JPS63303009A - Manufacture of grain-oriented silicon steel sheet with superlow iron loss - Google Patents

Manufacture of grain-oriented silicon steel sheet with superlow iron loss

Info

Publication number
JPS63303009A
JPS63303009A JP13333887A JP13333887A JPS63303009A JP S63303009 A JPS63303009 A JP S63303009A JP 13333887 A JP13333887 A JP 13333887A JP 13333887 A JP13333887 A JP 13333887A JP S63303009 A JPS63303009 A JP S63303009A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
silicon steel
rolled
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13333887A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Hiroshi Koho
光法 弘視
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13333887A priority Critical patent/JPS63303009A/en
Publication of JPS63303009A publication Critical patent/JPS63303009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably manufacture a grain-oriented silicon steel sheet with superlow iron loss, by subjecting a silicon-containing steel sheet to secondary recrystallization while applying temp. difference to the direction perpendicular to a rolling direction, by forming a high-tensile film by a CCD method, and by applying purification annealing to the above. CONSTITUTION:A continuously cast slab of silicon-containing steel is heated to about 1,390 deg.C, hot-rolled, and subjected to a single cold rolling or cold-rolled twice while process-annealed between the cold rolling stages. Subsequently, the cold-rolled sheet is subjected to primary recrystallization annealing which doubles as decarburization at about 850 deg.C. The annealed steel is wound up in a loose coil in which respective sheet surfaces are mutually separated, and then, secondary recrystallization is applied to the above in a furnace with temp. gradient while applying temp. difference to the width direction of the coil, and simultaneously, an extra thin high-tensile film is formed on the above by a CVD method. As the above film, the one consisting of one or more kinds among the nitrides and/or carbides of Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo, W, Co, Ni, Al, B, and Si and the oxides of Al, Ni, Cu, W, Si, Ti and Zn is suitably used. The steel sheet after film formation is heated in H2 and subjected to purification annealing so as to be formed into a product of silicon steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超低鉄損一方向性珪素鋼板の製造方法に関
し、とくに特殊な手法による2次再結晶焼鈍とCVDに
よる表面被膜形成技術とをたくみに組合わせることによ
って鉄損特性の有利な改善を図ろうとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing ultra-low core loss unidirectional silicon steel sheets, and in particular, to a method of manufacturing an ultra-low core loss unidirectional silicon steel sheet, in particular, secondary recrystallization annealing using a special method and surface coating formation technology using CVD. The aim is to advantageously improve iron loss characteristics by skillfully combining the following.

一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
、鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性珪素
鋼板の使用に当たっての加工、組立てを経たのち、いわ
ゆるひずみ取り焼鈍がほどこされた場合に、特性劣化の
随伴を不可避に生じて、使途についての制限を受ける不
利が指摘される。
Remarkable development efforts in recent years to improve the electrical and magnetic properties of unidirectional silicon steel sheets, particularly to meet the extreme demands of reducing iron loss, are gradually bearing fruit. A serious problem associated with this is that when unidirectional silicon steel sheets are subjected to so-called strain relief annealing after processing and assembly, they inevitably suffer from deterioration of their properties, which limits their use. Disadvantages are pointed out.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を(110) (001] 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され電気・磁気的特
性として製品の磁束密度(B、。値で代表される)が高
く、鉄損(W+?/S。値で代表される)の低いことが
要求される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss, orientation, and are mainly used in transformers and other electrical equipment. When used as an iron core, the product is required to have high magnetic flux density (represented by the value B) and low iron loss (represented by the value W+?/S) as electrical and magnetic properties.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明・改善が加えら
れ、今日では板厚0.30iumの製品の磁気特性が8
1゜1.90T以上、W 、 7.、。1.05 W/
kg以下、゛また板厚0.23mn+の製品の磁気特性
がBB、。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 ium has magnetic properties of 8.
1°1.90T or more, W, 7. ,. 1.05 W/
kg or less, and the magnetic properties of the product with a plate thickness of 0.23mm+ are BB.

