JPH04159515A - Production of optical waveguide type control element - Google Patents

Production of optical waveguide type control element

Info

Publication number
JPH04159515A
JPH04159515A JP28613690A JP28613690A JPH04159515A JP H04159515 A JPH04159515 A JP H04159515A JP 28613690 A JP28613690 A JP 28613690A JP 28613690 A JP28613690 A JP 28613690A JP H04159515 A JPH04159515 A JP H04159515A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
electrode
optical
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28613690A
Other languages
Japanese (ja)
Inventor
Masaaki Iwasaki
正明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28613690A priority Critical patent/JPH04159515A/en
Publication of JPH04159515A publication Critical patent/JPH04159515A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Abstract

PURPOSE:To relieve the damages, stresses, etc., to a substrate (waveguide) formed at the time of electrode pattern formation and to prevent the deterioration of device characteristics by patterning a thin film for electrodes covering optical waveguides by dry etching, then completing the electrode patterning by wet etching. CONSTITUTION:Two pieces of the Ti-diffused waveguides 12, 13 are formed on a lithium niobate crystal substrate 11, the X-axis of which is perpendicular to the substrate plane. Control electrodes are installed via a buffer layer 14 consisting of an SiO2 film on the optical waveguides. Mask patterns are then formed by a photoresist and are dry etched by an ion beam sputtering device after the formation of the mask patterns to form the Au electrodes 17, 18. Finally, the Ti is patterned by chemical etching (wet etching) to form the Ti electrodes 19, 20 and the resist is removed. The damages, stresses, etc., generated on the substrate (waveguide) at the time of the electrode pattern formation are relieved in this way. The production tolerance of the device is increased and the yield is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信等において光波の変調、光路の切り替え
等を行う光スィッチに関し、特に結晶基板上部表面に形
成された光導波路を用いた導波形光スイッチに関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical switch that modulates light waves, switches optical paths, etc. in optical communications, etc., and particularly relates to an optical switch that modulates light waves, switches optical paths, etc. This invention relates to waveform optical switches.

〔従来の技術〕[Conventional technology]

光通信システムの実用化が進み、大容量や多機能をもつ
さらに高度のシステムへと開発が進められている。光伝
送路網の交換機能、光データバスにおける端末間の高速
接続、切り替え等の新たな機能が求められており、それ
らを可能にする光スイツチングネットワークの必要性が
高まっている。現在実用されている光スィッチは、プリ
ズム、ミラー、ファイバ等を機械的に移動させるもので
あり、低速であること、信頼性が不十分なこと、形状が
大きくマトリクス化に不適なこと等の欠点がある。これ
を解決する手段として開発か進められているものは基板
上に設置した光導波路を用いた導波形の光スィッチであ
り、高速、多素子の集積化が可能、高信頼等の特長があ
る。特にLiNbO3結晶等の強誘電体材料を用いたも
のは、光吸収が小さく低損失であることと大きな電気光
学効果を有しているため高効率である等の特長がある。
Optical communication systems are being put into practical use, and more advanced systems with large capacity and multiple functions are being developed. New functions such as switching functions of optical transmission networks, high-speed connections between terminals in optical data buses, and switching are required, and the need for optical switching networks that make these functions possible is increasing. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size that makes them unsuitable for matrix formation. There is. A waveguide type optical switch that uses an optical waveguide installed on a substrate is currently being developed as a means to solve this problem, and has features such as high speed, integration of multiple elements, and high reliability. In particular, those using ferroelectric materials such as LiNbO3 crystals have features such as low light absorption, low loss, and high efficiency due to large electro-optic effects.

