JPS63313410A - Semiconducting composition for power cable - Google Patents

Semiconducting composition for power cable

Info

Publication number
JPS63313410A
JPS63313410A JP15087387A JP15087387A JPS63313410A JP S63313410 A JPS63313410 A JP S63313410A JP 15087387 A JP15087387 A JP 15087387A JP 15087387 A JP15087387 A JP 15087387A JP S63313410 A JPS63313410 A JP S63313410A
Authority
JP
Japan
Prior art keywords
ethylene
ethylene propylene
weight
rubber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15087387A
Other languages
Japanese (ja)
Inventor
Kiyoshi Watanabe
清 渡辺
Hideki Yagyu
柳生 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15087387A priority Critical patent/JPS63313410A/en
Publication of JPS63313410A publication Critical patent/JPS63313410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a semiconducting component to be used for power cables which is improved in water-tree-proof characteristic by adding at least 40 weight of conductive carbon black for 100 weight of specified ethylene propylene rubber or ethylene propylene diene rubber. CONSTITUTION:A semiconducting component is formed by adding conductive carbon black of at least 40pts.wt. to ethylene propylene rubber or ethylene propylene diene rubber of 100pts.wt.; the weight ratio between ethylene and propylene in these rubbers is 90:10 to 50:50, and each constituent shall have the viscosity of 1 to 10 in Mooney viscosity (ML1+4 100 deg.C). If ethylene is contained more than 90% water-tree-proof characteristic is degraded, and if propylene is contained more then 50% elasticity is lost. A semiconducting component to be used for power cables of which water-tree-proof characteristic is improved is thus obtained. Moreover it shows excellent characteristics for the problem of deterioration of conductivity and also for the workability when a common head extruder, a high efficiency machine for working, is used.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、電カケープル用半導電性組成物に関し、よ
り詳細には、電カケープルの高圧導体の外周や絶縁体の
周面に設ける半導電性層に用いて好適な組成物の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductive composition for an electric cable, and more particularly, to a semiconductive composition for use in a semiconductive composition provided on the outer periphery of a high-voltage conductor or the circumferential surface of an insulator of an electric cable. The present invention relates to improvements in compositions suitable for use in sexual layers.

[従来の技術] 一般に、架橋ポリエチレン絶縁等の電カケープルの半導
電層と絶縁体界面との密着性や平滑性は、ケーブルの信
頼性向上の上で重要であり、もし、界面不整が存在する
と局部的に高電界が形成されコロナ放電や浸水時に水ト
リー劣化が生じ、ケーブルの電気的特性が低下する。
[Prior Art] In general, the adhesion and smoothness between the semiconducting layer of an electrical cable such as cross-linked polyethylene insulation and the insulator interface are important for improving the reliability of the cable. A locally high electric field is formed, causing water tree deterioration during corona discharge and flooding, which deteriorates the electrical characteristics of the cable.

この問題に対し、半導電層の製造面と材料面の両面から
の検討がなされ、いわゆるケバ立ちの多い半導電性布テ
ープを巻回することに代えて押出し型半導電層が開発さ
れた。
In response to this problem, studies were conducted from both the manufacturing and material aspects of the semiconductive layer, and an extruded semiconductive layer was developed in place of winding a semiconductive cloth tape that has a lot of fluff.

この場合の押出し型半導電層の材料としては、ポリエチ
レン、エチレン系の共重合体である、エチレン−酢酸ビ
ニル共重合体やエチレン−エチルアクリレート共重合体
、エチレン−メチルメタクリレート共重合体、エチレン
−ブテン−1共重合体、エチレンプロピレンゴム、スチ
レンプロピレンゴム等々がベースポリマーとして添加ま
たはブレンド物として用いられている。
In this case, materials for the extruded semiconductive layer include polyethylene, ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, and ethylene-based copolymer. Butene-1 copolymers, ethylene propylene rubber, styrene propylene rubber, and the like are added as base polymers or used as blends.