1 、89T以上、Wl?/s。0.90W/kg以下
の超低鉄損一方向性珪素鋼板が製造されるようになって
来ている。
1. More than 89T, Wl? /s. Unidirectional silicon steel sheets with ultra-low core loss of 0.90 W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする[ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
In particular, recently there has been a marked increase in demand for reduced power loss from the perspective of energy conservation, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレ
ーザ照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57−2252号、特公昭57−53419号、特公昭
58−26405号及び特公昭58−26406号各公
報参照)。
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It was proposed to reduce the iron loss (see Japanese Patent Publications No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によってせっかくに導入された局部微小ひ
ずみが焼鈍処理により解放されて磁区幅が広くなるため
、レーザー照射効果が失われるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated core transformers that are not subjected to strain relief annealing, but for material for wound core transformers that are subjected to strain relief annealing,
The disadvantage is that the local microstrain introduced by laser irradiation is released by annealing and the magnetic domain width becomes wider, so that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又はその鏡面仕上げ面上に金属薄めっき
やさらにその上に絶縁被膜を塗布焼付けすることによる
、超低鉄損一方向性珪素鋼板の製造方法が提案されてい
る。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by coating and baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上げ後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造工程において採用されるに至って
はいない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not make a sufficient contribution to reducing iron loss at the cost of a significant increase in cost. Due to problems with adhesion, it has not been adopted in current manufacturing processes.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も60
0°C以上の高温焼鈍を施すと鋼板とセラミック層とが
剥離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 60
High-temperature annealing at 0°C or higher causes the steel plate and the ceramic layer to separate, so it cannot be used in actual manufacturing processes.

(発明が解決しようとする問題点) 発明者らは、上記した鏡面仕上げによる鉄損向上を目指
しての実効をより有利に引き出すに当って、特に今日の
省エネ材料開発の観点では上記のごときコストアップの
不利を凌駕する特性、なかでも、高温処理での特性劣化
を伴うことなくして絶縁層の密着性、耐久性の問題を克
服することが肝要と考え、この基本認識に立脚し、方向
性珪素鋼板表面上の酸化物を除去した後に研磨を施して
鏡面状態にする場合も含め、該酸化物除去後における鋼
板処理方法の抜本的な改善によってとくに有利な超鉄損
化を達成することが発明の目的である。
(Problems to be Solved by the Invention) In order to take advantage of the above-mentioned mirror finish for improving iron loss, the inventors believe that the above-mentioned costs should be avoided, especially from the perspective of today's development of energy-saving materials. We believe that it is important to overcome the problems of adhesion and durability of the insulating layer without deteriorating the characteristics due to high-temperature processing, and based on this basic understanding, we have developed Particularly advantageous super iron loss can be achieved by drastic improvement of the steel plate processing method after removing oxides, including cases in which oxides on the surface of a silicon steel plate are removed and then polished to a mirror-like state. This is the object of the invention.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく鋭意研究を重
ねた結果、一方向性珪素鋼板の製造過程において、脱炭
を兼ねる1次再結晶焼鈍後の焼鈍板につき、圧延方向に
ほぼ直角方向に温度差を与えつつ2次再結晶焼鈍を施す
と同時に、鋼板表面にCVD法によって極薄張力被膜を
被成することが、初期した目的の達成のために極めて有
効であることの知見を得た。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the inventors have discovered that after primary recrystallization annealing, which also serves as decarburization, in the manufacturing process of unidirectional silicon steel sheets, To achieve the initial objective, it is possible to perform secondary recrystallization annealing on the annealed steel sheet while applying a temperature difference in a direction approximately perpendicular to the rolling direction, and at the same time to coat the surface of the steel sheet with an ultra-thin tensile coating using the CVD method. We have obtained the knowledge that it is extremely effective for this purpose.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、含けい素鋼スラブを熱間圧延し、
ついで一回または中間焼鈍を挟む2回の冷間圧延を施し
たのち、脱炭を兼ねる1次再結晶焼鈍を施し、ついでこ
の焼鈍板を板面が相互に離間したルーズコイルに巻取っ
たのち、該コイルの幅方向に温度差を与えつつ2次再結
晶させると同時に、CVD法によりTi、Zr、Hf、
V。
That is, this invention hot-rolls a silicon-containing steel slab,
Then, after performing cold rolling once or twice with intermediate annealing in between, primary recrystallization annealing that also serves as decarburization is performed, and then this annealed plate is wound into a loose coil with plate surfaces spaced apart from each other. , Ti, Zr, Hf,
V.

Nb、Ta、Mn、Cr、Mo、W、Co、Ni。Nb, Ta, Mn, Cr, Mo, W, Co, Ni.

A−e、B、Siの窒化物および/または炭化物ならび
にAj2.Ni 、Cu、W、Si 、Ti 、Znの
酸化物のうちから選んだ少なくとも1種より主としてな
る極薄張力被膜を形成させ、しかるのち純化焼鈍を施す
ことからなる超低鉄損一方向性珪素鋼板の製造方法であ
る。
Ae, B, Si nitride and/or carbide and Aj2. Ultra-low core loss unidirectional silicon produced by forming an ultra-thin tensile coating mainly consisting of at least one oxide selected from the oxides of Ni, Cu, W, Si, Ti, and Zn, and then subjecting it to purification annealing. This is a method for manufacturing steel plates.

