JPS63315508A - Regulation of silicon nitride powder - Google Patents

Regulation of silicon nitride powder

Info

Publication number
JPS63315508A
JPS63315508A JP62150312A JP15031287A JPS63315508A JP S63315508 A JPS63315508 A JP S63315508A JP 62150312 A JP62150312 A JP 62150312A JP 15031287 A JP15031287 A JP 15031287A JP S63315508 A JPS63315508 A JP S63315508A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
slurry
oxygen
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62150312A
Other languages
Japanese (ja)
Other versions
JPH0513083B2 (en
Inventor
Jinichi Adachi
安達 仁一
Kaichi Imao
香一 今尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62150312A priority Critical patent/JPS63315508A/en
Publication of JPS63315508A publication Critical patent/JPS63315508A/en
Publication of JPH0513083B2 publication Critical patent/JPH0513083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To uniformly incorporate specified quantities of oxygen into silicon nitride powder by grinding silicon nitride raw powder at specified temperatures in the form of an aqueous slurry to increase the oxygen content in the powder. CONSTITUTION:Silicon nitride raw powder is ground in the form of an aqueous slurry while keeping the slurry at 35-100 deg.C to increase the oxygen content in the powder. Through the above process, the oxidation on the powder surface can be more enhanced by wet grinding of the raw powder while keeping the slurry temperature at 35-100 deg.C than by conventional grinding in water at <=35 deg.C, thus specified quantities of oxygen can uniformly be incorporated into the powder by regulation of both slurry temperature and grinding time. The silicon nitride sintered substances obtained using the resultant silicon nitride powder regulated by the above process, are excellent in mechanical strength, wear resistance, oxidation resistance, etc.; therefore, being useful for mechanical parts such as bearings, automobile parts such as turbochargers, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機械的強度と耐熱性、耐熱衝撃性、耐摩耗性
に優れた窒化珪素焼結体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a silicon nitride sintered body having excellent mechanical strength, heat resistance, thermal shock resistance, and wear resistance.

(従来の技術) 窒化珪素焼結体は、機械的強度、耐熱性、耐熱衝撃性、
耐摩耗性などの点に優れているため、近年、ガスタービ
ン部品など高温構造材料として注目されている。しかし
ながら、窒化珪素は焼結性に乏しく単味では焼結しにく
いため、高密度、高強度な焼結体を得ることは、一般に
困難である。
(Conventional technology) Silicon nitride sintered bodies have mechanical strength, heat resistance, thermal shock resistance,
Due to its excellent wear resistance, it has recently attracted attention as a material for high-temperature structures such as gas turbine parts. However, since silicon nitride has poor sinterability and is difficult to sinter alone, it is generally difficult to obtain a sintered body with high density and high strength.

従来の窒化珪素焼結体の製造法としては、珪素を窒化さ
せつつ焼結させるいわゆる反応焼結法と窒化珪素粉末に
MgOなどの焼結助剤を添加してホットプレスする方法
が知られている。しかし、前者の反応焼結法では、はと
んど焼成収縮がないため高密度なものは得られずしたが
って高強度の窒化珪素が得られない欠点があった。また
、後者のホットプレスによる方法では、高密度、高強度
のものは得られるが、製法に伴なう制約から比較的簡単
な形状のものしか製造できず、経済的にも高価になると
いう欠点があった。
Conventional methods for manufacturing silicon nitride sintered bodies include the so-called reaction sintering method in which silicon is sintered while nitriding, and the hot pressing method in which a sintering aid such as MgO is added to silicon nitride powder. There is. However, the former reaction sintering method has the disadvantage that it is difficult to obtain high density silicon nitride because there is almost no sintering shrinkage, and therefore high strength silicon nitride cannot be obtained. In addition, the latter method using hot pressing can produce products with high density and high strength, but due to limitations associated with the manufacturing method, only products with relatively simple shapes can be produced, and the drawback is that it is economically expensive. was there.

