JPS6356645B2 - - Google Patents

Info

Publication number
JPS6356645B2
JPS6356645B2 JP9551982A JP9551982A JPS6356645B2 JP S6356645 B2 JPS6356645 B2 JP S6356645B2 JP 9551982 A JP9551982 A JP 9551982A JP 9551982 A JP9551982 A JP 9551982A JP S6356645 B2 JPS6356645 B2 JP S6356645B2
Authority
JP
Japan
Prior art keywords
low
weight
density polyethylene
density
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9551982A
Other languages
Japanese (ja)
Other versions
JPS58212007A (en
Inventor
Kyoshi Watanabe
Hideki Yagyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9551982A priority Critical patent/JPS58212007A/en
Publication of JPS58212007A publication Critical patent/JPS58212007A/en
Publication of JPS6356645B2 publication Critical patent/JPS6356645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電力ケーブルの導体外周および/また
は絶縁体外周に設けられる半導電性組成物に関す
るものである。 架橋ポリエチレン絶縁電力ケーブルの半導電性
層と絶縁体界面の平滑性、密着性はケーブルの信
頼性にとつて重要であり、界面不整が存在すると
局部的高電界が形成され、コロナ放電や浸水時に
水トリー劣化が生じ、ケーブルの電気的特性が低
下する。 この問題に対し、従来より半導電性層の製造法
面からと材料面からの検討がなされてきており、
ケバ立ちの多い半導電性布テープに代わつて押出
型半導電性層が開発された。 押出型半導電層の材料をみると、エチレン−酢
酸ビニル共重合体やエチレン−エチルアクリレー
ト共重合体をベースポリマとするもの、エチレン
プロピレンゴムと高密度ポリエチレンの混合物を
ベースポリマとするもの等が従来より知られてい
る。 特に、エチレンプロピレンゴムと高密度ポリエ
チレンの混合物をベースポリマとする半導電性組
成物は、内部半導電性層押出機と絶縁体押出機を
直列に配列して電力ケーブルをタンデム製造する
場合、内部半導電層の損傷や変形を受けにくく、
また絶縁体と類似構造のポリマを用いているため
界面の平滑性および密着性が良いといつた特徴を
有している。 このような半導電性層を有する架橋ポリエチレ
ン絶縁電力ケーブルは破壊電圧が大幅に向上する
ものであるが、ケーブル内に浸水が起きるような
厳しい劣化条件下で長期課電を行うと水トリーが
多発し、破壊電圧が低下するという問題がある。 本発明は上記した従来技術の問題点を解消する
もので、電力ケーブルの耐水トリー性を向上でき
る半導電性組成物の提供を目的とするものであ
る。 すなわち、本発明の半導電性組成物は、中低圧
重合法低密度ポリエチレン(密度0.915〜0.930
g/cm3)の混合割合が20〜50重量%であるエチレ
ンプロピレンゴムと中低圧重合法低密度ポリエチ
レンの混合物100重量部に導電性付与材を40重量
部以上配合して構成したことを特徴とするもので
ある。 本発明者は、耐水トリー性向上について種々検
討した結果、エチレンプロピレンゴムへの混合物
として中低圧重合法低密度ポリエチレンを使用し
たとき、所望の目的を達成するという実験結果を
得、本発明に到つた。 中低圧重合法低密度ポリエチレンは、従来の低
密度ポリエチレンと異なり、長鎖分岐がなく、直
鎖状の分子構造をもつエチレン−αオレフイン共
重合体である。このαオレフインには炭素数4以
上のもの、例えばブテン−1、4−メチルペテン
−1、ヘキセン−1、オクテン−1等が用いられ
る。分子形状から推定されるように、中低圧重合
法低密度ポリエチレンは高密度ポリエチレンとほ
とんど同じ物性を示すが、その密度は高密度ポリ
エチレンと高次構造が若干異なるため、従来の低
密度ポリエチレン並である。 勿論、密度はαオレフインの量を変えることに
より高くすることができるが、密度を高くすると
耐水トリー性は高密度ポリエチレンを用いた時と
同様となり、最適密度は0.915〜0.930g/cm3であ
る。混合物100重量部に占める中低圧重合法低密
度ポリエチレンの混合割合は20〜50重量%とする
必要があり、20重量%未満では十分な機械的強度
を得られなく、外周に絶縁体を押出被覆する場合
に半導電性層に損傷や変形が生じやすくなる。50
重量%を越えると、耐水トリー性が悪くなる。 上記混合物に導電性を付与するための導電性付
与材の代表的なものとしてチヤンネルブラツク、
フアーネスブラツク、アセチレンブラツク等のカ
ーボンブラツクがある。混合物100重量部に対し
て導電性付与剤を40重量部以上加える必要があ
り、40重量部以下では目的とする導電性が得られ
ない。 かくして得られた半導電性組成物の調整は従来
組成物の調整に準じて、老化防止剤、加工助剤等
必要な添加剤を混合することによつてなされる。 以下、本発明の実施例を比較例と共に説明す
る。各種成分を第1表に示すように配合して得た
半導電性組成物を、断面積150mm2の撚線銅導体上
に押出被覆して内部半導電性層を形成し、続いて
低密度ポリエチレン(密度0.920g/cm3、MI1.0)
100重量部、ジクミルパーオキサイド2.5重量部お
よび酸化防止剤0.25重量部を配合してなる絶縁体
組成物を押出被覆して未架橋絶縁体層を形成し、
この外周に内部半導電性と同じ組成の半導電性層
を押出被覆して外部半導電性層を形成し、ひき続
き加熱架橋を行なつて架橋ポリエチレン絶縁電力
ケーブルを得た。 このケーブルの導体内に注入を行ない、ケーブ
ルを浸水させた後50Hz、15kV交流電圧を導体と
水電極間に印加した。なお、水温は90℃とし、課
電日数を18か月とした。 課電終了後、絶縁体を0.5mm厚にスパイラルカ
ツトし、メチレンブルー水溶液で煮沸染色したの
ち、顕微鏡で絶縁体と内部半導電性層の界面に発
生した水トリー数を観測した。その結果を第1表
の下欄に示す。
The present invention relates to a semiconductive composition provided on the outer periphery of a conductor and/or the outer periphery of an insulator of a power cable. The smoothness and adhesion of the interface between the semiconducting layer and the insulator in cross-linked polyethylene insulated power cables are important for the reliability of the cable, and the presence of interfacial irregularities can lead to the formation of localized high electric fields, which can lead to corona discharge or flooding. Water tree deterioration occurs and the electrical properties of the cable deteriorate. To address this problem, studies have been conducted from the viewpoint of manufacturing methods and materials for semiconductive layers.
An extruded semiconductive layer has been developed to replace the fluffy semiconductive cloth tape. Looking at the materials for extruded semiconductive layers, there are those that use ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer as the base polymer, and those that use a mixture of ethylene propylene rubber and high-density polyethylene as the base polymer. Traditionally known. In particular, semiconducting compositions based on a mixture of ethylene propylene rubber and high-density polyethylene can be The semiconducting layer is less susceptible to damage and deformation.