この発明では、上記した2次再結晶焼鈍および極薄張力
被膜被成処理に先立って、脱炭・1次再結晶焼鈍板につ
き、その表面の非金属層を除去したのち、引続いて研摩
処理によって鋼板表面を中心線平均粗さRa T:0.
4μm以下の鏡面状態に仕上げることが、鉄損特性の向
上を図る上で一層有利である。
In this invention, prior to the above-mentioned secondary recrystallization annealing and ultra-thin tension coating treatment, the non-metallic layer on the surface of the decarburized and primary recrystallization annealed plate is removed, and then the polishing treatment is performed. The center line average roughness of the steel plate surface is Ra T: 0.
Finishing with a mirror finish of 4 μm or less is more advantageous in improving iron loss characteristics.

以下、この発明の成功が導かれた具体的実験に従って説
明を進める。
Hereinafter, the explanation will proceed according to specific experiments that led to the success of this invention.

C: 0.058重量%(以下単に%で示す)、Si:
 3.35%、Mn  :0.76%、A f : 0
.025%、N:0.072%、Sn :0.1%およ
びCu  :0.05%を含有する珪素鋼連鋳スラブを
、1390°Cで4時間加熱後、熱間圧延を施して1.
8 +gv+厚の熱延板とした。
C: 0.058% by weight (hereinafter simply expressed as %), Si:
3.35%, Mn: 0.76%, Af: 0
.. A continuously cast silicon steel slab containing 0.025%, N: 0.072%, Sn: 0.1% and Cu: 0.05% was heated at 1390°C for 4 hours and then hot rolled to obtain 1.
It was made into a hot-rolled plate with a thickness of 8 +gv+.

ついで1100″Cで3分間の均−化焼鈍後、急冷処理
を施した後、1回の強冷延を施して0.23mm厚の最
終冷延板とした。この場合、冷間圧延途中では300°
Cの温間圧延を施した。
Then, after homogenization annealing at 1100"C for 3 minutes, rapid cooling treatment, and one round of hard cold rolling to obtain a final cold rolled sheet with a thickness of 0.23 mm. In this case, during cold rolling, 300°
C warm rolling was performed.

その後850°Cの湿水素中で脱炭・1次再結晶焼鈍を
行った後、次の2条件で処理を行った。
Thereafter, decarburization and primary recrystallization annealing were performed in wet hydrogen at 850°C, followed by treatment under the following two conditions.

(a)脱炭・1次再結晶焼鈍後そのままルーズコイルと
する。
(a) After decarburization and primary recrystallization annealing, it is made into a loose coil as it is.

(b)脱炭・1武勇結晶焼鈍後酸洗して表面の酸化物を
除去した後、電解研磨により中心線平均粗さRa =0
.1 μmに鏡面研磨したのち、ルーズコイル状に巻取
る。
(b) After decarburizing and annealing the 1 Valor crystal, pickling is performed to remove surface oxides, and then electrolytic polishing is performed to obtain center line average roughness Ra = 0
.. After mirror polishing to 1 μm, it is wound into a loose coil.

その後第1図に模式で示すような温度傾斜炉のCVD装
置を用いて処理した。第1図において、番号1は純化処
理を行なうための室で配管2からH2ガスを導入し、一
方配管3からその排ガスを出す。また4は温度傾斜炉を
そなえたCVD反応室で、5は種々の反応ガスの導入口
、6は排ガスを炉外に導く排出口である。7はルーズコ
イルを上下させるシリンダー、8はルーズコイル、9は
ルーズコイルを置く台、10はヒーターである。
Thereafter, treatment was carried out using a temperature gradient furnace CVD apparatus as schematically shown in FIG. In FIG. 1, reference numeral 1 denotes a chamber for performing purification treatment, into which H2 gas is introduced through piping 2, while the exhaust gas is discharged through piping 3. Further, 4 is a CVD reaction chamber equipped with a temperature gradient furnace, 5 is an inlet for various reaction gases, and 6 is an outlet for guiding exhaust gas out of the furnace. 7 is a cylinder that moves the loose coil up and down, 8 is a loose coil, 9 is a stand on which the loose coil is placed, and 10 is a heater.