これらの製造法の他に、近年、窒化珪素粉末に、YtO
z 、 AlzOs 、MgO,Cent等の焼結助剤
を添加し、成形後、不活性ガス雰囲気下で焼成する方法
が、例えば特公昭5B −49509号公報において開
示されている。これは、焼結助剤が高温でガラス化し液
相焼結反応によって、窒化珪素の焼結を促進させること
をねらったものである。しかし、上記の焼結助剤だけで
はガラス生成の温度が高く、焼結は難しいはずであるが
、元来、原料中に含まれている酸素すなわちSiO□が
、これらの焼結助剤と反応して低融点のガラスを生成す
ることで、焼結を容易にしている。
In addition to these manufacturing methods, in recent years, YtO has been added to silicon nitride powder.
For example, Japanese Patent Publication No. 5B-49509 discloses a method in which a sintering aid such as Z, AlzOs, MgO, Cent, etc. is added, and after molding, firing is performed in an inert gas atmosphere. This is aimed at promoting the sintering of silicon nitride through a liquid phase sintering reaction in which the sintering aid vitrifies at high temperatures. However, using only the above sintering aids, the glass formation temperature is high and sintering should be difficult; however, oxygen originally contained in the raw materials, that is, SiO□, reacts with these sintering aids. This produces a glass with a low melting point, making it easier to sinter.

(発明が解決しようとする問題点) 窒化珪素原料粉末に添加した焼結助剤のはたらきを効果
的にするためには、適当量の酸素、すなわち、5iOz
の存在が重要である。この際、少なすぎても焼結性に影
響し、多すぎても高温強度の低下をまねき、特性を劣化
させる問題点を含んでいる。
(Problems to be Solved by the Invention) In order to make the sintering aid added to the silicon nitride raw material powder effective, an appropriate amount of oxygen, that is, 5 iOz
The existence of is important. In this case, if it is too small, it will affect the sinterability, and if it is too large, it will lead to a decrease in high-temperature strength and deteriorate the properties.

従来は、酸素の量のコントロールを行なう手段がなく、
原料の種類・ロットの変動によって焼結状態が左右され
ることが多かった。
Conventionally, there was no way to control the amount of oxygen,
Sintering conditions were often affected by variations in raw material type and lot.

(問題点を解決するための手段) 本発明の目的は、上述した不具合をなくし、所定の酸素
量を原料粉末中に均一に含有させるよう調整する方法を
提供するものである。
(Means for Solving the Problems) An object of the present invention is to eliminate the above-mentioned problems and provide a method for adjusting a predetermined amount of oxygen to be uniformly contained in a raw material powder.

これまで、窒化珪素焼結体中の酸素を増加させる方法と
して、原料あるいは成形体を仮焼して酸素量を増やすこ
とがおこなわれているが、この場合、酸化される部分が
原料においては仮焼用サヤに入れた原料の上層部、成形
体においては成形体の表面層のみに限られ、内部まで十
分かつ均一に酸化されない不具合があった。
Up until now, the method of increasing the oxygen content in silicon nitride sintered bodies has been to increase the amount of oxygen by calcining the raw material or molded body, but in this case, the oxidized part is in the raw material. In the case of the upper layer of the raw material placed in the baking pod and the molded body, the oxidation is limited to only the surface layer of the molded body, and there is a problem that the inside is not sufficiently and uniformly oxidized.

これに対して、本発明では、原料粉末を湿式粉砕する際
、スラリ一温度を35〜100 ’Cの範囲に保ちつつ
粉砕することで、従来35℃以下の水で粉砕する場合よ
りも、粉末の粒子表面の酸化反応を促進することができ
、スラリ一温度と、粉砕時間とにより、所定の酸素量を
粉体中に均一に含有させることができる。
On the other hand, in the present invention, when wet-pulverizing the raw material powder, the slurry temperature is kept in the range of 35 to 100'C. The oxidation reaction on the surface of the particles can be promoted, and a predetermined amount of oxygen can be uniformly contained in the powder depending on the slurry temperature and the grinding time.

本発明で用いる窒化珪素粉末は、少なくともα相を30
%以上含むことが望ましく、その理由は、α相よりβ相
への転移が強度向上に効果的であるためである。
The silicon nitride powder used in the present invention has at least 30 α phase.
% or more, because the transition from α phase to β phase is effective in improving strength.

