JPH01183176A - Manufacture of thin superconducting film - Google Patents

Manufacture of thin superconducting film

Info

Publication number
JPH01183176A
JPH01183176A JP63007332A JP733288A JPH01183176A JP H01183176 A JPH01183176 A JP H01183176A JP 63007332 A JP63007332 A JP 63007332A JP 733288 A JP733288 A JP 733288A JP H01183176 A JPH01183176 A JP H01183176A
Authority
JP
Japan
Prior art keywords
group
metal
copper
oxygen
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007332A
Other languages
Japanese (ja)
Inventor
Shinichi Takano
真一 高野
Shuichi Nogawa
修一 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63007332A priority Critical patent/JPH01183176A/en
Publication of JPH01183176A publication Critical patent/JPH01183176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin film having stoichiometric composition in which The ratio of group IIIa metal:group IIa metal:copper is 1:2:3 by employing specific ratio of group IIIa metal:group IIa metal:copper:oxygen, and adhering these elements onto a substrate in an atmosphere having specific oxygen partial pressure ratio. CONSTITUTION:Group IIIa metal and/or its oxide having 1:2-4:5-7:0-7 of the ratio of group IIIa metal:group IIa metal:copper:oxygen, group IIa metal and/or its oxide, copper and/or its oxide are adhered on a substrate in an atmosphere having 10-200% of oxygen partial pressure ratio (O2/inert gas). After a film is grown, a thin film is heat treated at 600-1000 deg.C in an oxygen gas atmosphere (10-760Torr), and the crystallization of rhombic crystal system exhibiting superconductivity is accelerated. Thus, a thin superconducting film having stoichiometric composition exhibiting superconductivity and having 1:2:3 of the composition ratio of group IIIa metal:group IIa metal:copper can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、I[a族−IIa族−銅一酸素からなる超
電導薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a superconducting thin film consisting of I[group a-group IIa-copper-oxygen.

〔従来の技術〕[Conventional technology]

超電導材料をジョセフソン素子や5QUIDセンサなど
の各種クライオエレクトロニクス材料として利用する場
合には、その薄膜化が必要であるため、従来より種々の
超電導薄膜の製造方法が提案されている。代表的な製造
方法としては、イオンビームスパッタリング法、イオン
アシスト蒸着法、クラスタイオンビーム蒸着法、分子線
エピタキシー法等のPVD法があげられる。
When using superconducting materials as various cryoelectronic materials such as Josephson elements and 5QUID sensors, it is necessary to reduce the thickness of the superconducting materials, so various methods for manufacturing superconducting thin films have been proposed. Typical manufacturing methods include PVD methods such as ion beam sputtering, ion assisted deposition, cluster ion beam deposition, and molecular beam epitaxy.

また、超電導薄膜の種類では、主としてl1la族−I
Ia族−銅−酸素(または稀土類元素−IIa族−銅一
酸素)から組成の薄膜が液体窒素温度77にで超電導特
性を示している。このような超電導薄膜としては、YB
a 2Cu 30 b +。、 ErBazCu306
+、。
In addition, among the types of superconducting thin films, mainly l1la group-I
A thin film having a composition of group Ia-copper-oxygen (or rare earth element-group IIa-copper-oxygen) exhibits superconducting properties at a liquid nitrogen temperature of 77°C. As such a superconducting thin film, YB
a 2Cu 30 b +. , ErBazCu306
+,.

HoBa2CuJ6+++ (式中、Xは1.0〜0.
4である)などが知られている。
HoBa2CuJ6+++ (wherein, X is 1.0 to 0.
4) are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

たとえばスパッタリング法においては、ターゲット組成
とこれをスパッタして得られる薄膜組成との間に大幅な
組成ずれが生じ、薄膜の組成を超電導特性を示す化学量
論的な組成、たとえばY−Ba−Cu−0薄膜ではY:
Ba:Cuが1=2:3の組成にならず、超電導膜を安
定して得られない。
For example, in the sputtering method, a large compositional deviation occurs between the target composition and the thin film composition obtained by sputtering the target composition, and the composition of the thin film is changed to a stoichiometric composition exhibiting superconducting properties, such as Y-Ba-Cu. -0 thin film Y:
The composition of Ba:Cu is not 1=2:3, and a superconducting film cannot be stably obtained.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の超電導薄膜の製造方法は、nla族金属:I
Ia族族金属:銅酸酸素割合が1:2〜4:5〜7:0
〜7であるIIIa族金属および/またはその酸化物と
、IIIa族金属および/またはその酸化物と、銅およ
び/またはその酸化物とを、酸素分圧比(0□/不活性
ガス)が10〜200%の雰囲気中にて基板上に付着さ
せ、IIIa族−Tla族−銅一酸素・薄膜を作成する
ものである。
The method for producing a superconducting thin film of the present invention includes: NLA group metal: I
Group Ia group metal: cuprate oxygen ratio of 1:2 to 4:5 to 7:0
Group IIIa metal and/or its oxide having an oxygen concentration of ~7, Group IIIa metal and/or its oxide, and copper and/or its oxide having an oxygen partial pressure ratio (0□/inert gas) of 10 to It is deposited on a substrate in a 200% atmosphere to create a IIIa group-Tla group-copper-oxygen thin film.

前記IIIaIIIa族金属ては、たとえばY、Sc。The IIIa group metals include, for example, Y and Sc.

Ho、Er等があげられる。また、前記ITa族金属と
しては、たとえばBa、Sr等があげられる。
Examples include Ho and Er. Furthermore, examples of the ITa group metals include Ba, Sr, and the like.

上記各元素を基板上に付着させる手段としては、イオン
ビームスパッタリング法があげられる。
Ion beam sputtering can be cited as a means for depositing each of the above elements onto the substrate.

基板としては、たとえばC軸に垂直カットしたMgFz
+ CaFz+ サファイア、 yszなどがあげられ
る。
As a substrate, for example, MgFz cut perpendicular to the C axis
+CaFz+ Sapphire, ysz, etc.

イオンビームスパッタリング法により超電導薄膜を作成
する場合、真空容器内に上記組成のターゲットを装着し
、イオン源より引き出した不活性ガス(Ne、 Ar+
 Kr、 Xe等)のイオンビームをターゲットに照射
してターゲットよりスパッタし、このスパッタ粒子を基
板上に堆積させて薄膜を作成する。このとき、真空容器
内に酸素ガスを導入して0□/不活性ガスの酸素分圧比
が10〜200%になるように設定する。
When creating a superconducting thin film using the ion beam sputtering method, a target with the above composition is placed in a vacuum container, and an inert gas (Ne, Ar+
A thin film is created by irradiating a target with an ion beam of Kr, Xe, etc., causing sputtering from the target, and depositing the sputtered particles on a substrate. At this time, oxygen gas is introduced into the vacuum container and the oxygen partial pressure ratio of 0□/inert gas is set to be 10 to 200%.

〔作用〕[Effect]

このように、この発明では、IIIa族金属:IIa族
族金属:銅酸酸素割合が1:2〜4:5〜7:0〜7の
ものを用いて、酸素分圧比が10〜200%の雰囲気中
にてこれらの元素を基板上に付着させることにより、■
a族金属:IIa族金属:銅の組成比がl:2:3で超
電導特性を示す化学量論的組成の超電導薄膜を得ること
が可能になる。
Thus, in this invention, a group IIIa metal: group IIa metal: cuprate oxygen ratio of 1:2 to 4:5 to 7:0 to 7 is used, and an oxygen partial pressure ratio of 10 to 200% is used. By depositing these elements on the substrate in an atmosphere, ■
When the composition ratio of group a metal: group IIa metal: copper is 1:2:3, it becomes possible to obtain a superconducting thin film with a stoichiometric composition exhibiting superconducting properties.

このとき、前記I[[a族金属:IIa族金属:銅の割
合が上記範囲をはずれるときは上記組成比の超電導薄膜
が得られない。また、酸素分圧比が前記範囲より小なる
ときも、大なるときも、l1la族金属:IIa族金属
:銅の組成比が1:2:3で安定した超電導特性を示す
薄膜を得ることができない。
At this time, when the ratio of I[[a group metal: IIa group metal: copper] is out of the above range, a superconducting thin film having the above composition ratio cannot be obtained. Furthermore, when the oxygen partial pressure ratio is smaller than or larger than the above range, it is not possible to obtain a thin film exhibiting stable superconducting properties with a composition ratio of I1la group metal: IIa group metal: copper of 1:2:3. .

〔実施例〕〔Example〕

この発明の一実施例を第1図および第2図に基づいて説
明する。第1回はこの発明を実施するためのイオンビー
ムスパッタリング装置を示す説明回である。このスパッ
タリング装置は、直空容器1内に、スパッタ用イオン源
2とターゲット3と基板ヒータ4と酸素ガス導入パイプ
7とを備え、基板ヒータ4には基板5が取付けられ、一
定温度に加熱される。また、イオン源2にはKrガス導
入バイブロが接続され、イオン源2からKrイオンビー
ム8を引き出すように構成される。このときのKrガス
圧は約I X 10−’〜4 X 10−’torrで
あるのが適当である。
An embodiment of the present invention will be described based on FIGS. 1 and 2. The first session is an explanation session showing an ion beam sputtering apparatus for implementing the present invention. This sputtering apparatus includes an ion source 2 for sputtering, a target 3, a substrate heater 4, and an oxygen gas introduction pipe 7 in a direct air container 1. A substrate 5 is attached to the substrate heater 4 and heated to a constant temperature. Ru. Further, a Kr gas introducing vibro is connected to the ion source 2 and configured to extract a Kr ion beam 8 from the ion source 2. Appropriately, the Kr gas pressure at this time is about I x 10-' to 4 x 10-' torr.

基板5への成膜にあたっては、スパッタ用イオン源2か
ら引き出された500〜2000eV程度のエネルギを
もったKrイオンビーム8がターゲット3に衝突してス
パッタする。このスパッタによりターゲット3から放出
されたスパッタ粒子が基板5の表面に付着して成膜され
る。ががる成膜の間、ガス導入パイプ7より酸素ガスが
特定の酸素分圧比Oz/Krとなるように導入され、前
記スパッタ粒子と反応して基板5上にIIIa−I[a
−銅−酸素からなる薄膜が形成される。
In forming a film on the substrate 5, a Kr ion beam 8 extracted from the sputtering ion source 2 and having an energy of about 500 to 2000 eV collides with the target 3 to cause sputtering. Sputter particles emitted from the target 3 by this sputtering adhere to the surface of the substrate 5 to form a film. During the film formation, oxygen gas is introduced from the gas introduction pipe 7 so as to have a specific oxygen partial pressure ratio Oz/Kr, reacts with the sputtered particles, and forms IIIa-I[a
- A thin film of copper-oxygen is formed.

成膜後、薄膜を酸素ガス雰囲気下(10〜760 to
rr)で600〜1000°Cで熱処理し、超電導性を
示す斜方晶系の結晶化を促進させる。熱処理温度が前記
範囲よりも高いときは超電導性を示さない正方晶系とな
るため好ましくない。熱処理の時間は0.5〜10時間
、より好ましくは1〜4時間程度が適当である。熱処理
後、自然放冷等により室温まで冷却させる。
After film formation, the thin film is exposed to an oxygen gas atmosphere (10 to 760 to
rr) at 600 to 1000°C to promote orthorhombic crystallization that exhibits superconductivity. When the heat treatment temperature is higher than the above range, it is not preferable because it becomes a tetragonal system that does not exhibit superconductivity. The heat treatment time is suitably 0.5 to 10 hours, more preferably about 1 to 4 hours. After the heat treatment, it is cooled to room temperature by natural cooling or the like.

なお、基板5として線状のものを使用し、これにnIa
族−11a属−銅一酸素からなる超電導薄膜を被覆する
こともでき、これをコイルとして使用すれば超電導コイ
ルを得ることができる。
Note that a linear substrate is used as the substrate 5, and nIa is applied to this.
A superconducting thin film made of group-11a-copper-oxygen can also be coated, and if this is used as a coil, a superconducting coil can be obtained.

次に本発明者らが第1図に示すイオンビームスパッタリ
ング装置を用いて行った成膜実験について説明する。
Next, a film forming experiment conducted by the present inventors using the ion beam sputtering apparatus shown in FIG. 1 will be described.

ターゲット3としてY : Ba : Cuの組成比が
1:3:6であるY−Ba−Cu−0の合金を使用し、
これにKrイオンビームを照射してスパッタリングを行
った。このとき、真空容器1内に酸素ガスを噴出させ、
酸素分圧比(0□/ K r )を0〜250%の範囲
で変化させてY−Ba−Cu−0・薄膜を基板5(YS
Z基板)の表面に堆積させた。スパッタリング条件は以
下の通りである。
A Y-Ba-Cu-0 alloy with a Y:Ba:Cu composition ratio of 1:3:6 was used as the target 3,
This was irradiated with a Kr ion beam to perform sputtering. At this time, oxygen gas is ejected into the vacuum container 1,
The Y-Ba-Cu-0 thin film was deposited on the substrate 5 (YS
Z substrate). The sputtering conditions are as follows.

加速電圧:  1500V イオン電流:  40mA 基板温度: 300℃ 膜厚:1.2μm 成膜速度= 250人/分 基板上に形成された薄膜の組成をESCAにより分析し
た。その結果を第2図に示す。第2図から、酸素分圧比
(酸素ガス/Krガス)が10〜200%において、イ
ツトリウムに対するバリウムと銅の割合はほとんど変化
がなく、超電導特性を示す割合、すなわちY:Ba:C
uが1:2:3にあるのに対して、酸素分圧比力月0%
より小なるときはBa量が増加しCu量が減少し、また
200%より大なるときはBa量が減少しCu量が増加
した。
Accelerating voltage: 1500 V Ion current: 40 mA Substrate temperature: 300° C. Film thickness: 1.2 μm Film forming rate = 250 persons/min The composition of the thin film formed on the substrate was analyzed by ESCA. The results are shown in FIG. From Figure 2, when the oxygen partial pressure ratio (oxygen gas/Kr gas) is 10 to 200%, the ratio of barium and copper to yttrium hardly changes, and the ratio exhibiting superconducting properties, that is, Y:Ba:C
While u is 1:2:3, oxygen partial pressure specific force is 0%
When it was smaller, the Ba amount increased and the Cu amount decreased, and when it was more than 200%, the Ba amount decreased and the Cu amount increased.

、  このようにして得られた薄膜を電気炉にて酸素雰
囲気中で930°Cで1時間保持し、ついで徐冷し55
0°Cで4時間アニーリングを行った。このものを液体
窒素中に浸漬し、四端子法にて電気抵抗を測定したとこ
ろ、酸素分圧比が10〜200%の条件下で作成した薄
膜において、電気抵抗が0であった。
The thin film thus obtained was held at 930°C for 1 hour in an oxygen atmosphere in an electric furnace, and then slowly cooled to 55°C.
Annealing was performed at 0°C for 4 hours. When this material was immersed in liquid nitrogen and its electrical resistance was measured by a four-terminal method, the electrical resistance was 0 for the thin film created under conditions where the oxygen partial pressure ratio was 10 to 200%.

なお、不活性ガスとして、Krに代えてAr等の他の不
活性ガスを用いた場合にも同様の結果が得られた。
Note that similar results were obtained when other inert gases such as Ar were used instead of Kr.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、I[Iaa金属:IIa族族金属:
銅酸酸素比が1:2〜4:5〜7:o〜7のものを用い
て、酸素分圧比が10〜200%の雰囲気中にてこれら
の元素を基板上に付着させることにより、I[[a族金
属:IIa族金属:銅の組成比が1’: 2 : 3と
なった化学量論的組成の薄膜を得ることが可能となり、
安定した超電導特性を発現させることができる。
According to this invention, I[Iaa metal: Group IIa metal:
I. [[It is now possible to obtain a thin film with a stoichiometric composition in which the composition ratio of group a metal: group IIa metal: copper is 1': 2: 3,
Stable superconducting properties can be developed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例で使用するイオンビームス
パッタリング装置の概略図、第2図は酸素分圧比と薄膜
組成比との関係を示すグラフである。 1−真空容器、2−イオン源、3−ターゲット、5一基
板、6−・−Krガス導入パイプ、7−酸素ガス導入パ
イプ
FIG. 1 is a schematic diagram of an ion beam sputtering apparatus used in an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between oxygen partial pressure ratio and thin film composition ratio. 1-Vacuum container, 2-Ion source, 3-Target, 5-Substrate, 6--Kr gas introduction pipe, 7-Oxygen gas introduction pipe

