JPS6245643B2 - - Google Patents

Info

Publication number
JPS6245643B2
JPS6245643B2 JP57208175A JP20817582A JPS6245643B2 JP S6245643 B2 JPS6245643 B2 JP S6245643B2 JP 57208175 A JP57208175 A JP 57208175A JP 20817582 A JP20817582 A JP 20817582A JP S6245643 B2 JPS6245643 B2 JP S6245643B2
Authority
JP
Japan
Prior art keywords
semiconductive
water
ethylene
polymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57208175A
Other languages
Japanese (ja)
Other versions
JPS5998403A (en
Inventor
Hideki Yagyu
Kyoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP20817582A priority Critical patent/JPS5998403A/en
Publication of JPS5998403A publication Critical patent/JPS5998403A/en
Publication of JPS6245643B2 publication Critical patent/JPS6245643B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電力ケーブルの導体外周や絶縁体外
周の半導電層の形成に好適な半導電性組成物に関
するものである。 架橋ポリエチレン絶縁電力ケーブルにおける半
導電層と絶縁体界面の平滑性、密着性はケーブル
の信頼性向上の観点から重要である。界面不整が
存在すると局部的に高電界が形成され、コロナ放
電や浸水時に水トリー劣化が生じ易く、ケーブル
の電気的特性が低下する。 この問題に対し、従来より半導電層の製造面と
材料面からの検討がなされており、ケバ立ちの多
い半導電性布テープに代えて押出型半導電層が開
発されるに至つた。押出型半導電層の材料として
は、極性を有するエチレン―酢酸ビニル共重合体
やエチレン―エチルアクリレート共重合体をベー
スポリマとしたもの、非極性のエチレンプロピレ
ンゴム、ポリエチレンをベースポリマとしたも
の、あるいはこれらのブレンドをベースポリマと
したものが用いられている。このような半導電層
を有する架橋ポリエチレン絶縁電力ケーブルは、
破壊電圧が大幅に向上するが、ケーブル内に浸水
が起きるような厳しい条件下では、長期課電を行
うと水トリーが多発し、破壊電圧が低下するとい
う問題を生ずる。 本発明は、上記した問題点を解決するためにな
されたもので、電力ケーブルの耐水トリー性を向
上することができる半導電性組成物の提供を目的
とするものである。 本発明の半導電性組成物は、融点120℃以上の
結晶性エチレン系ポリマとエチレン―ブテン―
1,4―ヘキサジエン共重合エラストマのブレン
ドポリマに対して導電性付与材を加えてなること
を特徴とするものである。 本発明において、結晶性エチレン系ポリマとし
ては、ポリエチレン、ポリプロピレン、ポリブテ
ン―1、ポリヘキセン―1、ポリオクテン―1、
ポリ―4―メチルペンテン―1などのホモポリ
マ、およびこれらとエチレンとの共重合体などが
あげられが、中でも、ポリエチレン、ポリプロピ
レンが好適である。 かかる結晶性エチレン系ポリマにエチレン―ブ
テン―1,4―ヘキサジエン共重合体エラストマ
をブレンドすることにより顕著な耐水トリー性が
発揮されることが見出された。なお、ブレンドポ
リマにおける結晶性エチレン系ポリマの含有比率
が50重量%以上であることが水トリー抑止効果の
点から好ましい。 導電性付与材としては、アセチレンブラツク、
フアーネスブラツク等の導電性カーボンブラツク
が適切である。導電性付与材の添加量は、ブレン
ドポリマ100重量部に対して40重量部以上とする
のが好ましい。 本発明においては、上記の成分に加えて、老化
防止剤、滑剤、分散剤等も必要に応じて配合して
もよい。老化防止剤としては、アミン系のN,
N′―ジフエニル―P―フエニレンジアミン、フ
エニル―α―ナフチルアミン、N―フエニル―
N′―イソプロピル―フエニレンジアミン、ポリ
(2,2―4―トリメチル―1,2―ジヒドロキ
ノリン)など、フエノール系の2,2′メチレンビ
ス(4―メチル―6―tert―ブチルフエノー
ル)、2,6―ジ―tert―ブチル―4―メチルフ
エノール、4,4′―チオビス(6―tert―ブチル
―3―メチルフエノール)など、イミダゾール系
の2―メルカプトベンゾイミダゾール、2―メル
カプトベンゾイミダゾールの亜鉛塩など、イオウ
系のジステアリル―チオ―ジプロピオネート、ジ
ラウリルチオプロピオネート、テトラキス(メチ
ル―ドデシルチオプロピオネート)メタンなどが
あげられ、その他ゴム用の老化防止剤を単独ある
いは組み合わせて使用することができる。 上記した各種成分を含む半導電性組成物は、所
定形状に成形後架橋してもよく、架橋方法として
はパーオキサイドやイオウを用いた架橋、電子線
照射による架橋、シラングラフト水架橋といつた
ものがあげられる。 以下、本発明の実施例を比較例と対比して説明
する。 第1表の各例に示す配合の半導電性組成物を断
面積80mm2の銅撚線導体上に押出被覆して厚さ1mm
の内部半導電層を形成し、この外周に、低密度ポ
リエチレン(密度0.920g/cm3、メルトインデツ
クス1.0)100重量部、ジクミルパーオキサイド
2.5重量部、酸化防止剤0.25重量部を配合してな
る絶縁体組成物を押出被覆して厚さ4mmの絶縁体
層を形成した。続いてこの絶縁体層の外周に上記
内部半導電層と同じ組成の半導電性組成物を押出
被覆して厚さ1mmの外部半導電層を形成し、加熱
架橋を行つて架橋ポリエチレン絶縁電力ケーブル
を製造した。 上記のようにして製造した電力ケーブルの導体
内に注水を行い、浸水させた後50Hz,15kVの交
流電圧を導体と水電極間に印加し、水温を90℃と
して18カ月課電し、課電終了後絶縁体を0.5mm厚
さにスパイラルカツトし、メチレンブルー水溶液
で煮沸染色した後、顕微鏡で絶縁体と内部半導電
層との界面に発生した水トリー数を観察した。そ
の結果を第1表の下欄に示した。
The present invention relates to a semiconductive composition suitable for forming a semiconductive layer around the conductor or insulator of a power cable. The smoothness and adhesion of the interface between the semiconducting layer and the insulator in cross-linked polyethylene insulated power cables are important from the perspective of improving cable reliability. When interface irregularities exist, a high electric field is locally formed, which tends to cause water tree deterioration during corona discharge or water immersion, and deteriorates the electrical characteristics of the cable. To address this problem, studies have been made from the aspects of manufacturing and materials for semiconducting layers, and extruded semiconducting layers have been developed in place of semiconductive cloth tapes, which tend to have a lot of fuzz. Materials for the extruded semiconductive layer include those using polar ethylene-vinyl acetate copolymer or ethylene-ethyl acrylate copolymer as the base polymer, non-polar ethylene propylene rubber, polyethylene as the base polymer, Alternatively, a blend of these as a base polymer is used. A cross-linked polyethylene insulated power cable with such a semiconducting layer is