湿式粉砕は、窒化珪素粉末単味で行なってもよ(、また
、窒化珪素とAltOy 、YzO:+ 、MgO。
Wet pulverization may be carried out using only silicon nitride powder (also, silicon nitride and AltOy, YzO:+, MgO).

CeO□等の焼結助剤あるいはウィスカーなどの補強材
を混合した状態で行なってもよい。
It may be carried out in a state in which a sintering aid such as CeO□ or a reinforcing material such as whiskers is mixed.

粉砕する際に、スラリーの温度を35〜100℃の範囲
に限定した理由は、35℃以下の場合酸化反応が十分進
行せず酸素量は増加しにくいためであり、100℃まで
としたのは、スラリーが蒸発して粘性が高くなり粉砕効
率が下がるためである。
The reason why the temperature of the slurry was limited to a range of 35 to 100°C during pulverization is that if the temperature is below 35°C, the oxidation reaction does not proceed sufficiently and the amount of oxygen is difficult to increase. This is because the slurry evaporates and becomes more viscous, reducing the grinding efficiency.

る。Ru.

以下、具体的な実施例にて説明する。This will be explained below using specific examples.

実施例1 α層を90重量%以上を含み、平均粒子径が0.7μm
の窒化珪素原料Aと0.5μmの窒化珪素原料Bを各々
40kgに、焼結助剤として平均粒子径が1.8 um
のCe0z 2000 g、 3.2 amのSrCO
3568g、0.5 μIのMg01600gを乾式で
混合した。次に水を加えてスラリー化し、25℃950
℃,100℃の温度に保ち湿式粉砕を行なった。第1図
は本実験で用いた湿式粉砕装置の概略図を示す。
Example 1 Contains 90% by weight or more of α layer and has an average particle size of 0.7 μm
40 kg each of silicon nitride raw material A and 0.5 μm silicon nitride raw material B, and 40 kg of silicon nitride raw material B with an average particle size of 1.8 um as a sintering aid.
Ce0z 2000 g, 3.2 am SrCO
3568 g, 1600 g of 0.5 μI Mg were dry mixed. Next, add water to make a slurry and heat it to 25℃950.
Wet pulverization was carried out while maintaining the temperature at 100°C. FIG. 1 shows a schematic diagram of the wet grinding apparatus used in this experiment.

スラリー1は、粉砕タンク2の底部に取付けられた温度
センサ3によって測温され1.このセンサ3によって、
熱交換器部4とタンク内壁層5を流れろ水の開閉を電磁
弁6で制御している。このことにより、ポンプ7により
循環しているスラリー1は、設定した温度に保たれる。
The temperature of the slurry 1 is measured by a temperature sensor 3 attached to the bottom of the crushing tank 2. With this sensor 3,
A solenoid valve 6 controls opening and closing of the filtrate flowing through the heat exchanger section 4 and tank inner wall layer 5. As a result, the slurry 1 being circulated by the pump 7 is maintained at the set temperature.

すなわち、粉砕タンク2にはスラリー1が玉石8と共に
充填され、撹拌機9により撹拌し、スラリー1はこの粉
砕タンク2中にて湿式粉砕される。粉砕タンク2の底部
に取付けられた温度センサ3は、配管10Aに流れるス
ラリー1の温度を感知し、熱交換器部4とタンク内壁層
5を流れる水の開閉を電磁弁6で制御している。このこ
とにより、粉砕タンク2のスラリー1は、配管10Aか
らポンプ7、熱交換器部4、配管10Bを通り、タンク
2へ戻り、熱交換器部4とタンク内壁層5を流れる水に
より、設定した温度に保たれている。11.12は粉砕
タンク2のタンク内壁N5を流れる水の給水口と排水口
とを示し、13.14は熱交換器部4を流れる水の給水
口と排水口を示す。
That is, a grinding tank 2 is filled with slurry 1 together with cobblestones 8, stirred by a stirrer 9, and slurry 1 is wet-ground in this grinding tank 2. A temperature sensor 3 attached to the bottom of the crushing tank 2 senses the temperature of the slurry 1 flowing into the pipe 10A, and controls opening and closing of the water flowing through the heat exchanger section 4 and the tank inner wall layer 5 using a solenoid valve 6. . As a result, the slurry 1 in the crushing tank 2 returns to the tank 2 from the pipe 10A through the pump 7, the heat exchanger part 4, and the pipe 10B, and is set by the water flowing through the heat exchanger part 4 and the tank inner wall layer 5. It is kept at a certain temperature. Reference numerals 11 and 12 indicate a water supply port and a drain port for water flowing through the tank inner wall N5 of the crushing tank 2, and reference numerals 13 and 14 indicate a water supply port and a drain port for water flowing through the heat exchanger section 4.

