JPS63310520A - Manufacture of superconductive wire - Google Patents
Manufacture of superconductive wireInfo
- Publication number
- JPS63310520A JPS63310520A JP62146484A JP14648487A JPS63310520A JP S63310520 A JPS63310520 A JP S63310520A JP 62146484 A JP62146484 A JP 62146484A JP 14648487 A JP14648487 A JP 14648487A JP S63310520 A JPS63310520 A JP S63310520A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- film
- membrane
- layer
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002887 superconductor Substances 0.000 claims abstract description 59
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 239000010409 thin film Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000010408 film Substances 0.000 claims description 27
- 239000010410 layer Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 22
- 238000007254 oxidation reaction Methods 0.000 abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 12
- 239000001301 oxygen Substances 0.000 abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 230000001681 protective effect Effects 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 3
- 239000011241 protective layer Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 abstract 10
- 230000003647 oxidation Effects 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000013077 target material Substances 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、核磁気共鳴装置用マグネットや粒子加速用
マグネット等の超電導機器に用いられる超電導線の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a superconducting wire used in superconducting equipment such as a magnet for a nuclear magnetic resonance apparatus or a magnet for particle acceleration.
「従来の技術」
近来、常電導状態から超電導状態へ遷移する臨界温度(
T+:)が液体窒素温度以上の高い値を示す酸化物系の
超電導体が種々発見されつつある。そして、このような
超電導体から超電導線を作製し、これを核磁気共鳴装置
用マグネットや粒子加速用マグネット等の超電導機器に
適用したいという要求があり、したがってその線材化が
種々考えられあるいは試みられている。"Conventional technology" Recently, the critical temperature (
Various oxide-based superconductors are being discovered that exhibit a high value of T+:) higher than the liquid nitrogen temperature. There has been a demand for producing superconducting wires from such superconductors and applying them to superconducting equipment such as magnets for nuclear magnetic resonance apparatuses and magnets for particle acceleration, and therefore various ideas have been made or attempts have been made to make them into wires. ing.
このような酸化物系超電導体による線材化として、例え
ば粉末状の超電導材料をブロック状に焼成し、次いでこ
れを鋼管で被覆して圧延する方法や、酸化物系超電導体
自身をターゲツト材として用い、スパッタリングにより
基線上に超電導体層を形成する方法などが考えられる。To make wire rods from such oxide superconductors, for example, there are methods in which powdered superconducting material is fired into a block shape, which is then covered with a steel pipe and rolled, or the oxide superconductor itself is used as a target material. Possible methods include forming a superconductor layer on the base line by sputtering.
「発明が解決しようとする問題点」
しかしながら、上記の方法にあっては、以下に述べるよ
うな不都合がある。"Problems to be Solved by the Invention" However, the above method has the following disadvantages.
粉末状の超電導材料をブロック状に焼成する方法では、
このブロックを鋼管の内孔に合わせて切削しあるいは研
磨する必要があり、よってその際に不純物が混入して超
電導線の特性を低下させるという恐れがある。In the method of firing powdered superconducting material into blocks,
It is necessary to cut or polish this block to fit the inner hole of the steel pipe, and there is a fear that impurities may be mixed in at that time and deteriorate the characteristics of the superconducting wire.
また、酸化物系超電導体自身をターゲツト材としてスパ
ッタリングを行う方法では、大型のターゲツト材を形成
することが困難であることから、製造コストが高くなる
などの問題がある。Furthermore, in the method of sputtering using the oxide superconductor itself as a target material, it is difficult to form a large target material, resulting in problems such as increased manufacturing costs.