第1図の温度傾斜炉をそなえたCVD反応室4にルーズ
コイル8を装入し、最高温度が1050°Cで炉の下側
に向って温度勾配(約l″C/cm)を有する炉の中を
20mm/hの速度でルーズコイルをシリンダー7を用
いて上方へ移動させて圧延方向にほぼ直角方向(C方向
)に2次再結晶させると同時に、この室にTiCl4と
N2とHlの混合ガスを導入し、その雰囲気中で500
 mbの減圧下で鋼板表面上に0.9μm厚のTiNの
薄膜を形成させた。
A loose coil 8 is charged into the CVD reaction chamber 4 equipped with the temperature gradient furnace shown in Fig. 1, and the furnace has a maximum temperature of 1050°C and a temperature gradient (approximately 1″C/cm) toward the bottom of the furnace. The loose coil is moved upward in the chamber at a speed of 20 mm/h using the cylinder 7 to perform secondary recrystallization in a direction approximately perpendicular to the rolling direction (direction C), and at the same time, TiCl4, N2, and Hl are introduced into this chamber. Introduce a mixed gas, and in that atmosphere
A thin film of TiN with a thickness of 0.9 μm was formed on the surface of the steel plate under reduced pressure of mb.

その後純化処理室において、乾H2中で1200°C1
8時間処理して鋼板の純化処理とT i N被膜中のC
Iの除去を同時に行なって製品とした。
After that, in the purification chamber, the temperature was 1200°C1 in dry H2.
After 8 hours of treatment, purification treatment of the steel plate and C in the T i N coating were performed.
A product was prepared by removing I at the same time.

また比較のため通常の工程に従い、850 ’Cの湿水
素中で脱炭・1次再結晶焼鈍を行なった後、鋼板表面上
にMgOを主成分とする焼鈍分離剤を塗布してから、第
1図の温度傾斜炉を用いて通常のN2雰囲気中でC方向
に2次再結晶させた後、乾H2中で1200°C28時
間の純化処理を施して製品とした。
For comparison, following the usual process, decarburization and primary recrystallization annealing were performed in wet hydrogen at 850'C, and then an annealing separator containing MgO as a main component was applied to the surface of the steel sheet. After secondary recrystallization in the C direction in a normal N2 atmosphere using the temperature gradient furnace shown in Figure 1, the product was purified in dry H2 at 1200°C for 28 hours.

さらに比較のため通常の850°Cの湿水素中で脱炭・
1次再結晶焼鈍を行なった後、鋼板表面上にMgOを主
成分とする焼鈍分離剤を塗布した後、通常の均熱ボック
ス焼鈍炉を用いて850°Cから1050°Cまで昇温
しで2次再結晶(窒素雰囲気中)させた後、乾H,中で
1200°C,8時間の純化処理を施して製品とした。
Furthermore, for comparison, decarburization and
After primary recrystallization annealing, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then the temperature is raised from 850°C to 1050°C using a normal soaking box annealing furnace. After secondary recrystallization (in a nitrogen atmosphere), the product was purified in dry H at 1200°C for 8 hours.

これらの条件で処理したときの製品の磁気特性を表1に
まとめて示す。
Table 1 summarizes the magnetic properties of the products when processed under these conditions.

同表から明らかなように、製品の磁気特性は処理条件に
よって大きく異なる。すなわち通常工程(4)の処理で
はBIGが1.94T、 W+t/soが0.88w/
kg程度である。さらに最近の温度傾斜によるC方向2
次再結晶焼鈍(例えばN、Takahashi et 
al、 :IEFiE Trans、 Magneti
cs、 Vol、 Mag−22(1986)+P、4
90.高橋延幸:磁性材料入門、 (1986)、 P
、27および牛神義行、中山正、野沢忠正:日本金属学
会講演概要、(1985) 4月、 P、373参照)
処理ではB1゜が1.95T、 WIt/saが0.7
8w/kgと特性がかなり良好である。
As is clear from the table, the magnetic properties of the products vary greatly depending on the processing conditions. That is, in the normal process (4), BIG is 1.94T and W+t/so is 0.88w/
It is about kg. Furthermore, C direction 2 due to recent temperature gradient
Next recrystallization annealing (e.g. N, Takahashi et al.
al, :IEFiE Trans, Magneti
cs, Vol, Mag-22 (1986) +P, 4
90. Nobuyuki Takahashi: Introduction to magnetic materials, (1986), P
, 27 and Yoshiyuki Ushigami, Tadashi Nakayama, Tadamasa Nozawa: Summary of the Lecture at the Japan Institute of Metals, April 1985, p. 373)
In processing, B1° is 1.95T, WIt/sa is 0.7
The characteristics are quite good at 8w/kg.

これに対しこの発明のC方向2次再結晶処理と同時にC
VD処理によるTiN被膜を形成させたときの磁気特性
はE3toが1.967、W、、、、oが0.72〜0
.60w/kgと大幅に改善されている。
On the other hand, at the same time as the secondary recrystallization treatment in the C direction of this invention,
When a TiN film is formed by VD treatment, the magnetic properties are: E3to is 1.967, W, ..., o is 0.72 to 0.
.. It has been significantly improved to 60w/kg.