従来の導波形光スイッチの一例である方向性結合形光ス
イッチの斜視図を第2図に示す。光学軸に垂直に切り出
して整形しなLiNbO3結晶基板11にTi等の金属
を拡散して先導波路12.13が形成されている。これ
ら光導波i12,13は数μm程度の間隔で近接して設
置されることにより光方向性結合器24を構成しており
、光導波路12.13上にバッファ層(図では省略)を
介して制御電極25.26が設置されている。この制御
電極25.26の形成法には幾つかの手法があるが、マ
スクパターンが忠実に転写される異方性エツチング(ド
ライエツチング)によるものが−般的である。このスイ
ッチの基本的な動作原理は、先ず、片方の光導波路例え
ば光導波路12の端面から入射した光波27は光導波路
12中を伝搬し、光方向性結合器24の部分で近接した
光導波路13にエネルギーが移行し、光方向性結合器2
4の長さを完全結合長Lcに一致させた場合、はぼ10
0%のエネルギーが光導波路13に移って出射光28と
なる。一方、制御電極25.26との間に電圧を印加し
た場合、電気光学効果によって光導波路12.13の屈
折率が変化して両者の屈折率が非対称となり、両者を伝
搬する光波の間で位相不整合が生じて結合状態が変化し
、適当な印加電圧のもとでは元の光導波路12ヘエネル
ギーが移り出射光29となる。
FIG. 2 shows a perspective view of a directional coupling type optical switch, which is an example of a conventional waveguide type optical switch. A leading waveguide 12, 13 is formed by diffusing a metal such as Ti into a LiNbO3 crystal substrate 11 that is cut out and shaped perpendicularly to the optical axis. These optical waveguides i12 and 13 are installed close to each other with an interval of about several μm to constitute an optical directional coupler 24, and a buffer layer (not shown in the figure) is placed on the optical waveguides 12 and 13. Control electrodes 25,26 are installed. Although there are several methods for forming the control electrodes 25 and 26, the most common method is anisotropic etching (dry etching) in which a mask pattern is faithfully transferred. The basic operating principle of this switch is that first, a light wave 27 incident from the end face of one of the optical waveguides, for example, the optical waveguide 12, propagates through the optical waveguide 12, and at the optical directional coupler 24, the optical wave 27 enters the adjacent optical waveguide 13. The energy is transferred to the optical directional coupler 2.
If the length of 4 is made to match the complete bond length Lc, the length is 10
0% of the energy is transferred to the optical waveguide 13 and becomes the output light 28. On the other hand, when a voltage is applied between the control electrodes 25 and 26, the refractive index of the optical waveguide 12 and 13 changes due to the electro-optic effect, and the refractive index of both becomes asymmetric, resulting in a difference in the phase between the light waves propagating through them. A mismatch occurs and the coupling state changes, and under an appropriate applied voltage, energy is transferred to the original optical waveguide 12 and becomes emitted light 29.

以上のような方向性結合形の他に、導波形光スイッチに
は全反射形、バランスドブリッジ形、Y分岐形等の方式
があるが、光スィッチにとって重要なスイッチ電圧やク
ロストークを比較的容易に低くでき、且つ構成が最も簡
単なのは方向性結合形であることが知られている。
In addition to the directional coupling type mentioned above, waveguide optical switches include total reflection type, balanced bridge type, Y-branch type, etc., but these types are relatively effective at reducing switch voltage and crosstalk, which are important for optical switches. It is known that the directional coupling type is the one that can be easily lowered and has the simplest configuration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように方向性結合形光スイッチでは、光路の切
り替えを制御するために導波路上に電極パターンを形成
する必要がある。しかしながら、従来の異方性エツチン
グくドライエツチング)による方法では、少しのオーバ
ーエツチングがそれによるダメージ等によりデバイスの
特性を劣化させ、歩留りを落とす要因となる。従って、
デバイスの製作トレランスを大きくし、歩留り向上を図
るためには、電極パターン形成時に生じる基板(導波路
)へのダメージ等を緩和させなければならない。
As described above, in the directional coupling type optical switch, it is necessary to form an electrode pattern on the waveguide in order to control switching of the optical path. However, in conventional methods using anisotropic etching (dry etching), even a small amount of overetching causes damage, which deteriorates device characteristics and reduces yield. Therefore,
In order to increase device manufacturing tolerance and improve yield, it is necessary to alleviate damage to the substrate (waveguide) that occurs during electrode pattern formation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、基板表面に選択的に光導波路を形成する工程
と、光導波路を直接あるいは間接的に覆うように電極用
薄膜を形成する工程と、電極用薄膜をトライエツチング
によりパターニングを行った後、次いでウェットエツチ
ングにより電極パターニングを完了する工程を有するこ
とを特徴とする光導波路型制御素子の製造方法である。
The present invention comprises a process of selectively forming an optical waveguide on the surface of a substrate, a process of forming a thin film for an electrode so as to directly or indirectly cover the optical waveguide, and a process after patterning the thin film for an electrode by tri-etching. This method of manufacturing an optical waveguide type control element is characterized by comprising the step of completing electrode patterning by wet etching.