第1表に、粉砕時間ごとの各酸素量を示す。この酸素量
は、粉砕終了後スラリーを乾燥し、得られた粉末を化学
分析し、焼結助剤である酸化物中に含有される酸素量を
全酸素量から差し引いた量である。
Table 1 shows the amount of oxygen for each grinding time. This amount of oxygen is determined by drying the slurry after pulverization, chemically analyzing the resulting powder, and subtracting the amount of oxygen contained in the oxide, which is a sintering aid, from the total amount of oxygen.

第1表かられかるように、湿式粉砕をおこなう際、スラ
リ一温度を上げることによって窒化珪素と水との反応が
促進され、粉体表面が時間とともに酸化が進行する。こ
のため、9時間後の粉砕終了時には、原料Aにおいて2
5゛Cで0.87重I%、50℃で2.05重量%、原
料Bにおいて25℃で0.75重量%、50℃で2.8
7重量%と酸素量は増加している。さらに、スラリ一温
度を上げた100℃では、4.75重量%アップの6.
50重1%と、かなり増加し、反応はかなり促進した。
As can be seen from Table 1, when performing wet pulverization, the reaction between silicon nitride and water is promoted by raising the temperature of the slurry, and the oxidation of the powder surface progresses over time. Therefore, at the end of pulverization after 9 hours, 2
0.87% by weight at 5°C, 2.05% by weight at 50°C, 0.75% by weight at 25°C in raw material B, 2.8% by weight at 50°C
The amount of oxygen has increased to 7% by weight. Furthermore, when the slurry temperature was increased to 100°C, the temperature increased by 4.75% by weight.
The amount increased considerably to 50% by weight, and the reaction was considerably accelerated.

以上のことから35〜100℃の温水で湿式粉砕するこ
とが、窒化珪素原料粉末中に明らかに酸素量を増やすこ
とができる効率的な方法であることがわかった。
From the above, it has been found that wet pulverization with hot water of 35 to 100° C. is an efficient method that can clearly increase the amount of oxygen in the silicon nitride raw material powder.

(発明の効果) 本発明の方法を利用すれば、従来35℃以下の水で粉砕
していた時に比較して、窒化珪素原料粉末中に酸素を均
一に増加させることができ、かつ、酸素量のコントロー
ルが確実に行なえるため、焼結に際し焼結助剤のガラス
化温度が安定し、焼結度合のバラツキを軽減できる。
(Effect of the invention) By using the method of the present invention, it is possible to uniformly increase the amount of oxygen in the silicon nitride raw material powder compared to the conventional method of grinding with water at 35°C or lower, and the amount of oxygen can be increased evenly. can be reliably controlled, the vitrification temperature of the sintering aid is stabilized during sintering, and variations in the degree of sintering can be reduced.

本発明によって調整された窒化珪素原料粉末を用いた窒
化珪素焼結体は、機械的強度、耐摩耗性、耐酸化性など
の緒特性に優れているために、ベアリングやパルプなど
の機械部品、ターボチャージャー等の自動車部品などの
構造材料として多くの用途があり、工業上極めて有用で
ある。
The silicon nitride sintered body using the silicon nitride raw material powder prepared according to the present invention has excellent properties such as mechanical strength, wear resistance, and oxidation resistance. It has many uses as a structural material for automobile parts such as turbochargers, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた湿式粉砕装置の構成の
概略を示す一部縦断面図である。 1・・・スラリー     2・・・粉砕タンク3・・
・温度センサ    4・・・熱交換器部5・・・タン
ク内壁N   6・・・電磁弁7・・・ポンプ    
  8・・・玉石9・・・撹拌機      10・・
・・配管IL13・・・給水口    12.14・・
・排水口第1図
FIG. 1 is a partial vertical cross-sectional view schematically showing the configuration of a wet crushing apparatus used in an example of the present invention. 1...Slurry 2...Crushing tank 3...
・Temperature sensor 4... Heat exchanger section 5... Tank inner wall N 6... Solenoid valve 7... Pump
8... Cobblestone 9... Stirrer 10...
...Piping IL13...Water supply port 12.14...
・Drain port diagram 1