Additionally, since it uses a polymer with a structure similar to that of an insulator, it has features such as good interface smoothness and adhesion. Cross-linked polyethylene insulated power cables with such a semiconductive layer have significantly improved breakdown voltage, but water trees occur frequently when energized for a long period of time under severe deterioration conditions such as water seepage inside the cable. However, there is a problem that the breakdown voltage decreases. The present invention solves the problems of the prior art described above, and aims to provide a semiconductive composition that can improve the water resistance of power cables. That is, the semiconductive composition of the present invention is made of low-density polyethylene (density 0.915 to 0.930) produced by medium-low pressure polymerization.
g/cm 3 ) at a mixing ratio of 20 to 50% by weight, consisting of 100 parts by weight of a mixture of ethylene propylene rubber and medium-low pressure polymerized low-density polyethylene, and 40 parts by weight or more of a conductivity imparting material. That is. As a result of various studies on improving water resistance, the present inventor obtained experimental results showing that the desired objective can be achieved when medium-low pressure polymerized low-density polyethylene is used as a mixture in ethylene propylene rubber, and the present inventor has arrived at the present invention. Ivy. Low-density polyethylene produced by medium-low pressure polymerization is an ethylene-α-olefin copolymer with no long chain branching and a linear molecular structure, unlike conventional low-density polyethylene. As the α-olefin, those having 4 or more carbon atoms, such as butene-1, 4-methylpetene-1, hexene-1, octene-1, etc., are used. As estimated from the molecular shape, medium-low pressure polymerized low-density polyethylene exhibits almost the same physical properties as high-density polyethylene, but its density is slightly different from that of high-density polyethylene, so its density is comparable to that of conventional low-density polyethylene. be. Of course, the density can be increased by changing the amount of α-olefin, but when the density is increased, the water resistance becomes similar to that when using high-density polyethylene, and the optimal density is 0.915 to 0.930 g/cm 3 . The mixing ratio of medium-low pressure polymerized low-density polyethylene to 100 parts by weight of the mixture must be 20 to 50% by weight; if it is less than 20% by weight, sufficient mechanical strength cannot be obtained, so an insulator is extruded around the outer periphery. In this case, the semiconductive layer is likely to be damaged or deformed. 50
If the weight percentage is exceeded, water resistance will deteriorate. Representative examples of conductivity-imparting materials for imparting conductivity to the above mixture include channel black,
There are carbon blacks such as furnace black and acetylene black. It is necessary to add 40 parts by weight or more of the conductivity imparting agent to 100 parts by weight of the mixture; if it is less than 40 parts by weight, the desired conductivity cannot be obtained. The semiconductive composition thus obtained is prepared in the same manner as conventional compositions by mixing necessary additives such as anti-aging agents and processing aids. Examples of the present invention will be described below along with comparative examples. A semiconductive composition obtained by blending various components as shown in Table 1 is extrusion coated onto a stranded copper conductor having a cross-sectional area of 150 mm2 to form an internal semiconductive layer, followed by a low density coating. Polyethylene (density 0.920g/cm 3 , MI1.0)
100 parts by weight of dicumyl peroxide, 2.5 parts by weight of dicumyl peroxide, and 0.25 parts by weight of an antioxidant are extrusion coated to form an uncrosslinked insulating layer;
A semiconductive layer having the same composition as the internal semiconductive layer was extrusion coated on the outer periphery to form an external semiconductive layer, and then thermal crosslinking was performed to obtain a crosslinked polyethylene insulated power cable. After injecting water into the conductor of this cable and submerging the cable in water, a 50Hz, 15kV AC voltage was applied between the conductor and the water electrode. The water temperature was 90°C, and the number of days on which electricity was applied was 18 months. After applying the voltage, the insulator was spirally cut to a thickness of 0.5 mm, boiled and stained with a methylene blue aqueous solution, and the number of water trees generated at the interface between the insulator and the internal semiconductive layer was observed using a microscope. The results are shown in the lower column of Table 1.

