 g of solution [C], and then filtered using a 5 μm pore filter. Polyamic acid composition No. 2 in Table 1
A solution of was obtained. Thereafter, solutions of polyamic acid compositions shown in Table 1 Nos. 3 to 9 were obtained in the same manner. Example 1 FIG. 3 shows a sectional view of a thermal recording head manufactured according to the present invention. Approximately 1000 Å thick Ta 2 O 5 layer 1 is placed on the glazed alumina substrate 13 as an etching barrier.
4, and sequentially deposit approximately 1000Å by sputtering.
Cr-Si layer 15, about 1000 Å Cr layer 16, about 2 μm thick
An Al layer 17 was deposited, and a resist pattern was obtained using OMR-83 (negative resist manufactured by Tokyo Ohka Co., Ltd.).
Next, the Al layer 17 was coated with an etching solution consisting of phosphoric acid, sulfuric acid, acetic acid, and water, the Cr layer 16 was coated with aqueous ceric ammonium nitrate solution, and the Cr layer 16 was coated with a mixed acid of fluoric acid and nitric acid.
The Cr--Si layer 15 was selectively etched in sequence. After that, remove the resist with S-502 (manufactured by Tokyo Ohka),
A first wiring conductor layer having a wiring width of 90 μm and a wiring interval of 35 μm is formed. Next, using another mask, Al and Cr were etched in the same manner as above to obtain a rectangular Cr--Si resistor pattern with one side of 90 .mu.m and the other side of 250 .mu.m. A 2 μm layer is sequentially applied to the resistor using mask sputtering.
Resistor protection layer 18 with SiO 2 and 3 μm Ta 2 O 5
shall be. To increase the adhesive strength between the polyimide layer and the base layer 1
% aluminum monoethyl acetoacetate diisopropylate in an oxygen atmosphere.
An oxide film of Al was obtained by heat treatment at 350°C. Polyimide layer 19 was formed as follows. The composition solution of Table 1 No. 1 was applied by spin coating at 80°C.
A coating film of 4 μm thickness was dried for 30 minutes and exposed to ultraviolet light using a prescribed emulsion mask. Then N-
It was developed with a mixture of 4 volumes of methyl-2-pyrrolidone and 1 volume of ethanol, and rinsed with ethanol to obtain circular through holes 20 with a diameter of 50 μm. Furthermore, the sensitivity is
It is 118mj/ cm2 and the pattern edges are clear.