このような材料でなる半導電層を有する架橋ポリエチレ
ン絶縁電カケープルは、破壊電圧が大幅に向上する利点
がある。
A crosslinked polyethylene insulating capeple having a semiconducting layer made of such a material has the advantage of significantly improved breakdown voltage.

[発明が解決しようとする問題点] しかしながら、このような従来の電カケープル用半導電
性組成物においては、半導電性布テープを巻回する場合
に比して破壊電圧が大幅に向上する利点があるものの、
ケーブル内に浸水が生じるような厳しい環境条件下では
、長期に亘って課電を行う際に水トリーが多発して破壊
電圧が極端に低下するという問題が生じる。
[Problems to be Solved by the Invention] However, such conventional semiconductive compositions for electrical cables have the advantage that the breakdown voltage is significantly improved compared to the case where semiconductive cloth tape is wound. Although there is
Under severe environmental conditions where water intrudes into the cable, a problem arises in that water treeing occurs frequently and the breakdown voltage drops extremely when power is applied over a long period of time.

そこで、この発明は上述の事情に鑑みなされたもので、
その目的は電カケープルにおける耐水トリー性を向上さ
せた電カケープル用半導電性組成物を提供することにあ
る。
Therefore, this invention was made in view of the above circumstances.
The purpose is to provide a semiconductive composition for an electrical cable that has improved water resistance.

[問題点を解決するための手段および作用]この発明は
、ムーニ粘度(ML   100℃)が1+4 コないし10を有するエチレンとプロピレンの重量比が
90対10ないし50対50である、エチレンプロピレ
ンゴムまたはエチレンプロピレンジエンゴムの100重
量部に対して導電性カーボンブラックを少なくとも40
重量部以上加えてなるように半導電性組成物を形成する
ことによって、耐水トリー性を大幅に向上した電カケー
プル用半導電性組成物が得られる。
[Means and effects for solving the problems] The present invention provides an ethylene propylene rubber having a Mooney viscosity (ML 100°C) of 1+4 to 10 and a weight ratio of ethylene to propylene of 90:10 to 50:50. or at least 40 parts by weight of conductive carbon black per 100 parts by weight of ethylene propylene diene rubber.
By forming a semiconductive composition in which more than one part by weight is added, it is possible to obtain a semiconductive composition for power cables with significantly improved water resistance.

[実 施 例] 押出し型半導電層の材料面から耐水トリー性について検
討したところ、エチレンプロピレンゴムやエチレンプロ
ピレンジエンゴムのように大きなゴム弾力を有するもの
はポリエチレンに代表されるようなゴム弾力を殆ど有ざ
ないポリマーよりも半導電性組成物としたときの耐水ト
リー性に優れることが解った。
[Example] When we investigated the water resistance from the material aspect of extruded semiconductive layers, we found that materials with high rubber elasticity such as ethylene propylene rubber and ethylene propylene diene rubber have a high rubber elasticity such as polyethylene. It was found that the semiconductive composition has better water resistance than a polymer with almost no polymer.

ところが、エチレンプロピレンゴムヤエチレンプロピレ
ンジエンゴムをベースポリマーに用いた場合には、一般
的に半導電性組成物の粘度が極めて大きくなり押出し型
半導電層と架橋ポリエチレン絶縁体の界面の平滑性、密
着性を高めるのに極めて有効なケーブル製造方式である
、「内部半導電層・絶縁体」および「内部半導電層・絶
縁体・外部半導電層」の一括コモンヘッド押出し方式を
採用することができない。
However, when ethylene propylene rubber or ethylene propylene diene rubber is used as the base polymer, the viscosity of the semiconductive composition generally becomes extremely high, resulting in problems with the smoothness of the interface between the extruded semiconductive layer and the crosslinked polyethylene insulator. It is possible to adopt a common head extrusion method for the "inner semiconducting layer/insulator" and "inner semiconducting layer/insulator/outer semiconducting layer", which is an extremely effective cable manufacturing method for improving adhesion. Can not.