このような処理による磁気特性、特に鉄損特性はC方向
に2次再結晶させると同時にCVDによりTiNの極薄
張力被膜を形成させると著しい鉄損低下となることを示
している。
The magnetic properties, especially the iron loss characteristics, obtained by such treatment show that the iron loss is significantly reduced when an ultra-thin tension film of TiN is formed by CVD at the same time as secondary recrystallization in the C direction.

(作 用) 上に述べた磁気特性の向上の理由は次のように考えられ
る。
(Function) The reason for the above-mentioned improvement in magnetic properties is thought to be as follows.

最近、仕上げ焼鈍の際にコイルの上下方向(圧延方向と
直角方向)に温度勾配を与えつつ焼鈍することによって
、2次再結晶粒を圧延方向と直角方向に成長させ鋼板長
手方向と若干の傾斜角(2゜〜3°)をもつ2次再結晶
を発達させる試みが行なわれている(表1中(3)の処
理条件参照)が、この方法を行なうと同時にルーズコイ
ルを用いてCVD反応により鋼板の表面上にTiNセラ
ミック張力被膜を形成させることによって鉄損の低下を
図ると同時に、これら従来法がフォルステライト下地被
膜を使用しているため低鉄損化に限界があったのに反し
、この発明ではこれとは別にTiN等の極薄張力被膜を
施すことによって鋼板に弾性引張り張力を効果的に付与
することができ、上記の限界を越えてさらに低鉄損の一
方向性珪素鋼板の製造が可能となったものである。
Recently, by annealing the coil while applying a temperature gradient in the vertical direction (direction perpendicular to the rolling direction) during final annealing, secondary recrystallized grains grow in the direction perpendicular to the rolling direction and are slightly inclined with respect to the longitudinal direction of the steel sheet. Attempts have been made to develop secondary recrystallization with an angle (2° to 3°) (see processing conditions (3) in Table 1), but at the same time this method was carried out, a loose coil was used to develop a CVD reaction. This method aims to reduce iron loss by forming a TiN ceramic tensile coating on the surface of the steel sheet, and at the same time, in contrast to these conventional methods, which use a forsterite underlayer coating, there is a limit to the reduction in iron loss. In this invention, apart from this, by applying an ultra-thin tensile coating such as TiN, it is possible to effectively impart elastic tensile tension to the steel sheet, and it is possible to overcome the above-mentioned limit and create a unidirectional silicon steel sheet with even lower core loss. This made it possible to manufacture

次に、一方向性珪素鋼板の製造工程について一般的な説
明を含めてより詳しく述べる。
Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation.

まず出発素材は従来公知の一方向性珪素鋼素材成分、例
えば ■C: 0.01〜o、oso%、 S i  : 0
.25〜4.5%、Mn  : 0.01〜0.2%、
 Mo : 0.003〜0.1%、Sb  :0.0
05〜0.2%、 SあるいはSeの1種あるいは2種
合計で、0.005〜0.05%を含有する組成 ■C: 0.01〜0.08%、 Si  :2.O〜
4.0%、s : o、oos〜0.05%、N : 
0.001〜0.01%、A ffi : 0.01〜
0.06%、S n  : 0.01〜0.5%、Cu
  : 0.01〜0.3%、Mn  : 0.01〜
0.2%を含有する組成 ■C70,01〜0.06%、 Si  :2.0〜4
.0%、S : 0.005〜0.05%、B : 0
.0003〜0.0040%、N : 0.001〜0
.01%、Mn  : 0.01〜0.2%を含有する
組成 の如きにおいて適用可能である 次に熱延板は、必要に応じて800〜1100°Cの均
一化焼鈍を経て1回の冷間圧延で最終板厚とする1回冷
延法か又は、通常850°Cから1050’Cの中間焼
鈍をはさんでさらに冷延する2回冷延法にて、後者の場
合最初の圧下率は50%から80%程度、最終の圧下率
は50%から85%程度テ0.15IIImから0.3
5謹厚の最終冷延板厚とする。
First, the starting material has conventionally known unidirectional silicon steel material components, such as ■C: 0.01~o, oso%, Si: 0
.. 25-4.5%, Mn: 0.01-0.2%,
Mo: 0.003-0.1%, Sb: 0.0
Composition containing 0.05 to 0.2%, one or both of S or Se in total 0.005 to 0.05% C: 0.01 to 0.08%, Si: 2. O~
4.0%, s: o, oos~0.05%, N:
0.001~0.01%, Affi: 0.01~
0.06%, Sn: 0.01-0.5%, Cu
: 0.01~0.3%, Mn: 0.01~
Composition containing 0.2% ■C70, 01-0.06%, Si: 2.0-4
.. 0%, S: 0.005-0.05%, B: 0
.. 0003-0.0040%, N: 0.001-0
.. 01%, Mn: 0.01-0.2%.Next, the hot-rolled sheet may be subjected to homogenization annealing at 800-1100°C and then cooled once, if necessary. One-time cold rolling method in which the final plate thickness is obtained by inter-rolling, or two-step cold rolling method in which intermediate annealing is usually performed at 850°C to 1050'C and further cold rolling is performed, in the latter case, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is about 50% to 85% Te 0.15IIIm to 0.3
The final cold-rolled sheet thickness is 5 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750°Cから850°Cの湿水素中で脱炭・1次再
結晶焼鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C after surface degreasing.