〔作用〕[Effect]

ニオブ酸リチウムやタンタル酸リチウム等の光学的異方
性を有する結晶に熱拡散等による光導波路が形成されて
いる結晶基板に1層または多層の薄膜からなる電極パタ
ーンを形成する。ここで、多層の場合は、最下層膜すな
わち基板表面に最も近い電極薄膜に他の薄膜よりもエツ
チングレートの遅い電極材料を用いることにより、−こ
れよりも上層部を異方性エツチング(ドライエツチング
)して生じるダメージやパターン効果によるストレス等
をこの最下層でストップ(吸収)し、最後にこの最下層
のみをウェットエツチングする。1層の場合は、薄膜を
数百へ程度残してドライエツチングによりパターニング
する。この後、残りの部分をウェットエツチングにより
エツチングしてパターン化する。これにより、異方性エ
ツチング(ドライエツチング)して生じるダメージを基
板(導波路)に与えることなく、また、電極パターニン
グによるストレスも緩和することができる。
An electrode pattern consisting of one or multiple thin films is formed on a crystal substrate in which an optical waveguide is formed by thermal diffusion or the like in a crystal having optical anisotropy such as lithium niobate or lithium tantalate. In the case of multilayers, an electrode material with a slower etching rate than other thin films is used for the lowest layer film, that is, the electrode thin film closest to the substrate surface, and the upper layer is anisotropically etched (dry etching). ) Damage caused by etching and stress due to pattern effects are stopped (absorbed) at this bottom layer, and finally only this bottom layer is wet-etched. In the case of one layer, patterning is performed by dry etching, leaving about several hundred thin films. Thereafter, the remaining portion is etched by wet etching to form a pattern. This prevents the substrate (waveguide) from being damaged by anisotropic etching (dry etching), and also alleviates stress caused by electrode patterning.

ウェットエツチングは、バタンの加工精度、再現性など
でドライエツチングに劣るが、結晶基板に損傷を与えな
い利点がある。また、ドライエツチングに対するエツチ
ングレートを考慮しさえすれば膜厚を薄くすることによ
りサイドエツチングによるアンダーカットも小さく抑え
ることができる。従って、電極パターン形成時に生じる
基板(導波路)へのダメージ、ストレス等を緩和させる
ことにより、デバイスの製作トレランスを大きくし歩留
り向上を図ることができる。
Although wet etching is inferior to dry etching in terms of pattern processing accuracy and reproducibility, it has the advantage of not damaging the crystal substrate. Furthermore, by making the film thinner, the undercut caused by side etching can be kept small as long as the etching rate for dry etching is taken into consideration. Therefore, by alleviating damage, stress, etc. to the substrate (waveguide) that occurs during electrode pattern formation, it is possible to increase device manufacturing tolerance and improve yield.

〔実施例〕〔Example〕

第1図は本発明の一実施例に係る光導波路型制御素子の
製造工程の説明図である。本実施例の光導波路型制御素
子はZ軸が基板表面に垂直なニオブ酸リチウム結晶基板
11上に2本のTi拡散導波路12.13を形成する。
FIG. 1 is an explanatory diagram of the manufacturing process of an optical waveguide type control element according to an embodiment of the present invention. In the optical waveguide type control element of this embodiment, two Ti diffusion waveguides 12 and 13 are formed on a lithium niobate crystal substrate 11 whose Z axis is perpendicular to the substrate surface.

これら光導波路は数μm程度の間隔で近接して設置され
ることにより光方向性結合器を構成しており、光導波路
上にSiO2膜で成るバッファ層14を介して制御電極
が設置される。制御電極の形成法は、まずバッファ層1
4を覆うようにTi薄膜15を、続いてAu薄膜16を
スパッタ法により形成する(第1図〈a))。このとき
Auの膜厚はTiの十〜士数倍程度である。つぎにフォ
トレジストによりマスクパターン形成後イオンビームエ
ツチング装置によりドライエツチングしAu電!17.
18を形成する(第1図(b))。エツチングガス中に
僅かに酸素を混ぜておくとTiのエツチングレートは極
端に遅くなり、結果的に選択的にAuのみをエツチング
することができる。よって最後にTiを化学エツチング
(ウェットエツチング)によりバターニングを行いTi
電極19.20を形成しレジストを除去する(第1図(
C))。制御電極のトータルの膜厚に対しTi膜厚は非
常に薄いのでサイドエツチングによるアンダーカットも
最小限に抑えることができる。従って、電極パターン形
成時に生じる基板(導波路)へのダメージ、ストレス等
を緩和させることによりデバイス特性の劣化を防ぎ、製
作トレランスを大きくし歩留り向上を図ることができる
These optical waveguides constitute an optical directional coupler by being placed close to each other at intervals of about several μm, and a control electrode is placed on the optical waveguides via a buffer layer 14 made of a SiO2 film. The method for forming the control electrode is to first form a buffer layer 1.
A Ti thin film 15 and then an Au thin film 16 are formed by sputtering so as to cover 4 (FIG. 1(a)). At this time, the thickness of Au is approximately ten to several times as thick as that of Ti. Next, after forming a mask pattern using photoresist, dry etching is performed using an ion beam etching device to form an Au electrode. 17.
18 (FIG. 1(b)). When a small amount of oxygen is mixed in the etching gas, the etching rate of Ti becomes extremely slow, and as a result, only Au can be selectively etched. Therefore, the Ti is finally buttered by chemical etching (wet etching).
Electrodes 19 and 20 are formed and the resist is removed (see Figure 1 (
C)). Since the Ti film thickness is very thin compared to the total film thickness of the control electrode, undercuts due to side etching can also be minimized. Therefore, by alleviating damage, stress, etc. to the substrate (waveguide) that occurs during electrode pattern formation, deterioration of device characteristics can be prevented, manufacturing tolerance can be increased, and yield can be improved.

