JPS63311752A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63311752A
JPS63311752A JP62148581A JP14858187A JPS63311752A JP S63311752 A JPS63311752 A JP S63311752A JP 62148581 A JP62148581 A JP 62148581A JP 14858187 A JP14858187 A JP 14858187A JP S63311752 A JPS63311752 A JP S63311752A
Authority
JP
Japan
Prior art keywords
load
semiconductor integrated
integrated circuit
circuit device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62148581A
Other languages
Japanese (ja)
Inventor
Daisuke Ueda
大助 上田
Hiromitsu Takagi
弘光 高木
Masahiro Hagio
萩尾 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62148581A priority Critical patent/JPS63311752A/en
Publication of JPS63311752A publication Critical patent/JPS63311752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a load of a low parasitic capacity equipped with a constant current characteristic by a method wherein a two-terminal element is used as a load capable of carrier speed saturation at a circuit service voltage. CONSTITUTION:The distance between the two terminals of a two-terminal load formed in semiconductor is set to be not longer than a distance allowing the generation of carrier speed saturation at the intensity of a field to be generated upon application of a voltage to the load. Such a two-terminal element, because of its constant current feature or of a differential negative resistance characteristic, will serve as a resistor high in gain in an inverter circuit. Accordingly, a load of but a little parasitic capacity is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体集積回路装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a semiconductor integrated circuit device.

従来の技術 インバータ回路において負荷としてFET1用いた回路
を第5図aに示す。この場合、負荷として抵抗を用いた
場合に比べて、第6図すに示されるように定電流源的な
負荷特性を示すので第6図す内に示される動作点におい
ては極めて大きな利得が得られる。
A conventional inverter circuit using an FET 1 as a load is shown in FIG. 5a. In this case, compared to the case where a resistor is used as the load, as shown in Figure 6, the load characteristics are like a constant current source, so an extremely large gain can be obtained at the operating point shown in Figure 6. It will be done.

発明が解決しようとする問題点 しかしながら、このような従来の回路では、負荷のFI
CTのゲートに寄生する容量成分の存在のために高速ス
イッチング性を損う問題があった。
Problems to be Solved by the Invention However, in such conventional circuits, the load FI
There is a problem in that high-speed switching performance is impaired due to the presence of a parasitic capacitance component in the gate of the CT.

本発明はかかる問題点に鑑みてなされたもので、定電流
的な負荷特性を有する低寄生容量の負荷を有する半導体
集積回路装置を提供すること全目的としている。
The present invention has been made in view of these problems, and its entire purpose is to provide a semiconductor integrated circuit device having a constant current load characteristic and a low parasitic capacitance load.

問題点を解決するための手段 本発明は上記問題点を解決するため、負荷として、回路
の使用電圧においてキャリアの速度飽和の生じる二端子
素子をそなえて構成されている。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is configured to include a two-terminal element as a load in which carrier velocity saturation occurs at the voltage used in the circuit.

作用 本発明は上記した構成により5速度飽和の生じる二端子
負荷が定電流源的な特性あるいは微分負性抵抗特性を示
す点から、インバータ回路において利得が大きく、かつ
抵抗的な二端子素子であるため、寄生容量の小さい負荷
を実現できる。
Operation The present invention is a two-terminal element with a large gain and resistance in an inverter circuit, since the two-terminal load in which 5-speed saturation occurs exhibits constant current source-like characteristics or differential negative resistance characteristics due to the above-described configuration. Therefore, a load with small parasitic capacitance can be realized.

実施例 第1図は本発明の一実施例における負荷を実現するため
の半絶縁性GaAs基板に形成する場合のマスクレイア
ウト図である。第1図において1はキャリアの速度飽和
を生じるn型抵抗領域、2はコンタクトのためのn 型
領域、3はオーミック電極となる人uGe / Ni 
/ムU領域、4は半絶縁性GaAs基板、5は電界の印
加される領域長である。
Embodiment FIG. 1 is a mask layout diagram for forming a load on a semi-insulating GaAs substrate in an embodiment of the present invention. In Figure 1, 1 is an n-type resistance region that causes carrier velocity saturation, 2 is an n-type region for contact, and 3 is a uGe/Ni layer that becomes an ohmic electrode.
4 is a semi-insulating GaAs substrate, and 5 is the length of the region to which an electric field is applied.