【表】【table】

【表】 あつた。次に窒素雰囲気中、350℃で30分間加熱
処理して約2μmのポリイミド層19を形成した。
パターンエツジは熱処理前と同等であつた。次に
再度、塗布、乾燥、露光、現像、加熱処理を繰り
返し合計約4μm層のポリイミド層19を得た。 第2層配線導体は次の如くして形成した。ポリ
イミド層を形成した上記基板を酸素プラズマで処
理し、約500ÅのCr21、約1.2μmのCu22を順次ス
パツタリングで堆積し、フオトレジストの画像を
形成する。しかる後電気メツキによりCu22を約
6μm、Pbを2μm、Snを3μm形成する。次にレジ
ストを除去、Cu、Crを順次エツチングで選択除
去した。メツキされたPbとSnは380℃の熱処理に
より溶融してはんだ23となり第2層配線は完成
する。 得られた多層配線構造体を120℃、2気圧、85
%RHの雰囲気中に放置し耐湿試験を行なつたと
ころ、Al配線は25時間経過後に50%腐食した。 実施例 2〜9 第1表のNo.2〜No.9のポリアミド酸組成物を用
いて実施例1と同様に感熱記録ヘツドの多層配線
構造体を製造した。いずれの実施例においてもポ
リアミド酸の感度およびパターン精度は優れてお
り、容易に感熱記録ヘツドの2層配線構造体を製
造できた。 得られた多層配線構造体の耐湿試験を実施例1
と同様にして行なつた所、実施例1と同様の結果
を得た。 実施例 10 第4図は本発明により製造した半導体集積回路
の断面図を示す。シリコンウエハ24に作り込ま
れたエミツタ25、コレクタ26、ベース27の
各領域から取り出すため、SiO228に開孔部を
設ける。第1層配線導体は約2μmのAl29を真
空蒸着により堆積し、フオトエツチング技術によ
り所定のパターンを得る。ポリイミド層と下地と
の接着強度を上げるためアルミニウムモノエチル
アセトアセテートジイソプロピレートの薄膜を形
成し、酸素中350℃で熱処理する。ポリイミド層
30は第1表No.1のポリアミド酸組成物を用い実
施例1と同様にしてパターン化し、貫通孔31を
得、窒素雰囲気中400℃の熱処理をして形成した。
ポリアミド酸の感度は100mj/cm2であり、パタ
ーン精度は良好であつた。なおポリイミド層30
の膜厚は約4μmであり、貫通孔29は1辺が10μ
mの正方形である。ポリイミド層と第2層配線構
造体との接着強度を上げるため、ポリイミド層を
酸素プラズマで処理する。次に約3μmのAl32
を真空蒸着法で堆積し、フオトエツチング技術に
よりパターン化して第2層配線導体とする。 得られた多層配線構造体の耐湿試験を実施例1
と同様にして行なつた所、実施例1と同様の結果
を得た。 実施例 11〜14 実施例10と同様にして第1表のNo.2、No.6、No.
8、No.9のポリアミド酸組成物を用いて半導体集
積回路を製造した。いずれの場合もポリアミド酸
組成物の感度およびパターン精度は優れており、
容易に2層配線構造体を製造できた。 得られた多層配線構造体の耐湿試験を実施例1
と同様にして行なつた所、実施例1と同様の結果
を得た。 比較例 1 前述した特開昭54−145794による実験結果を比
較例として示す。 実施例で調製した溶液〔B〕20gに2−(N,
N−ジメチルアミノ)エチルメタクリレート1.57
gを溶解し、5μm孔のフイルタを用いて加圧
過した。この組成物(膜厚4μm)用いて実施例
1と同様にして感熱記録ヘツドの2層配線構造体
の製造を試みたが、感度が3200mj/cm2と第1表
No.1〜No.9のいずれのポリアミド酸組成物より低
く、かつ現像して得られたパターンは貫通孔の開
孔部の端からクラツクが入り、多層配線構造体は
製造できなかつた。 比較例 2 熱硬化型ポリアミド酸を用いて感熱記録ヘツド
の2層配線構造体を製造した。この多層配線構造
体を実施例1と同様の耐湿試験を行なつた。この
結果アルミ配線は、15時間で50%腐食した。 以上詳述した如く本発明の多層配線構造体は、
耐湿性が従来品より優れていた。
[Table] Atsuta. Next, heat treatment was performed at 350° C. for 30 minutes in a nitrogen atmosphere to form a polyimide layer 19 with a thickness of about 2 μm.
The pattern edges were the same as before heat treatment. Next, coating, drying, exposure, development, and heat treatment were repeated again to obtain a polyimide layer 19 having a total thickness of approximately 4 μm. The second layer wiring conductor was formed as follows. The substrate on which the polyimide layer is formed is treated with oxygen plasma, and Cr21 of about 500 Å and Cu22 of about 1.2 μm are sequentially deposited by sputtering to form a photoresist image. After that, Cu22 is removed by electroplating.
6 μm thick, 2 μm thick Pb layer, and 3 μm thick Sn layer. Next, the resist was removed, and Cu and Cr were selectively removed by etching. The plated Pb and Sn are melted by heat treatment at 380°C and become solder 23, completing the second layer wiring. The obtained multilayer wiring structure was heated to 120℃, 2 atmospheres, and 85℃.
When a moisture resistance test was performed by leaving it in an atmosphere of %RH, the Al wiring corroded 50% after 25 hours. Examples 2 to 9 Multilayer wiring structures for thermal recording heads were manufactured in the same manner as in Example 1 using the polyamic acid compositions No. 2 to No. 9 in Table 1. In all Examples, the sensitivity and pattern accuracy of polyamic acid were excellent, and the two-layer wiring structure of the thermal recording head could be easily manufactured. A moisture resistance test of the obtained multilayer wiring structure was carried out in Example 1.