Although the breakdown voltage is significantly improved, under severe conditions such as water seepage inside the cable, water treeing occurs frequently when electricity is applied for a long period of time, resulting in a decrease in the breakdown voltage. The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a semiconductive composition that can improve the water resistance of power cables. The semiconductive composition of the present invention comprises a crystalline ethylene polymer with a melting point of 120°C or higher and ethylene-butene-
It is characterized by adding a conductivity imparting material to a blend polymer of 1,4-hexadiene copolymerized elastomer. In the present invention, the crystalline ethylene polymers include polyethylene, polypropylene, polybutene-1, polyhexene-1, polyoctene-1,
Examples include homopolymers such as poly-4-methylpentene-1 and copolymers of these with ethylene, among which polyethylene and polypropylene are preferred. It has been found that remarkable water resistance can be exhibited by blending an ethylene-butene-1,4-hexadiene copolymer elastomer with such a crystalline ethylene-based polymer. Note that it is preferable that the content ratio of the crystalline ethylene polymer in the blend polymer is 50% by weight or more from the viewpoint of water tree suppression effect. As the conductivity imparting material, acetylene black,
Conductive carbon blacks, such as furnace blacks, are suitable. The amount of the conductivity imparting material added is preferably 40 parts by weight or more based on 100 parts by weight of the blend polymer. In the present invention, in addition to the above-mentioned components, anti-aging agents, lubricants, dispersants, etc. may also be added as necessary. As anti-aging agents, amine-based N,
N'-diphenyl-P-phenylenediamine, phenyl-α-naphthylamine, N-phenyl-
N'-isopropyl-phenylenediamine, poly(2,2-4-trimethyl-1,2-dihydroquinoline), phenolic 2,2'methylenebis(4-methyl-6-tert-butylphenol), 2 , 6-di-tert-butyl-4-methylphenol, 4,4'-thiobis(6-tert-butyl-3-methylphenol), etc., imidazole-based 2-mercaptobenzimidazole, zinc of 2-mercaptobenzimidazole Salts such as sulfur-based distearyl-thio-dipropionate, dilaurylthiopropionate, tetrakis (methyl-dodecylthiopropionate) methane, etc., and other anti-aging agents for rubber are used alone or in combination. be able to. The semiconductive composition containing the various components described above may be crosslinked after being molded into a predetermined shape, and crosslinking methods include crosslinking using peroxide or sulfur, crosslinking by electron beam irradiation, and silane graft water crosslinking. Things can be given. Examples of the present invention will be described below in comparison with comparative examples. A semiconductive composition having the formulation shown in each example in Table 1 was extruded and coated onto a copper stranded wire conductor with a cross-sectional area of 80 mm 2 to a thickness of 1 mm.
100 parts by weight of low density polyethylene (density 0.920 g/cm 3 , melt index 1.0), dicumyl peroxide
An insulator composition containing 2.5 parts by weight and 0.25 parts by weight of an antioxidant was extrusion coated to form an insulator layer with a thickness of 4 mm. Next, a semiconductive composition having the same composition as the internal semiconductive layer was extruded around the outer periphery of this insulating layer to form an external semiconductive layer with a thickness of 1 mm, and heat crosslinking was performed to form a crosslinked polyethylene insulated power cable. was manufactured. Water was injected into the conductor of the power cable manufactured as described above, and after the water had soaked, an AC voltage of 50 Hz and 15 kV was applied between the conductor and the water electrode, the water temperature was set to 90°C, and electricity was applied for 18 months. After completion, the insulator was spirally cut to a thickness of 0.5 mm, boiled and stained with a methylene blue aqueous solution, and the number of water trees generated at the interface between the insulator and the internal semiconducting layer was observed using a microscope. The results are shown in the lower column of Table 1.