半絶縁性G2LAS基板4 K 2 x 10” cm
−2(r)ドーズ量、60に6Vの加速電圧でSi+イ
オンをイオン注入し負荷の形成される領域1を、6×1
o15ff−2のドーズ量、100KeVの加速電圧で
Si+イオンをイオン注入しコンタクトのためのn+領
域2を【ハム−Aよ 矛/7−I菅襦I古l汁辻ス1舟
g4+ス小ソのマー形成する。8oo℃20分のアニー
ル後、AuGe/Ni/人ui各々600人150人/
1500人蒸0し電極3を形成した後、H2雰囲気で5
00℃。
Semi-insulating G2LAS substrate 4 K 2 x 10” cm
-2(r) dose and an accelerating voltage of 6V to 60V to ion-implant Si+ ions to form a 6×1
Si+ ions were ion-implanted at a dose of o15ff-2 and an accelerating voltage of 100 KeV to form the n+ region 2 for contact. Form a mer. After annealing at 80°C for 20 minutes, AuGe/Ni/Human ui 600 and 150 people/
After evaporating for 1500 people and forming the electrode 3, 5
00℃.

5分間の合金化を行なった。このようにして形成した二
端子負荷の電流・電圧特性は第2図に示されたような特
性となる。第2図はLの大きさ6を1.5 、3 、8
71mの3条件で振り分けた結果である。Lが小さい程
、同一の印加電圧で領域1内の電界が高く、小さい電圧
でキャリアの速度飽和を生じ、二端子間を一定電流が流
れる特性を示す。
Alloying was carried out for 5 minutes. The current/voltage characteristics of the two-terminal load thus formed are as shown in FIG. Figure 2 shows the size 6 of L as 1.5, 3, 8
These are the results of 71m divided into three conditions. The smaller L is, the higher the electric field in region 1 is with the same applied voltage, the carrier velocity saturation occurs with a smaller voltage, and a constant current flows between the two terminals.

この時に負荷は一定電流が流れるような条件である程度
以上の電圧を加えるとホットエレクトロンの移動度の変
化のために電流が減少する傾向が見られる。
At this time, if a voltage above a certain level is applied to the load under conditions such that a constant current flows, the current tends to decrease due to changes in the mobility of hot electrons.

第3図は本発明の他の実施例としての差動増幅器の回路
である。21は上記の負荷、22は電流源としての上記
負荷、23.24はGaAs MESFETである。ま
た25.26は差動入力端子、27は出力端子である。
FIG. 3 shows a differential amplifier circuit as another embodiment of the present invention. 21 is the above-mentioned load, 22 is the above-mentioned load as a current source, and 23.24 is a GaAs MESFET. Further, 25 and 26 are differential input terminals, and 27 is an output terminal.

回路で負荷21は、定電流源的な特性を持って−ル時の
活性化率などで変動しやすい。ここで負荷のlを全て同
一にして、Wの大きさを変更すれば、(例えば、22の
Wを21のWよりも小さく設計すれば)回路は確実に動
作する。
In the circuit, the load 21 has characteristics like a constant current source, and is likely to fluctuate depending on the activation rate when the load is applied. Here, if all the loads l are the same and the size of W is changed (for example, if W of 22 is designed to be smaller than W of 21), the circuit will operate reliably.

第4図aは微分負性抵抗を有するインバータ回路図すの
動作を示したものである。この回路の利得AvはFIT
のドレインコンダクタンスをλ。
FIG. 4a shows the operation of an inverter circuit having differential negative resistance. The gain Av of this circuit is FIT
The drain conductance of λ.

相互コンダクタンス’k g”  +負荷の微分コンダ
クタンスをλlとすれば(1)式で表される。
If the mutual conductance 'kg g'' + the differential conductance of the load is λl, it is expressed by equation (1).

Av = gm  −ニとり 、A+。l     ・・・・・・(1)この時負荷の
微分コンダクタンスが負であり、λとほぼ等しければ、
AVは無限大に大きくできる。
Av = gm - two, A+. l...(1) At this time, if the differential conductance of the load is negative and approximately equal to λ,
AV can be made infinitely large.

発明の効果 以上述べてきたように本発明によれば、極めて簡易な構
成で寄生容量の低い負荷を実現でき、低’III界でキ
ャリアの速度飽和を生じるGaAs等の半導体集積回路
の高速化に寄与することが期待でき、その実用性は極め
て高い。
Effects of the Invention As described above, according to the present invention, it is possible to realize a load with low parasitic capacitance with an extremely simple configuration, and it is useful for increasing the speed of semiconductor integrated circuits such as GaAs, which suffer from carrier velocity saturation in the low 'III field. It can be expected to make a contribution, and its practicality is extremely high.