「問題点を解決するための手段」
そこでこの発明では、基線上に酸化物系超電導体の前駆
体となる金属の薄膜を形成し、次にこの金属薄膜を酸化
して超電導体膜とし、さらに上記酸化物系超電導体の前
駆体となる金属の薄膜形成および該金属薄膜の酸化を順
次複数回繰り返して基線上に超電導体層を形成すること
により上記問題点を解決した。``Means for Solving the Problems'' Therefore, in this invention, a thin metal film that is a precursor of an oxide-based superconductor is formed on the base line, and then this metal thin film is oxidized to form a superconductor film. The above problem was solved by forming a superconductor layer on the base line by repeating the formation of a thin metal film serving as a precursor of the oxide superconductor and the oxidation of the metal thin film in sequence multiple times.
以下、この発明の超電導線の製造方法の一例を図面を利
用して説明する。An example of the method for manufacturing a superconducting wire according to the present invention will be described below with reference to the drawings.
まず、基線1を用意し、この基線l上に第1図に示すよ
うに酸化物系超電導体の前駆体となる金属の第1の薄膜
2を形成する。ここで、基線lとしては、銅線、鋼線等
の金属線、あるいはガラスファイバ線、結晶ファイバ線
などが用いられる。First, a base line 1 is prepared, and as shown in FIG. 1, a first thin film 2 of metal, which will become a precursor of an oxide superconductor, is formed on this base line l, as shown in FIG. Here, as the base line l, a metal wire such as a copper wire or a steel wire, a glass fiber wire, a crystal fiber wire, or the like is used.
また、酸化物系超電導体の前駆体となる金属としては、
A−B−Cu系(A:Ba、Sr%Ca −のアルカリ
土類金属、BAYSLaSCe、Er5Nd −の周期
律表第111a族金属元素)の合金が用いられる。In addition, metals that can be used as precursors for oxide superconductors include:
An alloy of AB-Cu system (A: alkaline earth metal of Ba, Sr%Ca -, metal element of group 111a of the periodic table of BAYSLaSCe, Er5Nd -) is used.
そして、上記薄膜2の形成は、スパッタ法、蒸着法、電
子ビーム蒸着法、CVD法、MOCVD法等の一般的な
薄膜形成法によってなされる。特にスパッタ法を用いた
場合、イオン量等の条件を制御することにより、基線l
上へのスパッリングによる金属被覆と、加速されたイオ
ンの一部が基線l上金属被覆膜に衝突してこの金属被覆
膜をエツチングするいわゆる逆スパツタとを同時に進行
させ、これら被膜形成とエツチングとを所定時間を経て
平衡状態に至らしめることができることから、一定な膜
厚の薄膜2を基線I上に形成することができる。また、
このような薄膜形成法によって形成される薄膜2の厚さ
は2〜200 nm程度とされ、これにより該薄膜2は
、酸化された際にその内部にまで酸素が容易に拡散して
均一に酸化されるようになっている。The thin film 2 is formed by a general thin film forming method such as a sputtering method, an evaporation method, an electron beam evaporation method, a CVD method, or an MOCVD method. In particular, when using the sputtering method, by controlling conditions such as the amount of ions, it is possible to
Metal coating by upward sputtering and so-called reverse sputtering in which a part of the accelerated ions collide with the metal coating film on the base line l to etch this metal coating film are simultaneously performed, and these coating formations and Since the etching can be brought to an equilibrium state after a predetermined period of time, the thin film 2 having a constant thickness can be formed on the base line I. Also,
The thickness of the thin film 2 formed by such a thin film forming method is about 2 to 200 nm, so that when the thin film 2 is oxidized, oxygen can easily diffuse into the inside of the thin film 2, and the thin film 2 can be oxidized uniformly. It is supposed to be done.