第3図はバッファ層を必要としない場合の光導波路型制
御素子の断面図である。X軸が基板表面に垂直なニオブ
酸リチウム結晶基板31上に2本のTi拡散導波路12
.13が形成されており、基板表面に設置された制御電
極35により基板表面に平行に電界を作用させることに
より光のスイッチングを行うものである。こうしたバッ
ファ層を必要としない先導波路型制御素子においては、
バッファ層のない分特に有効である。作り方は第1図と
同じ(但し、バッファ層形成工程は省く)である。
FIG. 3 is a cross-sectional view of an optical waveguide type control element that does not require a buffer layer. Two Ti diffusion waveguides 12 are placed on a lithium niobate crystal substrate 31 whose X axis is perpendicular to the substrate surface.
.. 13 is formed, and light switching is performed by applying an electric field parallel to the substrate surface using a control electrode 35 installed on the substrate surface. In a guided waveguide type control element that does not require such a buffer layer,
This is particularly effective since there is no buffer layer. The manufacturing method is the same as that shown in FIG. 1 (however, the buffer layer forming step is omitted).

なお、実施例では電極用の薄膜を2層構造としたが、1
層で形成してもよい。この場合は、ドライエツチング工
程で薄膜の厚さ数百へ程度を除去してバターニングを完
成すればよい。
In addition, in the example, the thin film for the electrode had a two-layer structure, but 1
It may be formed in layers. In this case, the patterning can be completed by removing the thin film to a thickness of several hundred using a dry etching process.

〔発明の効果〕 以上説明したように本発明は、基板表面に選択的に光導
波路を形成する工程と、先導波路を直接あるいは間接的
に覆うように電極用薄膜を形成する工程と、電極用薄膜
をドライエツチングによりバターニングを行った後、次
いでウェットエツチングにより電極バターニングを完了
する工程を有することを特徴とする光導波路型制御素子
の製造方法により、電極パターン形成時に生じる基板(
導波路)へのダメージ、ストレス等を緩和させデバイス
特性の劣化を防ぎ、製作トレランスを大きくし歩留りを
向上させる効果がある。
[Effects of the Invention] As explained above, the present invention includes a step of selectively forming an optical waveguide on the surface of a substrate, a step of forming an electrode thin film so as to directly or indirectly cover the guide waveguide, and a step of forming an electrode thin film so as to cover the guide waveguide directly or indirectly. A method for manufacturing an optical waveguide type control element, which is characterized by the step of patterning a thin film by dry etching and then completing electrode patterning by wet etching, allows the substrate (
This has the effect of alleviating damage and stress to waveguides, preventing deterioration of device characteristics, increasing manufacturing tolerance, and improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る光導波路型制御素子の
製造工程の説明図、第2図は従来例の斜視図、第3図は
バッファ層を必要としない場合の断面図である。 11.31・・・ニオブ酸リチウム結晶基板、12゜1
3・・・Ti拡散導波路、14・・・バッファ層(Si
O2膜) 、1 !5−T i膜、16−Au膜、17
゜18−A、u電極、19.2O−Tiii極、24−
・・方向性結合器、25,26.35・・・制御電極、
27・・・入射光、28.29・・・出射光。
FIG. 1 is an explanatory diagram of the manufacturing process of an optical waveguide type control element according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional example, and FIG. 3 is a cross-sectional view when a buffer layer is not required. . 11.31...Lithium niobate crystal substrate, 12゜1
3...Ti diffused waveguide, 14...buffer layer (Si
O2 membrane), 1! 5-Ti film, 16-Au film, 17
゜18-A, u electrode, 19.2O-Tiii pole, 24-
... Directional coupler, 25, 26.35 ... Control electrode,
27...Incoming light, 28.29...Outgoing light.