【表】 第1表からわかる通り、中低圧重合法低密度ポ
リエチレンを使用した場合は高密度ポリエチレン
を使用した場合よりも著しく水トリー発生数が減
少している。ただエチレンプロピレンゴムに対す
る中低圧重合法低密度ポリエチレンの配合割合が
本発明の範囲外であるとき(比較例3)、あるい
は中低圧重合法低密度ポリエチレンの密度が本発
明の範囲外であるとき(比較例2)は、著しい効
果が見られない。 中低圧重合法低密度ポリエチレンを用いた半導
電性層の耐水トリー性が優れる理由については、
まだ解明されていないが、密度が低い分だけ樹脂
が柔軟になり、エチレンプロピレンゴムとの親和
性が高くなることによると推定される。 以上説明してきた通り、本発明によれば十分な
機械的強度を有し、しかも耐水トリー性に優れた
電力ケーブル用半導電性組成物が得られることに
なる。
[Table] As can be seen from Table 1, when low-density polyethylene produced by medium-low pressure polymerization is used, the number of water trees generated is significantly lower than when high-density polyethylene is used. However, when the blending ratio of low density polyethylene produced by medium and low pressure polymerization to ethylene propylene rubber is outside the scope of the present invention (Comparative Example 3), or when the density of low density polyethylene produced by medium and low pressure polymerization is outside the range of the present invention ( Comparative Example 2) shows no significant effect. Regarding the reason why the semiconductive layer using medium-low pressure polymerized low-density polyethylene has excellent water resistance,
Although it is not yet clear, it is assumed that this is because the resin becomes more flexible due to its lower density, increasing its affinity with ethylene propylene rubber. As explained above, according to the present invention, a semiconductive composition for power cables having sufficient mechanical strength and excellent water tree resistance can be obtained.