次に、上記薄膜2を酸化して第2図に示すように超電導
体膜3とする。この場合に酸化法とじては、酸素雰囲気
中で加熱して薄膜2の酸化を促進せしめる熱酸化法や、
プラズマ中にて処理するプラズマ酸化法などが用いられ
る。そして、特に熱酸化法では酸化時間を長く、すなわ
ち酸素の薄膜2中への拡散時間を長く取れば、酸化膜(
超電導体膜3 )の膜厚を大きくすることができ、同様
に酸素雰囲気中の酸素分圧を高めることにより膜厚を大
きくすることもできる。Next, the thin film 2 is oxidized to form a superconductor film 3 as shown in FIG. In this case, the oxidation method includes a thermal oxidation method in which oxidation of the thin film 2 is promoted by heating in an oxygen atmosphere,
A plasma oxidation method in which processing is performed in plasma is used. In particular, in the thermal oxidation method, if the oxidation time is long, that is, the time for oxygen to diffuse into the thin film 2 is long, the oxide film (
The film thickness of the superconductor film 3) can be increased, and similarly, the film thickness can also be increased by increasing the oxygen partial pressure in the oxygen atmosphere.
次いで、基線1の超電導体膜3上に、上述した薄膜形成
法により第3図に示すように酸化物系超電導体の前駆体
となる金属の第2の薄膜4を形成し、さらにこの薄膜を
上述した酸化法により酸化して超電導体膜とする。そし
て、さらに同様にして前駆体の薄膜形成およびその酸化
を順次複数回繰り返し、第4図に示すように複数の膜が
一体に積層されてなる超電導体層5を形成する。Next, on the superconductor film 3 of the base line 1, a second thin film 4 of metal, which will become a precursor of an oxide-based superconductor, is formed as shown in FIG. 3 by the thin film forming method described above. It is oxidized to form a superconductor film using the oxidation method described above. Then, in the same manner, the formation of a thin film of the precursor and its oxidation are repeated several times in order to form a superconductor layer 5 in which a plurality of films are integrally laminated as shown in FIG.
次いで、この超電導体層5を形成してなる基線1に再加
熱処理を施し、超電導体層5の結晶構造を良好にして各
超電導体膜毎の相互の接合強度を高める。その後、この
超電導体層5上に、酸素遮断膜等の保護膜を被覆形成し
たり、あるいは保護管を外挿せしめたりして第5図に示
すように保護層6を設け、超電導線7を得る。Next, the base line 1 on which the superconductor layer 5 is formed is subjected to reheating treatment to improve the crystal structure of the superconductor layer 5 and increase the mutual bonding strength of each superconductor film. Thereafter, a protective layer 6 is provided on the superconductor layer 5 by coating a protective film such as an oxygen barrier film or by inserting a protective tube, as shown in FIG. obtain.
このような製造方法によれば、超電導体をブロック状に
形成することなく基線l上に一体に形成するため、切削
あるいは研磨といった工程を必要とせず、よってその際
に不純物が混入するといった不都合が回避される。また
、例えばスパッタ法により薄膜2を被覆すれば、A−B
−Cu系の合金がターゲツト材となることから、酸化物
系超電導体自身をターゲツト材とするのに比較してその
ターゲツト材の作製が容易とり、よってその製造コスト
の低減化を図ることができる。さらに、複数の薄膜を積
層して超電導体層5を形成することから、各層毎の薄膜
の膜厚を制御することにより、任意の外径でしかも寸法
精度の高い超電導線7を形成することができる。According to this manufacturing method, the superconductor is not formed into blocks but is formed integrally on the base line l, so there is no need for processes such as cutting or polishing, and therefore there is no inconvenience such as impurities being mixed in at that time. Avoided. Furthermore, if the thin film 2 is coated by sputtering, for example, A-B
-Since the Cu-based alloy is used as the target material, it is easier to produce the target material than when the oxide superconductor itself is used as the target material, and the manufacturing cost can therefore be reduced. . Furthermore, since the superconductor layer 5 is formed by laminating a plurality of thin films, by controlling the thickness of each thin film, it is possible to form a superconducting wire 7 with an arbitrary outer diameter and high dimensional accuracy. can.
「実施例」
以下、この発明を実施例によりさらに具体的に説明する
。"Examples" The present invention will now be described in more detail with reference to Examples.