one

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるキャリアが使用電圧
で速度飽和を起こすように端子間間隔を狭めた負荷のマ
スクレイアウト図、第2図は本発明の一実施例における
負荷の電流・電圧特性図、第3図は本発明の一実施例に
おける差動増幅回路1・・・・・・n型領域、2・・・
・・・n 型領域、3・・・・・・オーミック電極、4
・・・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名:3
8− 第1図 1−−−n ’7頒武 2−fi↑!・/ 第2図 叶 〕+] 寛 工 入1 第4図 (b) 腎′し!ノ旬1′ノ 第5図 Vし1′V貫1
Fig. 1 is a mask layout diagram of a load in which the spacing between terminals is narrowed so that the carrier causes speed saturation at the working voltage in one embodiment of the present invention, and Fig. 2 is a current/voltage diagram of the load in one embodiment of the present invention. The characteristic diagram, FIG. 3, shows the differential amplifier circuit 1, n-type region, 2, etc. in one embodiment of the present invention.
... n-type region, 3 ... ohmic electrode, 4
······substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person: 3
8-Fig.・/ Figure 2 Kano 〕+] Hiro Kogyo 1 Figure 4 (b) Kidney'shi! No-Jun 1' No. 5 V-shi 1' V-kan 1

Claims (4)

【特許請求の範囲】[Claims] (1)半導体内に形成された2端子負荷の端子間距離が
、前記負荷へ電圧を印加した時に生じる電界強度におい
て半導体内キャリアの速度飽和を生じる長さ以下である
ことを特徴とする半導体集積回路装置。
(1) A semiconductor integrated circuit characterized in that the distance between the terminals of a two-terminal load formed in the semiconductor is less than or equal to the length that causes velocity saturation of carriers in the semiconductor at the electric field intensity generated when voltage is applied to the load. circuit device.
(2)負荷が電流源として働らくことを特徴とする特許
請求の範囲第1項記載の半導体集積回路装置。
(2) The semiconductor integrated circuit device according to claim 1, wherein the load functions as a current source.
(3)負荷が複数個で、それらの負荷の端子間距離が全
て等しいことを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置。
(3) The semiconductor integrated circuit device according to claim 1, wherein there are a plurality of loads, and the distances between the terminals of the loads are all equal.
(4)負荷が負性抵抗領域を含むことを特徴とする特許
請求の範囲第1項記載の半導体集積回路装置。
(4) The semiconductor integrated circuit device according to claim 1, wherein the load includes a negative resistance region.
JP62148581A 1987-06-15 1987-06-15 Semiconductor integrated circuit device Pending JPS63311752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148581A JPS63311752A (en) 1987-06-15 1987-06-15 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148581A JPS63311752A (en) 1987-06-15 1987-06-15 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63311752A true JPS63311752A (en) 1988-12-20

Family

ID=15455944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148581A Pending JPS63311752A (en) 1987-06-15 1987-06-15 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63311752A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563859A (en) * 1978-11-08 1980-05-14 Fujitsu Ltd Field-effect transistor integrated circuit
JPS58143562A (en) * 1982-02-22 1983-08-26 Toshiba Corp Gaas integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563859A (en) * 1978-11-08 1980-05-14 Fujitsu Ltd Field-effect transistor integrated circuit
JPS58143562A (en) * 1982-02-22 1983-08-26 Toshiba Corp Gaas integrated circuit

Similar Documents

Publication Publication Date Title
US3339128A (en) Insulated offset gate field effect transistor
US2816228A (en) Semiconductor phase shift oscillator and device
US3134912A (en) Multivibrator employing field effect devices as transistors and voltage variable resistors in integrated semiconductive structure
US3324359A (en) Four layer semiconductor switch with the third layer defining a continuous, uninterrupted internal junction
US3333168A (en) Unipolar transistor having plurality of insulated gate-electrodes on same side
JPS63311752A (en) Semiconductor integrated circuit device
US3434023A (en) Semiconductor switching devices with a tunnel junction diode in series with the gate electrode
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
US3270258A (en) Field effect transistor
US3111590A (en) Transistor structure controlled by an avalanche barrier
US3624466A (en) Depletion-type igfet having high-conductivity n-type channel
CA1060587A (en) Electrical circuit logic elements
JP2918979B2 (en) Semiconductor device and logic circuit using the same
JPS60263471A (en) Semiconductur device
Richman Complementary MOS field-effect transistors on high-resistivity silicon substrates
JPS58151061A (en) Semiconductor device turned on or off
JPH01181571A (en) Conduction modulation type mosfet
JP3079533B2 (en) Compound semiconductor device and method of manufacturing the same
Amos et al. Principles of transistor circuits
JPH0612821B2 (en) Semiconductor device
JPS61260674A (en) Voltage-control variable current amplification factor bipolar transistor
RU2091908C1 (en) Semiconductor device
JP3395282B2 (en) Constant voltage generator
JP2000036591A (en) Semiconductor device
JPS60261177A (en) Field effect transistor of compound semiconductor