その後、銅板はそのまま、または表面の酸化物被膜を公
知の酸洗などの化学的手法や切削、研削などの機械的手
法によって除去し、さらには化学研磨、電解研磨等の化
学的研磨法やパフ研磨等の機械的研磨法などの従来手法
によって鋼板表面を中心線平均粗さRaで0.4μm以
下の鏡面状態に仕上げたのち、板面と板面との間にすき
間が生じるようなルーズコイルに巻取る。
After that, the copper plate is left as it is, or the oxide film on the surface is removed by known chemical methods such as pickling, or mechanical methods such as cutting and grinding, and then chemical polishing methods such as chemical polishing, electrolytic polishing, etc. After finishing the steel plate surface to a mirror-like state with a center line average roughness Ra of 0.4 μm or less using conventional methods such as mechanical polishing methods, loose coils are produced in which a gap is created between the plate surfaces. Wind it up.

ついで2次再結晶焼鈍を施すが、この発明ではとくに2
次再結晶粒を圧延方向と直角方向に成長(C方向に優先
成長)させると同時に、この際、CVD反応により鋼板
表面上に炭化物や窒化物、酸化物などの張力被膜を形成
させるのである。
Next, secondary recrystallization annealing is performed, but in this invention, especially 2
At the same time, the secondary recrystallized grains are grown in a direction perpendicular to the rolling direction (preferential growth in the C direction), and at the same time, a tension film of carbides, nitrides, oxides, etc. is formed on the surface of the steel sheet by a CVD reaction.

上記の処理は、前掲第1図に示すような温度勾配をもつ
CVD炉を用い、該炉の中にルーズコイルを装入してコ
イルの板幅方向に温度勾配を与えつつ2次再結晶粒を発
達させると同時にCVD処理を行うことによって達成で
きる。
The above process uses a CVD furnace with a temperature gradient as shown in Figure 1 above, and inserts a loose coil into the furnace to create a temperature gradient in the width direction of the coil while producing secondary recrystallized grains. This can be achieved by simultaneously developing a CVD process.

ここにW4vi、表面に被成すべき極薄張力被膜は、T
i 、Zr、Hf 、V、Nb、Ta、Mn、Cr。
Here W4vi, the ultra-thin tension coating to be formed on the surface is T
i, Zr, Hf, V, Nb, Ta, Mn, Cr.

Mo 、W、Co 、Ni 、Aj!、B、Siの窒化
物および/または炭化物並びにAN、Ni 、Cu 。
Mo, W, Co, Ni, Aj! , B, nitrides and/or carbides of Si and AN, Ni, Cu.

W、Si 、Ti 、Znの酸化物のうちから選んだ少
なくとも一種が有利に適合する。
At least one selected from oxides of W, Si 2 , Ti 2 and Zn is advantageously suitable.

また張力被膜の膜厚は、0.05〜5.0μm程度とす
るのが好ましい。
Further, the thickness of the tension coating is preferably about 0.05 to 5.0 μm.

このような処理後、乾水素中において1000°C以上
で1〜20時間焼鈍を行なって鋼板の純化を達成するこ
とが必要である。
After such treatment, it is necessary to perform annealing in dry hydrogen at 1000° C. or higher for 1 to 20 hours to purify the steel sheet.

さらにこのようにして生成した極薄張力被膜上に、りん
酸塩とコロイダルシリカを主成分とする絶縁被膜の塗布
焼付を行うことが、100万KVAにも上る大容量トラ
ンスの使途において当然に必要であり、この絶縁性塗布
焼付層の形成の如きは、従来公知の手法をそのまま用い
て良い。
Furthermore, it is necessary to apply and bake an insulating film containing phosphate and colloidal silica as the main components on the ultra-thin tension film produced in this way when using a large-capacity transformer of up to 1 million KVA. For the formation of this insulating coated and baked layer, conventionally known methods may be used as they are.