(実施例1 )
基線として外径300μmの石英ガラスファイバ線を用
い、これを円筒型のスパッタ装置内に該装置の中心軸に
一致させて配置し、ターゲツト材としてB ao、sY
o、tc u+の組成からなる合金を用いることによ
りスパッタリングを行って基線上に酸化物系超電導体の
前駆体となる金属の薄膜を形成した。次に、この金属薄
膜を形成した基線を高周波プラズマ型の装置に入れ、酸
素濃度lO%のAr雰囲気中でプラズマ酸化処理を施し
、これにより上記金属薄膜を酸化して超電導体膜とした
。(Example 1) A quartz glass fiber wire with an outer diameter of 300 μm was used as a base line, and this was placed in a cylindrical sputtering device so as to coincide with the central axis of the device, and Bao, sY were used as target materials.
Sputtering was performed using an alloy having a composition of o, tc u+ to form a thin metal film serving as a precursor of an oxide superconductor on the base line. Next, the base line on which this metal thin film was formed was placed in a high-frequency plasma type device and subjected to plasma oxidation treatment in an Ar atmosphere with an oxygen concentration of 10%, thereby oxidizing the metal thin film to form a superconductor film.
この場合、形成された金属薄膜の厚さは10 nm。In this case, the thickness of the formed metal thin film is 10 nm.
また酸化後の超電導体膜の厚さは15nmであった。The thickness of the superconductor film after oxidation was 15 nm.
そして、上記金属薄膜の形成およびその酸化をさらに9
回繰り返し、合計10回の薄膜形成およびその酸化によ
り厚さ150nmの超電導体層を形成した。次いで、こ
の超電導体層を形成した基線を、酸素中にて350℃で
10時間再加熱処理し、その後超電導体層の上に保護層
として窒化物ガラス層を形成し、超電導線とした。Then, the formation of the metal thin film and its oxidation are further carried out for 9
A superconductor layer with a thickness of 150 nm was formed by repeating the thin film formation and oxidation a total of 10 times. Next, the base line on which the superconductor layer was formed was reheated in oxygen at 350° C. for 10 hours, and then a nitride glass layer was formed as a protective layer on the superconductor layer to obtain a superconducting wire.
得られた超電導線における超電導体層の組成は13 a
、、7Y 、、3Cu、04であった。また、コノ超電
導体層の特性を調べたところ、臨界温度89に1臨界電
流密度400A/cm”(at 40K )という結果
が得られた。The composition of the superconductor layer in the obtained superconducting wire was 13a
,,7Y,,3Cu,04. Further, when the characteristics of the Kono superconductor layer were investigated, a result was obtained that the critical temperature was 89 and the critical current density was 400 A/cm'' (at 40K).
(実施例2 )
基線として外径500゛μmの銅線を用い、これの外周
面上に電子ビーム蒸着装置によってBatY−Cusの
組成からなる金属薄膜を形成した。次に、この金属薄膜
を形成した基線を酸素含有雰囲気中にて800℃で10
時間加熱し、これにより上記金属薄膜を熱酸化して超電
導体膜とした。この場合、形成された金属薄膜の厚さは
10nm、また酸化後の超電導体膜の厚さは13.5n
mであった。(Example 2) A copper wire having an outer diameter of 500 μm was used as a base line, and a metal thin film having a composition of BatY-Cus was formed on the outer peripheral surface of the wire using an electron beam evaporation device. Next, the base line on which this metal thin film was formed was heated at 800°C for 10 minutes in an oxygen-containing atmosphere.
The metal thin film was heated for a period of time to thermally oxidize it to form a superconductor film. In this case, the thickness of the formed metal thin film is 10 nm, and the thickness of the superconductor film after oxidation is 13.5 nm.
It was m.