Claims (1)

【特許請求の範囲】 1、基板表面に選択的に光導波路を形成する工程と、前
記光導波路を直接あるいは間接的に覆うように電極用薄
膜を形成する工程と、前記電極用薄膜を〜数百Å程度残
しドライエッチングによりパターニングを行った後、次
いでウェットエッチングにより電極パターニングを完了
する工程を有することを特徴とする光導波路型制御素子
の製造方法。 2、基板表面に選択的に光導波路を形成する工程と、前
記光導波路を直接あるいは間接的に覆うようにエッチン
グレートの異なる少なくとも2種類以上の電極用薄膜を
形成する工程と、前記電極用薄膜をドライエッチングに
より少なくとも最下層を残しパターニングを行った後、
次いでウェットエッチングにより電極パターニングを完
了する工程を有することを特徴とする光導波路型制御素
子の製造方法。
[Claims] 1. A step of selectively forming an optical waveguide on the surface of a substrate, a step of forming an electrode thin film so as to directly or indirectly cover the optical waveguide, and a step of forming an electrode thin film by forming a plurality of electrode thin films. 1. A method for manufacturing an optical waveguide type control element, comprising the steps of patterning by dry etching to leave about 100 Å, and then completing electrode patterning by wet etching. 2. A step of selectively forming an optical waveguide on the surface of the substrate, a step of forming at least two or more types of electrode thin films having different etching rates so as to directly or indirectly cover the optical waveguide, and the electrode thin film. After patterning by dry etching leaving at least the bottom layer,
A method for manufacturing an optical waveguide control element, comprising the step of completing electrode patterning by wet etching.
JP28613690A 1990-10-24 1990-10-24 Production of optical waveguide type control element Pending JPH04159515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28613690A JPH04159515A (en) 1990-10-24 1990-10-24 Production of optical waveguide type control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28613690A JPH04159515A (en) 1990-10-24 1990-10-24 Production of optical waveguide type control element

Publications (1)

Publication Number Publication Date
JPH04159515A true JPH04159515A (en) 1992-06-02

Family

ID=17700400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28613690A Pending JPH04159515A (en) 1990-10-24 1990-10-24 Production of optical waveguide type control element

Country Status (1)

Country Link
JP (1) JPH04159515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709711A1 (en) * 1994-10-25 1996-05-01 Hughes Aircraft Company Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same
JP2022047597A (en) * 2020-09-14 2022-03-25 富士通オプティカルコンポーネンツ株式会社 Optical device and light transmitter-receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709711A1 (en) * 1994-10-25 1996-05-01 Hughes Aircraft Company Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same
JP2022047597A (en) * 2020-09-14 2022-03-25 富士通オプティカルコンポーネンツ株式会社 Optical device and light transmitter-receiver

Similar Documents

Publication Publication Date Title
CA2174070C (en) Acoustooptical waveguide device for wavelength selection
JPH0728007A (en) Waveguide type optical device
JPH0452922B2 (en)
JP2000137125A (en) Method for manufacturing diffusion type optical waveguide structure onto substrate
JPH04159515A (en) Production of optical waveguide type control element
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
JPH04172316A (en) Wave guide type light control device
JP2739405B2 (en) Electric field sensor
JP2613942B2 (en) Waveguide type optical device
US7061023B2 (en) Integrated optical devices and methods of making such devices
JPH0721597B2 (en) Optical switch
JPS6396626A (en) Waveguide type light control element
JPH01201609A (en) Optical device
JPS61134730A (en) Production of optical control element
JPH10228039A (en) Waveguide type optical arrester
JPH01201628A (en) Optical switch
JPH03256028A (en) Light controlling device
JPH0361932B2 (en)
US6596557B1 (en) Integrated optical devices and methods of making such devices
JP2720654B2 (en) Light control device
JPS6269247A (en) Optical switch
JP2812320B2 (en) Integrated optical circuit and manufacturing method thereof
JPH10307225A (en) Waveguide type optical element and its manufacture
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPS5840725B2 (en) Thin film optical switch matrix device