このために、別々の押出し機で各層を順に押出すタンデ
ムヘッド押出し方式にせざるを得ないが、この方式では
、各層の表面に押出し機のニップルを通過するときにそ
げと称される傷が入り易く、エチレンプロピレンゴムや
エチレンプロピレンジエンゴムが本来布する耐水トリー
性を有効に発揮させることができない。
For this reason, we have no choice but to use a tandem head extrusion method in which each layer is extruded in sequence using a separate extruder, but with this method, the surface of each layer is scratched when it passes through the nipple of the extruder. Therefore, the water resistance that ethylene propylene rubber and ethylene propylene diene rubber originally have cannot be effectively exhibited.

そこで、エチレンプロピレンゴムの分子量と化学組成(
エチレンとプロピレンの組成比)を鋭意検討したところ
ムーニ粘度(ML   100℃)が1÷4 1ないし10であり、エチレンとプロピレンの組成比が
重量比で90対10ないし50対50の範囲にあるエチ
レンプロピレンゴムやエチレンプロピレンジエンゴムを
ペーストリマーとして用いた半導電性組成物が耐水トリ
ー性に優れ、かつコモンヘッド押出し成形が可能である
ことを見出した。
Therefore, the molecular weight and chemical composition of ethylene propylene rubber (
After careful consideration of the composition ratio of ethylene and propylene, the Mooney viscosity (ML 100°C) was 1÷41 to 10, and the composition ratio of ethylene and propylene was in the range of 90:10 to 50:50 by weight. It has been found that semiconductive compositions using ethylene propylene rubber or ethylene propylene diene rubber as a paste trimer have excellent water resistance and can be molded by common head extrusion.

このエチレンプロピレンゴムやエチレンプロピレンジエ
ンゴムのムーニ粘度(ML   100℃)1+4 が1ないし10としたのは、それが10を越えると半導
電性組成物の粘度が大きくなりコモンヘッド押出し成形
が難しくなるためである。また、それが1以下であると
ゴム弾性を有さなくなるためである。
The Mooney viscosity (ML 100°C) 1+4 of this ethylene propylene rubber and ethylene propylene diene rubber is set to 1 to 10 because if it exceeds 10, the viscosity of the semiconductive composition increases and common head extrusion molding becomes difficult. It's for a reason. Moreover, if it is less than 1, it will not have rubber elasticity.

一方、エチレンとプロピレンの重量比を90対10ない
し50対5・0としたのは、エチレンの比率が90より
更に高くなると耐水トリー性が悪くなり、逆にプロピレ
ンの比率が50より更に高くなるとゴム弾性を失うから
である。
On the other hand, the reason why the weight ratio of ethylene and propylene is set to 90:10 or 50:5.0 is that if the ethylene ratio is higher than 90, the water resistance will deteriorate, and conversely, if the propylene ratio is higher than 50, the water resistance will deteriorate. This is because rubber elasticity is lost.

なお、エチレンプロピレンジエンゴムの場合、ジエン成
分としては、ジシクロペンタン、エチリラルノルボーネ
ン等の汎用非共役ジエンを用いることができる。
In the case of ethylene propylene diene rubber, general-purpose non-conjugated dienes such as dicyclopentane and ethyral norbornene can be used as the diene component.

また、半導電性組成物の粘度を極端に高めない範囲でエ
チレンプロピレンゴムやエチレンプロピレンジエンゴム
にエチレン系のポリマーをブレンドすることも可能であ
る。これらのエチレン系のポリマーとしては、ポリエチ
レン、エチレン−酢酸ビニル共重合体、エチレン−エチ
ルアクリレート共重合体、エチレン−メタルメタクリレ
ート共重合体、エチレン−ブテン−1共重合体等々を挙
げることができる。
Furthermore, it is also possible to blend an ethylene-based polymer with ethylene propylene rubber or ethylene propylene diene rubber within a range that does not excessively increase the viscosity of the semiconductive composition. Examples of these ethylene-based polymers include polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-metal methacrylate copolymer, ethylene-butene-1 copolymer, and the like.