Claims (1)

【特許請求の範囲】[Claims] 1、窒化珪素原料粉末に溶媒として水を加えてスラリー
状とし、このスラリーの温度を35〜100℃に保ちつ
つ、粉砕し、粉砕とともに窒化珪素原料粉末中に含有す
る酸素量を増加させることを特徴とする窒化珪素粉末の
調整法。
1. Water is added as a solvent to silicon nitride raw material powder to form a slurry, and the slurry is pulverized while maintaining the temperature of 35 to 100°C, and the amount of oxygen contained in the silicon nitride raw material powder is increased along with the pulverization. Characteristic method for preparing silicon nitride powder.
JP62150312A 1987-06-18 1987-06-18 Regulation of silicon nitride powder Granted JPS63315508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150312A JPS63315508A (en) 1987-06-18 1987-06-18 Regulation of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150312A JPS63315508A (en) 1987-06-18 1987-06-18 Regulation of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS63315508A true JPS63315508A (en) 1988-12-23
JPH0513083B2 JPH0513083B2 (en) 1993-02-19

Family

ID=15494267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150312A Granted JPS63315508A (en) 1987-06-18 1987-06-18 Regulation of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS63315508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055432A (en) * 1990-07-24 1991-10-08 Eaton Corporation Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
WO1992001647A1 (en) * 1990-07-24 1992-02-06 Eaton Corporation Ceramic phase in silicon nitride containing cerium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241813A (en) * 1986-03-28 1987-10-22 Ngk Insulators Ltd Silicon nitride powder and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241813A (en) * 1986-03-28 1987-10-22 Ngk Insulators Ltd Silicon nitride powder and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055432A (en) * 1990-07-24 1991-10-08 Eaton Corporation Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
WO1992001647A1 (en) * 1990-07-24 1992-02-06 Eaton Corporation Ceramic phase in silicon nitride containing cerium
WO1992001651A1 (en) * 1990-07-24 1992-02-06 Eaton Corporation Process for making nitridable silicon material

Also Published As

Publication number Publication date
JPH0513083B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
CN107651965A (en) A kind of silicon nitride ceramic material and preparation method thereof
US4410636A (en) Method of manufacturing a sintered material based on silicon nitride, and material obtained by the method
CN104387073A (en) Method for manufacturing ultrafine high-toughness silicon carbide ceramic material based on reaction sintering technology
CN112645699A (en) Whisker and MAX phase toughened rare earth silicate material and preparation method thereof
Giachello et al. Post-sintering of reaction-bonded silicon nitride
US4191721A (en) Making ceramic articles having a high degree of porosity and crushability characteristics
JPS63315508A (en) Regulation of silicon nitride powder
Pivinskii New refractory concretes and binding systems: Basic trends of development, production, and use of refractories in the 21st century. Part II. Ceramic binders and castables
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
CN107324790A (en) Forsterite-silicon carbide composite ceramic materials and its synthetic method
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPS5825070B2 (en) Manufacturing method for low-shrinkage quartz glass refractories
JPH03247554A (en) Manufacture of al2o3-tic sintered body for cutting tool
JPS62241813A (en) Silicon nitride powder and preparation thereof
JPH07115936B2 (en) Method for manufacturing silicon nitride sintered body
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP2687633B2 (en) Method for producing silicon nitride sintered body
EP0481643B1 (en) Ceramic composition
JPH05117032A (en) Production of silicon nitride sintered compact
JP2671539B2 (en) Method for producing silicon nitride sintered body
CN107311668A (en) MgO‑BaZrO3Composite shell, using and preparation method thereof
JP2577155B2 (en) Silicon nitride sintered body
JPH01226766A (en) Silicon carbide ceramics
JPH04231381A (en) Silicon nitride-silicon carbide composite sintered body and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees