JPS63309904A - Production of light guide - Google Patents

Production of light guide

Info

Publication number
JPS63309904A
JPS63309904A JP14465987A JP14465987A JPS63309904A JP S63309904 A JPS63309904 A JP S63309904A JP 14465987 A JP14465987 A JP 14465987A JP 14465987 A JP14465987 A JP 14465987A JP S63309904 A JPS63309904 A JP S63309904A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
thin film
optical waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14465987A
Other languages
Japanese (ja)
Inventor
Rei Otsuka
玲 大塚
Kazuhisa Yamamoto
和久 山本
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14465987A priority Critical patent/JPS63309904A/en
Publication of JPS63309904A publication Critical patent/JPS63309904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the confinement of light and to produce uniform light guides by forming a 1st thin film having the refractive index lower than the refractive index of an LiNbxTa(1-x)O3 (O<=x<=1) substrate on said substrate and forming a 2nd thin film having a higher refractive index and a light transmission region in a visible light part into the grooves formed by etching in the substrate. CONSTITUTION:The 1st thin film 10 having the refractive index lower than the refractive index of the LiNbxTa(1-x)O3 (O<=x<=1) recording medium 1 is formed on the surface of the substrate and part of the thin film 10 is selectively removed by using selective etching to selectively form the grooves 30 in the substrate 30. The 2nd thin film 40 which has the refractive index higher than the refractive index of the substrate 1 and having the transmission region in the visible light region is further formed in the grooves 30. Namely, the formation of the uniform light guides by using the method of the dry etching and the thin film formation which are extremely high in dimensional controllability is enabled. The light guides of a flush type having an extremely large difference in the refractive index are thereby formed and the formation of the guides with the good reproducibility of the width thereof is possible as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信および光応用計測分野で用いられる光導
波路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing an optical waveguide used in the fields of optical communication and optical applied measurement.

従来の技術 従来、強誘電体基板であるLiNbO3基板に、フォト
・プロセスやエツチング技術を用いて、LiNbO3基
板の表面層に光導波路を形成し、光スィッチや光変調器
に用いられてきた。これは、たとえばC1,Ljack
el、C,E、Rics、and Tj、Veselk
a“Proton exchange for hig
h−indexwaveguidesin LiNbO
3,”アプライ フィジックスレター(Appl 、 
Phys 、Lett )vol 41 、No 、 
7 、 pp 、607〜eos、(1sa2))に示
されている。
2. Description of the Related Art Conventionally, optical waveguides have been formed on the surface layer of a LiNbO3 substrate, which is a ferroelectric substrate, using photoprocessing or etching techniques, and used for optical switches and optical modulators. For example, C1, Ljack
el, C, E, Rics, and Tj, Veselk
a “Proton exchange for high
h-index wave guides in LiNbO
3, “Apply Physics Letter (Appl,
Phys, Lett) vol 41, No.
7, pp, 607-eos, (1sa2)).

以下光素子として光導波路を例にとり、その製造方法に
ついて説明する。第2図に従来のプロトン交換方法を用
いた光導波路の製造方法の具体的構成図を示す。1は強
誘電体基板であるL z N b Os基板、2はAd
金金属よる保護マスク、4はフォト・プロセスおよびエ
ツチングにより保護マスク2上に形成されたスリット、
6は安息香酸6中で230℃で形成されたプロトン交換
層よりなる光導波路である。eは230’(:の安息香
酸、7はヒーター、8は石英製ビーカーである。
Hereinafter, an optical waveguide will be taken as an example of an optical element, and a manufacturing method thereof will be described. FIG. 2 shows a specific configuration diagram of a method for manufacturing an optical waveguide using a conventional proton exchange method. 1 is a ferroelectric substrate L z N b Os substrate, 2 is an Ad
A protective mask made of gold metal; 4 is a slit formed on the protective mask 2 by photo process and etching;
6 is an optical waveguide made of a proton exchange layer formed in benzoic acid 6 at 230°C. e is 230' (: benzoic acid, 7 is a heater, and 8 is a quartz beaker.

発明が解決しようとする問題点 しかしながら上記のような光導波路の作製方法では、L
 iN b Os基板1とプロトン交換層6との屈折率
差か+0.12と小さくなおかつプロトン交換層の光伝
搬損失が2〜3d B/anと非常に大きい。
Problems to be Solved by the Invention However, in the method for manufacturing an optical waveguide as described above, L
The refractive index difference between the iN b Os substrate 1 and the proton exchange layer 6 is as small as +0.12, and the optical propagation loss of the proton exchange layer is extremely large as 2 to 3 dB/an.

そのため、光の閉じ込めか弱〈従来の方法で曲り導波路
たとえば入力光の2次高調波光を出力する非線形光学素
子すなわちS HG (SecondaryHa rm
on i c Gone r a t i on )素
子を作製することが困難であり、さらに均一な導波路の
形成が容易でないという問題点を有していた。
Therefore, light confinement is weak (conventional methods use curved waveguides, for example, nonlinear optical elements that output second harmonic light of input light, that is, SHG (SecondaryHarm
There have been problems in that it is difficult to fabricate an on ic gonera tion) element, and furthermore, it is not easy to form a uniform waveguide.

本発明は上記問題点に鑑み、LiNb、Ta(1−x)
03<Oく1く1)基板と光導波路層との屈折率差を大
きくし、従来の埋込み型の欠点であった光の閉じ込めを
良くしかつ均一な光導波路の作製を可能とする方法を提
供するものである。
In view of the above problems, the present invention provides LiNb, Ta(1-x)
03 This is what we provide.

問題点を解決するための手段 上記問題点を解決するために本発明の光導波路の製造方
法は、LiNbxTa(1、)03(Oくx<;:1)
基板上に前記基板より屈折率の低い第1の薄膜を形成し
、前記基板にエツチングによる溝を形成し、この溝に前
記基板より屈折率が高く、かつ可視光部が光透過領域で
ある第2の薄膜を形成するという方法を用いるものであ
る。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing an optical waveguide of the present invention includes LiNbxTa(1,)03(Ox<;:1)
A first thin film having a refractive index lower than that of the substrate is formed on a substrate, a groove is formed by etching on the substrate, and a first thin film having a refractive index higher than that of the substrate and whose visible light portion is a light transmitting region is formed in the groove. The second method is to form a thin film.

作  用 本発明は上記した方法により、埋込み型でなおかつ基板
との屈折率差の大きい光導波路が形成される。さらに、
プロトン交換の場合、光導波路幅。
Operation According to the present invention, an optical waveguide which is a buried type and has a large refractive index difference with the substrate is formed by the method described above. moreover,
For proton exchange, the optical waveguide width.

深さ等は拡散時間、温度等の種々な条件で変化し、これ
らの均一な条件制御は困難であるため均一な光導波路の
形成は容易でない。本発明は、ドライエツチングと薄膜
形成という極めて寸法制御性の高い方法を用いて、均一
な光導波路形成を可能とする。
The depth etc. change depending on various conditions such as diffusion time and temperature, and it is difficult to control these conditions uniformly, so it is not easy to form a uniform optical waveguide. The present invention makes it possible to form a uniform optical waveguide using dry etching and thin film formation, which are methods with extremely high dimensional controllability.

実施例 以下本発明の実施例の光導波路の作製方法について、図
面を参照しながら説明する。
EXAMPLE Hereinafter, a method for manufacturing an optical waveguide according to an example of the present invention will be explained with reference to the drawings.

第1図は本発明の光導波路の作製方法の工程断面図を示
すものである。第1図において、(alの工程は、+Z
板(+Z軸ニ垂M ’x 面) ノL I N bOs
基板1にS i02膜1oを0.3μmスパッタによっ
て蒸着形成する。すなわち、RF放電のスパッタ装置で
、4ooW、Axガス20sccm、全圧5X10−’
Torr  5to2のターゲットの条件下で、スパッ
タレートが150人/m i nで20m1n行なう工
程である。(b)の工程は、マイクロポジット3140
0−17によってフォト轡プロセスを行ないパターニン
グによって0.4μmのレジストパターン3の形成を行
なう工程である。fc)の工程は、分子線を用いてレジ
スト3のパターンをL I N b Os基板1に転写
させて0.5μmエツチングを行なう。
FIG. 1 shows a process cross-sectional view of the method for manufacturing an optical waveguide of the present invention. In FIG. 1, the process of (al is +Z
Plate (+Z-axis vertical M'x plane) ノ L I N bOs
A Si02 film 1o is deposited on the substrate 1 by sputtering to a thickness of 0.3 μm. That is, using an RF discharge sputtering device, 4ooW, Ax gas 20sccm, total pressure 5X10-'
This is a process in which the sputtering rate is 150 persons/min and 20 ml under the target condition of Torr 5 to 2. The process (b) is performed using Microposit 3140.
In this step, a resist pattern 3 of 0.4 .mu.m is formed by patterning using a photolithographic process according to steps 0-17. In step fc), the pattern of the resist 3 is transferred onto the LIN b Os substrate 1 using molecular beams, and etched by 0.5 μm.

すなわち、5iO310および基板1をレジストパター
ン3をマスクにエツチングして基板1に溝田を形成する
。(d)の工程は、(C)の工程の後に、T z 02
をスパッタで蒸着させる工程で、RF放電のスパッタ装
置に40 oW 、 A rガx2osccm、全圧1
.5 X 1O−5Torr、 TlO2のターゲット
の条件下で、スパッタレートが100人/minで5O
min行なう工程である。この工程で溝30にT z0
2光導波路40Bを形成する。510210上にモTl
o24oAが形成される。1は+Z板のL iN[3基
板で、1oは厚み0.3μmで屈折率が基板1よりも低
い1.46の8102膜で、3はマイクロポジットS 
1400−17 (シxプレイ社梨)の0.4μm厚の
レジストである。溝3oは(b)の工程で形成したレジ
ストパターン3をマスクとして分子ビームによるエツチ
ングにより形成した幅1μmの溝であシ、40Bは(C
)の工程で形成した溝3oに屈折率2.40で基板1よ
りも高い屈折率を有し、厚みO,SμmのT z O2
膜導波路である。40AはSio2膜1oの上に40B
と同時に蒸着形成された厚0.5pm、屈折率が2.4
oのTlO2である。
That is, 5iO 310 and the substrate 1 are etched using the resist pattern 3 as a mask to form a groove pattern on the substrate 1. In the step (d), after the step (C), T z 02
In the process of vapor depositing by sputtering, an RF discharge sputtering device was used with 40 oW, Ar gas x 2 osccm, and a total pressure of 1
.. 5 X 1O-5 Torr, 5O at a sputtering rate of 100 people/min under the conditions of TlO2 target.
This is a process that is performed for min. In this process, T z0 is applied to the groove 30.
Two optical waveguides 40B are formed. MoTl on 510210
o24oA is formed. 1 is a +Z plate LiN [3 substrate, 1o is an 8102 film with a thickness of 0.3 μm and a refractive index of 1.46 lower than substrate 1, and 3 is a microposit S
1400-17 (Six Play Company) with a thickness of 0.4 μm. The groove 3o is a groove with a width of 1 μm formed by molecular beam etching using the resist pattern 3 formed in the step (b) as a mask, and the groove 40B is a groove of (C
) T z O2 having a refractive index of 2.40, which is higher than that of the substrate 1, and having a thickness of O, S μm.
It is a membrane waveguide. 40A is 40B on top of Sio2 film 1o
Simultaneously deposited with a thickness of 0.5 pm and a refractive index of 2.4.
o TlO2.

以上のように光導波路の作製方法についてさらに説明す
る。本発明の工程は、すべてドライ工程で行なわれ溝は
再現性良く均一に形成でき、フォト・プロセスで形成さ
れたレジストパターンのスリット幅が導波路幅に等しく
、かつ再現性も罹めて良好である。そして、比較的簡単
な工程で作製でき、プロトン交換法による以上の屈折率
差が得られ、光の閉じ込めがよくなる。
The method for manufacturing the optical waveguide as described above will be further explained. All processes of the present invention are performed in a dry process, and the grooves can be formed uniformly with good reproducibility.The slit width of the resist pattern formed by the photo process is equal to the waveguide width, and the reproducibility is also very good. be. Furthermore, it can be manufactured through a relatively simple process, and a refractive index difference greater than that achieved by the proton exchange method can be obtained, resulting in better light confinement.

なお、本実施例では、0.3 pmのS iO2膜10
をスパッタにより形成し、その上に0.4μmのレジス
ト3のパターンを形成し、分子線によるエツチングで0
.6μmの溝3oをLiNbO3基板1に形成し、その
上からスパッタで0.5μmのT 102膜を形成する
としたが、0.3μmの3102膜1oは基板より屈折
率が低い膜であれば他のものでもよく、厚みや形成方法
も種々なものを用いることができる。レジスト3の厚み
も任意に選択でき、溝30の形成も、エツチング方法や
深みも種々なものを用いることができ、T 102膜も
、形成方法や厚みは任意に選択可能である。また、基板
1としては、L iN b O3に限らずLii’Jb
xTa(1−x)03(0<;:x<;:1 )のもの
が適用可能である。
In this example, a 0.3 pm SiO2 film 10
was formed by sputtering, a 0.4 μm resist 3 pattern was formed on it, and a 0.4 μm resist pattern was formed by molecular beam etching.
.. A 6 μm groove 3o is formed on the LiNbO3 substrate 1, and a 0.5 μm T102 film is formed on it by sputtering. Various thicknesses and forming methods can be used. The thickness of the resist 3 can be arbitrarily selected, and various etching methods and depths can be used for forming the grooves 30, and the forming method and thickness of the T102 film can also be arbitrarily selected. In addition, as the substrate 1, not only LiNbO3 but also Lii'Jb
xTa(1−x)03(0<;:x<;:1) is applicable.

発明の効果 以上のように本発明は、基板より屈折率の低い薄膜を形
成する工程と、エツチングによシ基板に溝を形成する工
程と、その上に基板より屈折率の高い薄膜を形成する工
程を用いることによシ、埋込み型で屈折率差が大きい光
導波路が形成され、導波路幅も再現性良く形成可能で、
光導波路の工業的製造に大きく寄与する。
Effects of the Invention As described above, the present invention includes the steps of forming a thin film with a refractive index lower than that of the substrate, forming grooves on the substrate by etching, and forming a thin film having a higher refractive index than the substrate thereon. By using this process, an embedded type optical waveguide with a large refractive index difference can be formed, and the waveguide width can be formed with good reproducibility.
This will greatly contribute to the industrial production of optical waveguides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における光導波路の製造方法を
示す工程断面図、第2図は従来のプロトン交換方法を用
いた光導波路の製造方法を説明するための説明図である
。 1・・・・・・L z N b Os基板、3・・・・
・・レジスト、1゜・・・・・・Sio2.3o・・・
・・・溝、40B・・・・・・光導波路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名; 区 菅              8派 派 −?Q−
FIG. 1 is a process sectional view showing a method for manufacturing an optical waveguide in an embodiment of the present invention, and FIG. 2 is an explanatory diagram for explaining a method for manufacturing an optical waveguide using a conventional proton exchange method. 1...LzNbOs substrate, 3...
...Resist, 1°...Sio2.3o...
... Groove, 40B... Optical waveguide. Name of agent: Patent attorney Toshio Nakao and one other person; Suga Ward 8-? Q-

Claims (2)

【特許請求の範囲】[Claims] (1)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板の表面上に、前記基板より屈折率の低
い第1の薄膜を形成する工程と、選択エッチングを用い
て前記薄膜の一部を選択的に除去しかつ前記基板に溝を
選択的に形成する工程と、前記溝に前記基板より屈折率
が高くて可視光領域に透過領域を持つ第2の薄膜を形成
する工程を有してなる光導波路の製造方法。
(1) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) Forming a first thin film having a lower refractive index than the substrate on the surface of the substrate, selectively removing a part of the thin film using selective etching, and forming grooves in the substrate. A method for manufacturing an optical waveguide comprising the steps of selectively forming a second thin film having a higher refractive index than the substrate and having a transparent region in the visible light region in the groove.
(2)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板が、+Z板である特許請求の範囲第1
項記載の光導波路の製造方法。
(2) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) Claim 1 in which the substrate is a +Z board
1. Method for manufacturing an optical waveguide as described in .
JP14465987A 1987-06-10 1987-06-10 Production of light guide Pending JPS63309904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14465987A JPS63309904A (en) 1987-06-10 1987-06-10 Production of light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14465987A JPS63309904A (en) 1987-06-10 1987-06-10 Production of light guide

Publications (1)

Publication Number Publication Date
JPS63309904A true JPS63309904A (en) 1988-12-19

Family

ID=15367234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14465987A Pending JPS63309904A (en) 1987-06-10 1987-06-10 Production of light guide

Country Status (1)

Country Link
JP (1) JPS63309904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187257A (en) * 2008-10-21 2011-09-14 高通Mems科技公司 Fabricating optical waveguides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187257A (en) * 2008-10-21 2011-09-14 高通Mems科技公司 Fabricating optical waveguides

Similar Documents

Publication Publication Date Title
EP0598395B1 (en) An optical waveguide device and a method for fabricating the same
JP2006512611A (en) Optical waveguide fabrication method
JPH0792337A (en) Polymer core optical waveguide and its production
US5155620A (en) Nonlinear optical devices and methods
JPS5842003A (en) Polarizing plate
JPS63309904A (en) Production of light guide
JPS63303308A (en) Production of light guide
JPH0313907A (en) Production of substrate type optical waveguide
US4957589A (en) Process for producing second harmonic wave generating device
JPS63158506A (en) Production of optical element
JPH06174908A (en) Production of waveguide type diffraction grating
JPS6172206A (en) Substrate type waveguide and its production
JPH01172936A (en) Manufacture of optical wavelength converting element
JPS603606A (en) Optical coupling device
JPH06222403A (en) Directional coupling type optical waveguide
JP2570822B2 (en) Manufacturing method of optical waveguide
JPH04159515A (en) Production of optical waveguide type control element
Gehler et al. ARROW's in KTiOPO 4
JPS63307406A (en) Production of light guide
JPH01140124A (en) Optical device
JPH0774843B2 (en) Optical element manufacturing method
JPH07159637A (en) Production of ridge type optical waveguide
JP2000352636A (en) Production of optical waveguide element
JPH0715528B2 (en) Method for producing tapered optical waveguide
JPH0310205A (en) Production of substrate type optical waveguide