導電性カーボンブラックとしては、アセチレンブラック
、ファーネスブラック、ケッチェンブラック等々を使用
することができる。この場合、これらのカーボンブラッ
クの混和量は、ベースポリマーの100重量部に対して
40重量部未満では導電性が低いので40重量部以上と
している。ただし、ケッチェンブラックは、極めて導電
性が高いので更に混和量を減らすことができる。
As the conductive carbon black, acetylene black, furnace black, Ketjen black, etc. can be used. In this case, the amount of carbon black to be mixed is set to 40 parts by weight or more, since conductivity is low if it is less than 40 parts by weight based on 100 parts by weight of the base polymer. However, since Ketjen black has extremely high conductivity, the amount to be mixed can be further reduced.

また、配合剤としては、老化防止剤、滑剤、プロセスオ
イル等も必要に応じて加えてもよい。老化防止剤しては
、アミン系のN、N’  −ジフェニル−Pフエニレジ
アミン、フェニル−α−ナフチルアミン、N−フェニル
−N′イソプロピル−フェニレンジアミン、ポリ(2,
2,4−トリメチル−1,2−ジヒドロキノリン)等、
フェノール系の2,2′ −メチレンビス(4−メチル
−6−tert−ブチルフェノール)、2.6−シーt
ert−ブチル−4−メチルフェノール、4゜4′チオ
ビス(6−tert−ブチル−3−メチルフェノール)
等、イミダゾール系の2−メルカプトベンゾイミダゾー
ル、2−メルカプトベンゾイミダゾール亜鉛基等、イオ
ウ系のジステアリルーブオージプロピオネート、ジラウ
リルチオプロピオネート、テトラキス(メチル−ドデシ
ルチオプロピオネート)メタン等およびその他のゴム用
として用いられる老化防止剤を単独あるいは組み合せて
使用することができる。
Further, as compounding agents, anti-aging agents, lubricants, process oils, etc. may be added as necessary. As anti-aging agents, amine type N,N'-diphenyl-Pphenylenediamine, phenyl-α-naphthylamine, N-phenyl-N'isopropyl-phenylenediamine, poly(2,
2,4-trimethyl-1,2-dihydroquinoline), etc.
Phenolic 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,6-sheet
ert-butyl-4-methylphenol, 4゜4'thiobis(6-tert-butyl-3-methylphenol)
etc., imidazole-based 2-mercaptobenzimidazole, 2-mercaptobenzimidazole zinc group, etc., sulfur-based distearyluboodipropionate, dilaurylthiopropionate, tetrakis(methyl-dodecylthiopropionate)methane, etc. and other anti-aging agents used for rubber can be used alone or in combination.

このような半導電性組成物は、架橋させてもよく、この
場合の架橋方法としては、ジクミルパーオキサイド、1
−3−ビス−(ティーブチル−パーオキシ−イソプロビ
ル)ベンゼンに代表される有機過酸化物による架橋、電
離性放射線を照射することによる架橋、およびシラノー
ル縮合触媒の存在下で水によって架橋する方法等が適用
できる。
Such a semiconductive composition may be crosslinked, and the crosslinking method in this case includes dicumyl peroxide, 1
-Crosslinking with organic peroxides such as -3-bis-(teabutyl-peroxy-isopropyl)benzene, crosslinking with ionizing radiation, and crosslinking with water in the presence of a silanol condensation catalyst, etc. is applicable.

このような電カケープル用半導電性組成物における効用
を実証するために以下に詳述するような実験を行った。
In order to demonstrate the effectiveness of such a semiconductive composition for power cables, experiments were conducted as detailed below.