Claims (1)

【特許請求の範囲】[Claims]  IIIa族金属:IIa族金属:銅:酸素の割合が1:2
〜4:5〜7:0〜7であるIIIa族金属および/また
はその酸化物と、IIa族金属および/またはその酸化物
と、銅および/またはその酸化物とを、酸素分圧比(O
_2/不活性ガス)が10〜200%の雰囲気中にて基
板上に付着させ、IIIa族−IIa族−銅−酸素・薄膜を
作成することを特徴とする超電導薄膜の製造方法。
The ratio of group IIIa metal: group IIa metal: copper: oxygen is 1:2.
The group IIIa metal and/or its oxide, the group IIa metal and/or its oxide, and the copper and/or its oxide are mixed at an oxygen partial pressure ratio (O
_2/inert gas) is deposited on a substrate in an atmosphere of 10 to 200% to form a group IIIa-group IIa-copper-oxygen thin film.
JP63007332A 1988-01-16 1988-01-16 Manufacture of thin superconducting film Pending JPH01183176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007332A JPH01183176A (en) 1988-01-16 1988-01-16 Manufacture of thin superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007332A JPH01183176A (en) 1988-01-16 1988-01-16 Manufacture of thin superconducting film

Publications (1)

Publication Number Publication Date
JPH01183176A true JPH01183176A (en) 1989-07-20

Family

ID=11663000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007332A Pending JPH01183176A (en) 1988-01-16 1988-01-16 Manufacture of thin superconducting film

Country Status (1)

Country Link
JP (1) JPH01183176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188664A (en) * 1988-01-22 1989-07-27 Sumitomo Electric Ind Ltd Production of superconducting thin film
US5747427A (en) * 1991-11-15 1998-05-05 Hokkaido Electric Power Co., Inc. Process for forming a semiconductive thin film containing a junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188664A (en) * 1988-01-22 1989-07-27 Sumitomo Electric Ind Ltd Production of superconducting thin film
US5747427A (en) * 1991-11-15 1998-05-05 Hokkaido Electric Power Co., Inc. Process for forming a semiconductive thin film containing a junction

Similar Documents

Publication Publication Date Title
EP0351035A2 (en) Preparation of superconducting oxide films using a pre-oxygen nitrogen anneal
JPS63241823A (en) Manufacture of superconducting thin film
EP0337725A2 (en) Preparation of superconducting oxide films using a pre-oxygen nitrogen anneal
JPS63224116A (en) Manufacture of thin film superconductor
JPH0284782A (en) Manufacture of josephson element
US5061684A (en) Production of thin layers of a high temperature superconductor (htsc) by a plasma-activated physical vapor deposition process, and cathodes used therein
JPH01183176A (en) Manufacture of thin superconducting film
JPS63239742A (en) Manufacture for film superconductor
JPS63310515A (en) Manufacture of superconductor membrane
JPH0825742B2 (en) How to make superconducting material
JPH01261204A (en) Production of oxide based superconductor
JPH01208327A (en) Production of thin film of superconductor
JPH01259582A (en) Manufacture of oxide superconductive thin film
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH01201008A (en) Production of thin film of oxide superconductor
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPH02118063A (en) Production of oxide superconductor
JPH01212752A (en) Apparatus for producing thin superconducting film
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH0337104A (en) Production of oxide superconducting thin film and apparatus therefor
JPH01286926A (en) Production of superconductor thin film
JPH01124919A (en) Manufacture of oxide superconductor
JPH01208464A (en) Production of superconductive membrane
JPH07100609B2 (en) Method of manufacturing thin film superconductor