そして、上記金属薄膜の形成およびその酸化を繰り返し
、合計100回の薄膜形成およびその酸化により厚さ1
350nmの超電導体層を形成した。Then, the formation of the metal thin film and its oxidation were repeated, and a total of 100 times of thin film formation and oxidation resulted in a thickness of 1
A 350 nm superconductor layer was formed.
その後、この超電導体層を形成した基線を、酸素中にて
600℃で3時間再加熱処理し、超電導線とした。Thereafter, the base line on which the superconductor layer was formed was reheated in oxygen at 600° C. for 3 hours to obtain a superconducting wire.
得られた超電導線における超電導体層の組成はB ao
、、Y o、3c u+o aであった。また、この超
電導体層の特性を調べたところ、臨界温度94に1臨界
型流密度600A/cm″(at40K)という結果が
得られた。The composition of the superconductor layer in the obtained superconducting wire is Bao
,, Y o, 3c u+o a. Further, when the characteristics of this superconductor layer were investigated, results were obtained that the critical temperature was 94 and the 1-critical flow density was 600 A/cm'' (at 40 K).
「発明の効果」
以上説明したように、この発明の超電導線の製造方法は
、基線上に酸化物系超電導体の前駆体となる金属の薄膜
を被覆し、次にこの金属薄膜を酸化して超電導体膜とし
、さらに上記の薄膜被覆および金属薄膜の酸化を順次複
数回繰り返して基線上に超電導体層を形成するものであ
るから、超電導体をブロック状に形成することなく基線
上に一体に形成するため、切削あるいは研磨といった工
程を必要とせず、よってその際に不純物が混入するとい
った不都合が回避され、したがって得られる超電導線に
おける特性の低下を防止することができる。また、例え
ばスパッタ法により薄膜を被覆すれば、A −B −C
u系の合金がターゲツト材となることから、酸化物系超
電導体自身をターゲツト材とするのに比較してそのター
ゲツト材の作製が容易とり、よってその製造コストの低
減化を図ることができる。また、複数の薄膜を積層して
超電導体周を形成することから、各層毎の薄膜の膜′厚
を制御することにより、任意の外径でしかも寸法精度の
高い超電導線を形成することができ、したがって各種用
途に対応し得る自由度の高い超電導線を得ることができ
る。"Effects of the Invention" As explained above, the method for producing a superconducting wire of the present invention involves coating a base line with a thin film of a metal that is a precursor of an oxide superconductor, and then oxidizing this thin metal film. Since the superconductor layer is formed on the base line by forming a superconductor film and then repeating the above-mentioned thin film coating and oxidation of the metal thin film multiple times in sequence, the superconductor can be integrated on the base line without forming it in a block shape. In order to form the superconducting wire, there is no need for a process such as cutting or polishing, thereby avoiding the inconvenience of contamination with impurities during the process, and thus making it possible to prevent the properties of the resulting superconducting wire from deteriorating. Furthermore, if a thin film is coated by sputtering, for example, A-B-C
Since the u-based alloy is used as the target material, it is easier to produce the target material than when the oxide superconductor itself is used as the target material, and the manufacturing cost can therefore be reduced. In addition, since the superconductor periphery is formed by laminating multiple thin films, by controlling the thickness of each thin film, it is possible to form a superconducting wire with an arbitrary outer diameter and high dimensional accuracy. Therefore, it is possible to obtain a superconducting wire with a high degree of freedom that can be used in various applications.
第1図ないし第4図は、いずれもこの発明の超電導線の
製造方法の一例を工程順に説明するための要部断面図、
第5図は第1図ないし第4図に示した製造方法によって
得られた超電導線の横断面図である。
1・・・・・・基線、2.4・・・・・・薄膜、3・・
・・・・超電導体膜、 5・・・・・・超電導体層、7
・・・・・・超電導線。1 to 4 are sectional views of essential parts for explaining an example of the method for manufacturing a superconducting wire of the present invention in the order of steps,
FIG. 5 is a cross-sectional view of a superconducting wire obtained by the manufacturing method shown in FIGS. 1 to 4. 1...baseline, 2.4...thin film, 3...