即ち、次頁に示す第1表の通りに実施例1〜4と比較例
1〜5の合計9種の試料を各種配合剤り合いで作った。
That is, as shown in Table 1 on the next page, a total of 9 samples of Examples 1 to 4 and Comparative Examples 1 to 5 were prepared with various combinations of ingredients.

(以下余白) 第1表の通りに作られた各種の試料でなる半導電性組成
物を断面積が80mm2の撚線導体上にコモンヘッド押
出し機を用いて内部半導電層、外部半導電層として未架
橋ポリエチレン絶縁層と同時に押出し成形した。このと
きの各層の厚さは、内部および外部半導電層が’1mm
で、未架橋ポリエチレン絶縁層が4mmである。
(Left below) Semiconductive compositions made from various samples prepared as shown in Table 1 were applied onto a stranded conductor with a cross-sectional area of 80 mm2 using a common head extruder to form an inner semiconducting layer and an outer semiconducting layer. It was extruded at the same time as the uncrosslinked polyethylene insulation layer. The thickness of each layer at this time is 1 mm for the inner and outer semiconducting layers.
The uncrosslinked polyethylene insulation layer is 4 mm.

このような押出し加工に引続き加熱架橋を行い架橋ポリ
エチレン絶縁電カケープルを得た。なお、架橋ポリエチ
レンの組成物は、低密度ポリエチレン(密度ρ=0.9
2g/Cm2でMI=1.0)の100重量部にジクミ
ルパーオキシサイドを2.5重1部と酸化防止剤を0.
251量部とを配合したものである。
Following such extrusion processing, heating crosslinking was performed to obtain a crosslinked polyethylene insulating capeple. The composition of crosslinked polyethylene is low density polyethylene (density ρ=0.9
To 100 parts by weight of MI=1.0 at 2g/Cm2, 2.5 parts by weight of dicumyl peroxide and 0.0 parts by weight of an antioxidant.
251 parts by weight.

このようなケーブルの導体内に注水を行い、ケーブルを
浸水させた後、50Hzで15kVの交流電圧を導体と
水電極の間に印加し、そのときの水温を90℃として1
8力月課電し、この課電が終了した後に絶縁体をQ、5
mmの厚さにスパイラルカットし、メチレンブルー水溶
液で煮沸染色した後、顕微鏡で絶縁体と内部半導電層と
の界面に発生した水トリー数を観測した。その結果を第
2表に示す。
After injecting water into the conductor of such a cable to immerse the cable in water, an AC voltage of 15 kV at 50 Hz is applied between the conductor and the water electrode, and the water temperature at that time is 90 ° C.
8 Power is applied monthly, and after this voltage is finished, the insulator is Q, 5
After spiral cutting to a thickness of mm and boiling and staining with a methylene blue aqueous solution, the number of water trees generated at the interface between the insulator and the internal semiconducting layer was observed using a microscope. The results are shown in Table 2.

なお、半導電性組成物の導電性は、ケーブルの外部半導
電層の体積抵抗率を測定したものであり、5X103Ω
・cm以下を合格とした。
The conductivity of the semiconductive composition is determined by measuring the volume resistivity of the external semiconductive layer of the cable, and is 5X103Ω.
- A value of cm or less was considered a pass.

また、半導電性組成物の粘度は、ケーブル押出し時の押
出し機ヘッド圧力で判断し、この圧力が300kCJ/
cm2を越えるものは加工性が悪いと判断した。  (
以下余白) 第2表 第2表より明らかなように実施例1〜4に示す、この発
明に係る半導電性組成物は、いずれの場合も比較例1〜
5に比べて水トリー発生数が大幅に少なく、しかも導電
性やコモンヘッド押出し加工性についても全く問題がな
く良好な結果を示した。
In addition, the viscosity of the semiconductive composition is determined by the extruder head pressure during cable extrusion, and this pressure is 300 kCJ/
Those exceeding cm2 were judged to have poor workability. (
As is clear from Table 2, the semiconductive compositions according to the present invention shown in Examples 1 to 4 are the same as those in Comparative Examples 1 to 4.
Compared to No. 5, the number of water tree occurrences was significantly lower, and there were no problems with conductivity or common head extrusion processability, showing good results.