The same results as in Example 1 were obtained. Example 10 FIG. 4 shows a cross-sectional view of a semiconductor integrated circuit manufactured according to the present invention. Openings are provided in the SiO 2 28 in order to take out the emitter 25, collector 26, and base 27 formed in the silicon wafer 24. The first layer wiring conductor is formed by depositing Al29 with a thickness of about 2 .mu.m by vacuum evaporation, and a predetermined pattern is obtained by photoetching. In order to increase the adhesive strength between the polyimide layer and the base, a thin film of aluminum monoethyl acetoacetate diisopropylate is formed and heat treated at 350°C in oxygen. The polyimide layer 30 was formed by patterning the polyamic acid composition of Table 1 No. 1 in the same manner as in Example 1 to obtain through holes 31, and heat-treating the layer at 400° C. in a nitrogen atmosphere.
The sensitivity of polyamic acid was 100 mj/cm 2 and the pattern accuracy was good. Note that the polyimide layer 30
The film thickness is approximately 4 μm, and each side of the through hole 29 is 10 μm.
It is a square of m. In order to increase the adhesive strength between the polyimide layer and the second layer wiring structure, the polyimide layer is treated with oxygen plasma. Next, approximately 3μm Al32
is deposited by vacuum evaporation and patterned by photo-etching to form a second layer wiring conductor. A moisture resistance test of the obtained multilayer wiring structure was carried out in Example 1.
The same results as in Example 1 were obtained. Examples 11 to 14 In the same manner as Example 10, No. 2, No. 6, and No. 1 in Table 1 were prepared.
A semiconductor integrated circuit was manufactured using the polyamic acid composition No. 8 and No. 9. In either case, the sensitivity and pattern accuracy of the polyamic acid composition are excellent;
A two-layer wiring structure could be easily manufactured. A moisture resistance test of the obtained multilayer wiring structure was carried out in Example 1.
The same results as in Example 1 were obtained. Comparative Example 1 The experimental results according to the above-mentioned Japanese Patent Application Laid-Open No. 145794/1986 are shown as a comparative example. 2-(N,
N-dimethylamino)ethyl methacrylate 1.57
g was dissolved and filtered under pressure using a 5 μm pore filter. Using this composition (film thickness: 4 μm), an attempt was made to manufacture a two-layer wiring structure for a thermal recording head in the same manner as in Example 1, but the sensitivity was 3200 mj/cm 2 , as shown in Table 1.
It was lower than any of the polyamic acid compositions No. 1 to No. 9, and the pattern obtained by development had cracks from the ends of the openings of the through holes, making it impossible to manufacture a multilayer wiring structure. Comparative Example 2 A two-layer wiring structure for a heat-sensitive recording head was manufactured using thermosetting polyamic acid. This multilayer wiring structure was subjected to the same moisture resistance test as in Example 1. As a result, the aluminum wiring corroded 50% in 15 hours. As detailed above, the multilayer wiring structure of the present invention has
Moisture resistance was superior to conventional products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による多層配線構造体の製造
方法を示す図、第2図は本発明による多層配線構
造体の製造方法を示す図、第3図は本発明による
多層配線構造体の実施例1〜9を示す断面図、第
4図は本発明による多層配線構造体の実施例10〜
14を示す断面図である。 7:基板、8:下部導体層、9:ポリアミド酸
組成物層、10:貫通孔、11:ポリイミド樹脂
層、12:上部導体層。
FIG. 1 is a diagram showing a method for manufacturing a multilayer wiring structure according to the prior art, FIG. 2 is a diagram showing a method for manufacturing a multilayer wiring structure according to the present invention, and FIG. 3 is an example of a multilayer wiring structure according to the present invention. 1 to 9, and FIG. 4 is a cross-sectional view showing Examples 10 to 9 of the multilayer wiring structure according to the present invention.
14. FIG. 7: Substrate, 8: Lower conductor layer, 9: Polyamic acid composition layer, 10: Through hole, 11: Polyimide resin layer, 12: Upper conductor layer.