...Superconductor film, 5...Superconductor layer, 7
...Superconducting wire.
Claims (1)
形成し、次にこの金属薄膜を酸化して超電導体膜とし、
さらに上記酸化物系超電導体の前駆体となる金属の薄膜
形成および該金属薄膜の酸化を順次複数回繰り返して基
線上に超電導体層を形成することを特徴とする超電導線
の製造方法。A thin film of metal, which is a precursor of an oxide-based superconductor, is formed on the base line, and then this thin metal film is oxidized to form a superconductor film.
A method for producing a superconducting wire, further comprising forming a thin film of a metal serving as a precursor of the oxide-based superconductor and oxidizing the thin metal film in sequence multiple times to form a superconductor layer on a base line.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146484A JPS63310520A (en) | 1987-06-12 | 1987-06-12 | Manufacture of superconductive wire |
US07/185,686 US4970197A (en) | 1987-04-22 | 1988-04-22 | Oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146484A JPS63310520A (en) | 1987-06-12 | 1987-06-12 | Manufacture of superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63310520A true JPS63310520A (en) | 1988-12-19 |
Family
ID=15408682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62146484A Pending JPS63310520A (en) | 1987-04-22 | 1987-06-12 | Manufacture of superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63310520A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360405A (en) * | 1989-07-25 | 1991-03-15 | Sumitomo Cement Co Ltd | Production of oxide superconducting thin film |
KR100807639B1 (en) | 2006-12-06 | 2008-02-28 | 한국기계연구원 | Method of manufacturing superconducting tapes using continuous coating and calcination process |
-
1987
- 1987-06-12 JP JP62146484A patent/JPS63310520A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360405A (en) * | 1989-07-25 | 1991-03-15 | Sumitomo Cement Co Ltd | Production of oxide superconducting thin film |
KR100807639B1 (en) | 2006-12-06 | 2008-02-28 | 한국기계연구원 | Method of manufacturing superconducting tapes using continuous coating and calcination process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763552A (en) | Method of fabricating a twisted composite superconductor | |
JPS63310520A (en) | Manufacture of superconductive wire | |
JPS63224116A (en) | Manufacture of thin film superconductor | |
EP0449316B1 (en) | Oxide superconducting wire, method of preparing the same, and method of handling the same | |
JP2563315B2 (en) | Superconductor wire and method of manufacturing the same | |
JP4128358B2 (en) | Manufacturing method of oxide superconductor | |
US5217943A (en) | Process for making composite ceramic superconducting wires | |
JP2585366B2 (en) | Oxide superconducting wire | |
JP3015389B2 (en) | Superconducting coil manufacturing method | |
JPH01256107A (en) | Manufacture of oxide superconducting coil | |
JPH01189813A (en) | Oxide superconductive wire material | |
RU2124772C1 (en) | Method for producing long high-temperature superconducting parts | |
JPS63241825A (en) | Manufacture of superconductor | |
JP2527790B2 (en) | Equipment for manufacturing long oxide superconducting materials | |
EP0631333B1 (en) | Process of fabrication of multilayer high temperature superconductor tapes | |
JPS63269413A (en) | Superconductive member and its manufacture | |
RU2124775C1 (en) | Method for producing long high-temperature superconducting parts | |
JPH0524806A (en) | Oxide superconductor | |
JPH01137525A (en) | Manufacture of oxide superconductive mold | |
JPS63289726A (en) | Manufacture of compound superconductive thin film | |
JPH11329118A (en) | Oxide superconducting composite material and its manufacture | |
JPH01183176A (en) | Manufacture of thin superconducting film | |
JPS63269422A (en) | Manufacture of superconductive unit | |
JPS63291405A (en) | Manufacture of superconducting coil | |
JPH02217306A (en) | Production of oxide superconductor |