Claims (1)

【特許請求の範囲】 1 エチレンプロピレンゴムに密度0.915〜0.930
g/cm3の中低圧重合法低密度ポリエチレンを混合
してなり、中低圧重合法低密度ポリエチレンの混
合割合が20〜50重量%である混合物100重量部に
導電性付与材を40重量部以上配合してなることを
特徴とする電力ケーブル用半導電性組成物。 2 上記導電性付与材はカーボンブラツクである
特許請求の範囲第1項記載の電力ケーブル用半導
電性組成物。
[Claims] 1 Ethylene propylene rubber with a density of 0.915 to 0.930
40 parts by weight or more of a conductivity-imparting material in 100 parts by weight of a mixture of 20 to 50% by weight of low-density polyethylene produced by medium-low-pressure polymerization (g/cm 3 ), in which the mixture ratio of low-density polyethylene produced by medium-low-pressure polymerization is 20 to 50% by weight. 1. A semiconductive composition for power cables, which is characterized in that it is made by blending. 2. The semiconductive composition for power cables according to claim 1, wherein the conductivity imparting material is carbon black.
JP9551982A 1982-06-03 1982-06-03 Semiconductive composition for power cable Granted JPS58212007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9551982A JPS58212007A (en) 1982-06-03 1982-06-03 Semiconductive composition for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9551982A JPS58212007A (en) 1982-06-03 1982-06-03 Semiconductive composition for power cable

Publications (2)

Publication Number Publication Date
JPS58212007A JPS58212007A (en) 1983-12-09
JPS6356645B2 true JPS6356645B2 (en) 1988-11-09

Family

ID=14139809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9551982A Granted JPS58212007A (en) 1982-06-03 1982-06-03 Semiconductive composition for power cable

Country Status (1)

Country Link
JP (1) JPS58212007A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246707A (en) * 1988-03-29 1989-10-02 Hitachi Cable Ltd Semiconductive resin composition
JP4399077B2 (en) 1999-06-09 2010-01-13 日本ユニカー株式会社 Adhesive semiconductive resin composition for semiconductive layer inside water-crosslinked polyethylene insulated power cable

Also Published As

Publication number Publication date
JPS58212007A (en) 1983-12-09

Similar Documents

Publication Publication Date Title
US3684821A (en) High voltage insulated electric cable having outer semiconductive layer
US4933107A (en) Easily peelable semiconductive resin composition
US3100136A (en) Method of making polyethylene-insulated power cables
JPH04106B2 (en)
JPS6356645B2 (en)
JPS598216A (en) Polyolefin insulated power cable with semiconductive layer
JPS6245643B2 (en)
JP2001266650A (en) Electric insulating composition and electric cable
JPH09231839A (en) Direct current cable
JP2563531B2 (en) Power cable
JPH03276515A (en) Water-tree resisting electric wire and cable
JPS58201204A (en) Power cable
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPH03122908A (en) Electrically insulated cable
JPS58220304A (en) Electrically insulating composition and wire, cable coated with same composition
JPH02165506A (en) High-tension cable
JPS6356644B2 (en)
JP2871011B2 (en) Power cable
JPH0750107A (en) Water-proof tree cable
JPH035004B2 (en)
JPS586241B2 (en) plastic insulated wire
JPS63313410A (en) Semiconducting composition for power cable
JPH01267904A (en) Extruded type semiconductive resin compound for electric power cable
JPS6355721B2 (en)
JPS63292505A (en) Semiconductive resin composition