【表】【table】

【表】 第1表の評価結果から明らかな通り、実施例1
〜3に示す本発明に係る半導電性組成物でもつて
内外半導電層を形成したものは、いずれも比較例
1〜4の半導電性組成物を用いた場合に比較して
水トリー数が大幅に少なくなつており、良好な結
果を示した。 以上説明したように、本発明によれば耐水トリ
ー性を大幅に向上した電力ケーブルを実現できる
ようになる。
[Table] As is clear from the evaluation results in Table 1, Example 1
All of the semiconductive compositions according to the present invention shown in 3 to 3 in which inner and outer semiconductive layers were formed had a water tree number as compared to the case where the semiconductive compositions of Comparative Examples 1 to 4 were used. The amount was significantly reduced, indicating good results. As explained above, according to the present invention, it is possible to realize a power cable with significantly improved water resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 融点120℃以上の結晶性エチレン系ポリマと
エチレン―ブテン―1,4―ヘキサジエン共重合
エラストマのブレンドポリマに対して導電性付与
材を加えてなることを特徴とする半導電性組成
物。
1. A semiconductive composition comprising a blend polymer of a crystalline ethylene polymer with a melting point of 120° C. or higher and an ethylene-butene-1,4-hexadiene copolymer elastomer, and a conductivity-imparting material added thereto.
JP20817582A 1982-11-26 1982-11-26 Semiconductive composition Granted JPS5998403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20817582A JPS5998403A (en) 1982-11-26 1982-11-26 Semiconductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20817582A JPS5998403A (en) 1982-11-26 1982-11-26 Semiconductive composition

Publications (2)

Publication Number Publication Date
JPS5998403A JPS5998403A (en) 1984-06-06
JPS6245643B2 true JPS6245643B2 (en) 1987-09-28

Family

ID=16551896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20817582A Granted JPS5998403A (en) 1982-11-26 1982-11-26 Semiconductive composition

Country Status (1)

Country Link
JP (1) JPS5998403A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140349A (en) * 1984-07-31 1986-02-26 Fujikura Ltd Mixture for semiconductive layer
JPS6140348A (en) * 1984-07-31 1986-02-26 Fujikura Ltd Mixture for semiconductive layer
JPS6140347A (en) * 1984-07-31 1986-02-26 Fujikura Ltd Mixture for semiconductive layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671215A (en) * 1979-11-15 1981-06-13 Dainichi Nippon Cables Ltd Polyolefin insulating power cable
JPS57158907A (en) * 1981-03-26 1982-09-30 Fujikura Ltd Power cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671215A (en) * 1979-11-15 1981-06-13 Dainichi Nippon Cables Ltd Polyolefin insulating power cable
JPS57158907A (en) * 1981-03-26 1982-09-30 Fujikura Ltd Power cable

Also Published As

Publication number Publication date
JPS5998403A (en) 1984-06-06

Similar Documents

Publication Publication Date Title
JPH04106B2 (en)
JPS6245643B2 (en)
JP2001325834A (en) Dc power cable
JPH09231839A (en) Direct current cable
JPS63146302A (en) Rubber resin insulated power cable
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JPH07107806B2 (en) Power cable
JPS6356645B2 (en)
KR100291669B1 (en) A semiconductive power cable shield
JPS63313410A (en) Semiconducting composition for power cable
JP2001312922A (en) Plastic insulating composition and electrical wire, cable, cable connecting part using the same
JPH06267334A (en) Electrically insulating composition and wire and/or cable
JPH03276515A (en) Water-tree resisting electric wire and cable
JPH02165506A (en) High-tension cable
JPS63292505A (en) Semiconductive resin composition
JPH01267904A (en) Extruded type semiconductive resin compound for electric power cable
JPH01267905A (en) Extruded type semiconductive resin compound for electric power cable
JPH08241624A (en) Semiconductor resin composition for power cable
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPH0515007B2 (en)
JPH06309949A (en) Anti-watertree electric power cable
JPH0750107A (en) Water-proof tree cable
JPH0467510A (en) Semiconductive resin composition for power cable
JPS6356644B2 (en)
JPS61235444A (en) Semiconductive resin composition