(実施例) 尖指開土 C: 0.044%、S i  : 3.40%、Mn
  :0.068%、Mo : 0.021%、Se 
:0.020%、Sb  :0.024%を含有する熱
延板を、900°Cで3分間の均一化焼鈍後、950°
Cの中間焼鈍をはさんむ2回の冷間圧延を行って0.2
3mm厚の最終冷延板とした。
(Example) Point finger open earth C: 0.044%, S i: 3.40%, Mn
: 0.068%, Mo: 0.021%, Se
After uniform annealing at 900°C for 3 minutes, a hot rolled sheet containing Sb: 0.020% and Sb: 0.024% was homogenized at 950°C.
0.2 by performing two cold rollings with intermediate annealing of C.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820 ’Cで3分間の脱炭・1次再結晶焼鈍を
施した後、鋼板の間にステンレスのスペーサ(0,31
φ)を挿入してルーズコイルに巻取ったのち、最高温度
が950″Cで炉の上側に向って2、激な温度勾配(約
30’C/cm)を有する炉の中へ10 +yn+/h
の速度でコイルを圧延方向とほぼ直角方向に装入して2
次再結晶させると同時に、CVD反応により鋼板表面上
にSi、N、を0.7〜0.8μm厚に形成させ、しか
るのち乾水素中で1180″C1・5時間の純化焼鈍を
施した。
After that, decarburization and primary recrystallization annealing were performed at 820'C for 3 minutes, and stainless steel spacers (0,31
After inserting the φ) and winding it into a loose coil, it is placed into a furnace with a maximum temperature of 950″C and a steep temperature gradient (approximately 30′C/cm) toward the top of the furnace. h
The coil is charged in a direction approximately perpendicular to the rolling direction at a speed of 2.
Simultaneously with subsequent recrystallization, Si and N were formed on the surface of the steel sheet to a thickness of 0.7 to 0.8 μm by CVD reaction, and then purification annealing was performed in dry hydrogen at 1180″C1 for 5 hours.

かくして得られた製品の磁気特性は次のとおりであった
The magnetic properties of the thus obtained product were as follows.

B +o : 1.93T、   W+?zso  !
 0.65w/kgス新1辻λ C: 0.064%、S i  : 3.46%、Mn
  :0.076%、A 1 : 0.025%、S 
? 0.026%、N : 0.0066%を含有する
熱延板を、900℃で3分間の均−化焼鈍後急冷処理を
行い、その後300°Cの温間圧延を施して0.20+
u+厚の最終冷延板とした。
B+o: 1.93T, W+? zso!
0.65w/kg Sushin 1 Tsuji λ C: 0.064%, Si: 3.46%, Mn
: 0.076%, A1: 0.025%, S
? A hot-rolled sheet containing 0.026% and N: 0.0066% was uniformly annealed at 900°C for 3 minutes and then rapidly cooled, and then warm rolled at 300°C to obtain a 0.20+
A final cold-rolled sheet with a thickness of u+ was obtained.

その後850°Cの湿水素中で脱炭を兼ねる1次再結晶
焼鈍を施した後、酸洗により酸化被膜を除去し、ついで
電解研磨により鏡面研磨した後、最高温度が1000℃
で炉の上側に向って急激な温度勾配(約20°C/cm
)の炉中へ装入してから、約10〜15II…/hで上
昇させ2次再結晶とCVD反応を同時に行った。このと
きのCVD反応は■TiN。
After that, after primary recrystallization annealing that also serves as decarburization in wet hydrogen at 850°C, the oxide film is removed by pickling, and mirror polishing is performed by electrolytic polishing, after which the maximum temperature is 1000°C.
There is a steep temperature gradient (approximately 20°C/cm) towards the top of the furnace.
), the temperature was raised at a rate of about 10 to 15 II.../h, and secondary recrystallization and CVD reaction were performed simultaneously. The CVD reaction at this time was ■TiN.

■BN、■S 13 N a +■/IN、■HfN、
■CrN。
■BN, ■S 13 N a +■/IN, ■HfN,
■CrN.

■VN、■T i C、■SiC,[相]WC,■Nb
C。
■VN, ■T i C, ■SiC, [phase] WC, ■Nb
C.

@Cr1C3,■TaC,@)Aj!gos 、■5i
O−。
@Cr1C3, ■TaC, @)Aj! gos,■5i
O-.

■Ti0z 、@Zr0t 、@Tact 、■Ti 
(C,N)の張力被膜をそれぞれ0.7〜1.5 mm
厚に被成した。
■Ti0z, @Zr0t, @Tact, ■Ti
(C, N) tension coatings each 0.7 to 1.5 mm
It was covered thickly.