[発明の効果] 以上の説明で明らかなように、この発明に係る電カケー
プル用半導電性組成物は、従来の問題点をことごとく解
消しており、長期に亘って課電を行う際に水トリーが極
めて少ないので耐水トリー性を向上させた電カケープル
用半導電性組成物を提供することができ、しかも導電性
の悪化の問題や、能率的な加工ができるコモンヘッド押
出し機を用いる際の加工性についても極めて良好である
という顕著な効果がある。
[Effects of the Invention] As is clear from the above explanation, the semiconductive composition for power cables according to the present invention has solved all the conventional problems, and has no problem with water when applying electricity for a long period of time. Since there is very little tree, it is possible to provide a semiconductive composition for electrical cables with improved water resistance, and it also solves the problem of deterioration of conductivity and the problem of efficient processing when using a common head extruder. It also has the remarkable effect of being extremely good in processability.

Claims (1)

【特許請求の範囲】[Claims] ムーニ粘度(ML_1_+_4100℃)が1ないし1
0を有するエチレンとプロピレンの重量比が90対10
ないし50対50である、エチレンプロピレンゴムまた
はエチレンプロピレンジエンゴムの100重量部に対し
て導電性カーボンブラックを少なくとも40重量部以上
加えてなることを特徴とする電力ケーブル用半導電性組
成物。
Mooni viscosity (ML_1_+_4100℃) is 1 to 1
The weight ratio of ethylene and propylene with 0 is 90:10
1. A semiconductive composition for a power cable, characterized in that at least 40 parts by weight or more of conductive carbon black is added to 100 parts by weight of ethylene propylene rubber or ethylene propylene diene rubber in a ratio of 50 to 50.
JP15087387A 1987-06-16 1987-06-16 Semiconducting composition for power cable Pending JPS63313410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15087387A JPS63313410A (en) 1987-06-16 1987-06-16 Semiconducting composition for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15087387A JPS63313410A (en) 1987-06-16 1987-06-16 Semiconducting composition for power cable

Publications (1)

Publication Number Publication Date
JPS63313410A true JPS63313410A (en) 1988-12-21

Family

ID=15506244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15087387A Pending JPS63313410A (en) 1987-06-16 1987-06-16 Semiconducting composition for power cable

Country Status (1)

Country Link
JP (1) JPS63313410A (en)

Similar Documents

Publication Publication Date Title
US3792192A (en) Electrical cable
JPH04106B2 (en)
JPS63313410A (en) Semiconducting composition for power cable
JP2001325834A (en) Dc power cable
JPS6245643B2 (en)
JPH09231839A (en) Direct current cable
JP2921090B2 (en) Semiconductive resin composition
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JPS63146302A (en) Rubber resin insulated power cable
JPH0620530A (en) Water tree resistant cable
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JPS63292505A (en) Semiconductive resin composition
JP2001256832A (en) Composition for electrical insulation and electric wire and cable
JPS6356645B2 (en)
JPH01274307A (en) Conductive composite for power cable
JPS61235444A (en) Semiconductive resin composition
JPH02165506A (en) High-tension cable
JPH03156804A (en) Semiconductor resin composition
JPS6356644B2 (en)
JPS63269408A (en) Rubber plastic power cable
JP2001229732A (en) Semi-conductive resin composite
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPS6355721B2 (en)
JPS5842922B2 (en) Electric field relaxation self-fusing tape and high voltage power cable termination using the tape
JPH0750107A (en) Water-proof tree cable