Claims (1)

【特許請求の範囲】 1 層間絶縁層が、下記〔A〕で示される光もし
くは放射線感応性ポリアミド酸組成物の硬化物か
ら成つていることを特徴とする多層配線構造体。 〔A〕(1) 一般式 (但し、式中R1は3価または4価の有機基、
R2は2価の有機基、Mは水素またはアンモ
ニウムイオン、nは1または2を表わす。)
で示される繰り返し単位を有するポリマと、 (2) 一般式 N3−R3−N3 〔〕 (但し、式中R3は2価または3価の有機基
を表わす。)で示されるビスアジド化合物と、 (3) 分子内に3級炭素に結合した水素を有する
基または2級炭素に結合した水素を有する基
または不飽和結合を有するアミン化合物
〔)と、 (4) 必要に応じて加える増感剤とから成るポリ
アミド酸組成物。
[Scope of Claims] 1. A multilayer wiring structure characterized in that the interlayer insulating layer is made of a cured product of a light- or radiation-sensitive polyamic acid composition shown in [A] below. [A](1) General formula (However, in the formula, R 1 is a trivalent or tetravalent organic group,
R 2 represents a divalent organic group, M represents hydrogen or ammonium ion, and n represents 1 or 2. )
A polymer having a repeating unit represented by (2) a bisazide compound represented by the general formula N 3 −R 3 −N 3 [] (wherein R 3 represents a divalent or trivalent organic group) (3) an amine compound having a group having hydrogen bonded to a tertiary carbon, a group having hydrogen bonded to a secondary carbon, or an unsaturated bond in the molecule; and (4) an additive added as necessary. A polyamic acid composition comprising a sensitizing agent.
JP2851884A 1984-02-20 1984-02-20 Multilayered wiring structure Granted JPS60121740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2851884A JPS60121740A (en) 1984-02-20 1984-02-20 Multilayered wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2851884A JPS60121740A (en) 1984-02-20 1984-02-20 Multilayered wiring structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9233581A Division JPS57208158A (en) 1981-06-17 1981-06-17 Manufacture of multilayer wiring structure

Publications (2)

Publication Number Publication Date
JPS60121740A JPS60121740A (en) 1985-06-29
JPS6331939B2 true JPS6331939B2 (en) 1988-06-27

Family

ID=12250901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2851884A Granted JPS60121740A (en) 1984-02-20 1984-02-20 Multilayered wiring structure

Country Status (1)

Country Link
JP (1) JPS60121740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550700B (en) * 2014-11-26 2022-06-08 Esea As A method and device for discharging particulate material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393697A (en) * 1994-05-06 1995-02-28 Industrial Technology Research Institute Composite bump structure and methods of fabrication
JP4273356B2 (en) * 2007-02-21 2009-06-03 セイコーエプソン株式会社 Manufacturing method of semiconductor device
TWI767436B (en) * 2016-02-26 2022-06-11 日商富士軟片股份有限公司 Manufacturing method of laminated body, manufacturing method of semiconductor element, and manufacturing method of rewiring layer
TWI810158B (en) * 2016-08-01 2023-08-01 日商富士軟片股份有限公司 Photosensitive resin composition, cured film, laminate, method for producing cured film, method for producing laminate, and semiconductor element
WO2018038002A1 (en) * 2016-08-25 2018-03-01 富士フイルム株式会社 Process for producing layered product and process for producing electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559538A (en) * 1978-07-07 1980-01-23 Asahi Chem Ind Co Ltd Heat resistant photoresist composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559538A (en) * 1978-07-07 1980-01-23 Asahi Chem Ind Co Ltd Heat resistant photoresist composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550700B (en) * 2014-11-26 2022-06-08 Esea As A method and device for discharging particulate material

Also Published As

Publication number Publication date
JPS60121740A (en) 1985-06-29

Similar Documents

Publication Publication Date Title
US4347306A (en) Method of manufacturing electronic device having multilayer wiring structure
JP3995253B2 (en) Method for forming photosensitive polyimide pattern and electronic device having the pattern
JPS6331939B2 (en)
JPS6243544B2 (en)
JPH09214141A (en) Wiring construction
JPH1012983A (en) Circuit board, suspension board with circuit and production thereof
WO1997003542A1 (en) Circuit board and method of manufacturing the same
JP2644599B2 (en) Method for manufacturing semiconductor device
JP2625910B2 (en) Manufacturing method of polyimide laminated film
JPH0311003B2 (en)
JPH06181264A (en) Interconnection structure and manufacturing method
JP2514020B2 (en) Wiring board
JPH05214046A (en) Wiring structure
JP3689985B2 (en) Circuit board and manufacturing method thereof
JPH04171607A (en) Manufacture of multilayered wiring structure and said structure
JP2000003037A (en) Wiring structure and its production
JPH06180505A (en) Wiring structure and its production
JPH1012984A (en) Circuit board, suspension board with circuit and production thereof
JP2894565B2 (en) Adhesive heat-resistant coating agent
JPS6138853B2 (en)
JPH07283544A (en) Wiring structure and its manufacturing method
JP2644847B2 (en) Multilayer wiring board and method of manufacturing the same
JP2542033B2 (en) Aromatic polyamide resin and heat-resistant photosensitive material using the same
JPH05275417A (en) Wiring structure and its manufacture
JP2000311962A (en) Semiconductor device circuit member and its manufacture