ここに反応ガスとしては、窒化物被膜形成の際にはN2
ないしは微量のNH,ガス、また炭化物被膜形成の際に
はC,H,ないしはCH,ガス、さらに酸化物被膜形成
の際にはo2ガスを用いた。
Here, as a reactive gas, N2 is used when forming a nitride film.
A small amount of NH or gas was used, C, H, or CH gas was used when forming a carbide film, and O2 gas was used when forming an oxide film.

しかるのち乾H2中で1200°C,8時間の純化焼鈍
を施した。
Thereafter, purification annealing was performed in dry H2 at 1200°C for 8 hours.

得られた各製品の磁気特性について調べた結果を表2に
まとめて示す。
Table 2 summarizes the results of investigating the magnetic properties of each product obtained.

表   2 (発明の効果) かくしてこの発明によれば、鉄損特性に極めて優れた一
方向性珪素鋼板を安定して得ることができる。
Table 2 (Effects of the Invention) Thus, according to the present invention, it is possible to stably obtain a unidirectional silicon steel sheet with extremely excellent iron loss characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う、2次再結晶焼鈍およびCV
D処理の同時実施に用いて好適な反応炉を示す模式図で
ある。 第1図
FIG. 1 shows secondary recrystallization annealing and CV according to the present invention.
FIG. 2 is a schematic diagram showing a reaction furnace suitable for use in simultaneous implementation of D processing. Figure 1

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを熱間圧延し、ついで一回または
中間焼鈍を挟む2回の冷間圧延を施したのち、脱炭を兼
ねる1次再結晶焼鈍を施し、ついでこの焼鈍板を板面が
相互に離間したルーズコイルに巻取ったのち、該コイル
の幅方向に温度差を与えつつ2次再結晶させると同時に
、CVD法によりTi、Zr、Hf、V、Nb、Ta、
Mn、Cr、Mo、W、 Co、Ni、Al、B、Siの窒化物および/または炭
化物ならびにAl、Ni、Cu、W、Si、Ti、Zn
の酸化物のうちから選んだ少なくとも1種より主として
なる極薄張力被膜を形成させ、しかるのち純化焼鈍を施
すことを特徴とする超低鉄損一方向性珪素鋼板の製造方
法。
[Claims] 1. A silicon-containing steel slab is hot-rolled, then cold-rolled once or twice with intermediate annealing in between, and then subjected to primary recrystallization annealing that also serves as decarburization; Next, this annealed plate is wound into a loose coil with plate surfaces spaced apart from each other, and then secondary recrystallization is performed while applying a temperature difference in the width direction of the coil, and at the same time Ti, Zr, Hf, V, Nb, Ta,
Nitride and/or carbide of Mn, Cr, Mo, W, Co, Ni, Al, B, Si and Al, Ni, Cu, W, Si, Ti, Zn
1. A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile coating consisting mainly of at least one kind of oxides selected from the group consisting of oxides, and then subjecting it to purification annealing.
JP13333887A 1987-05-30 1987-05-30 Manufacture of grain-oriented silicon steel sheet with superlow iron loss Pending JPS63303009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13333887A JPS63303009A (en) 1987-05-30 1987-05-30 Manufacture of grain-oriented silicon steel sheet with superlow iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13333887A JPS63303009A (en) 1987-05-30 1987-05-30 Manufacture of grain-oriented silicon steel sheet with superlow iron loss

Publications (1)

Publication Number Publication Date
JPS63303009A true JPS63303009A (en) 1988-12-09

Family

ID=15102382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13333887A Pending JPS63303009A (en) 1987-05-30 1987-05-30 Manufacture of grain-oriented silicon steel sheet with superlow iron loss

Country Status (1)

Country Link
JP (1) JPS63303009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556907A (en) * 2017-12-26 2020-08-18 Posco公司 Method for manufacturing ultra-low iron loss oriented electrical steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556907A (en) * 2017-12-26 2020-08-18 Posco公司 Method for manufacturing ultra-low iron loss oriented electrical steel sheet
JP2021509143A (en) * 2017-12-26 2021-03-18 ポスコPosco Manufacturing method of grain-oriented electrical steel sheet
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS6332849B2 (en)
JPS63303009A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6354767B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPS6332850B2 (en)
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
WO2024111568A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH0413426B2 (en)
JPS6335685B2 (en)
JPH0374486B2 (en)
JPH0374488B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS62182222A (en) Production of grain oriented silicon steel sheet
JPS6263407A (en) Production of low iron loss unidirectional silicon steel plate
JPS63227720A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH02285065A (en) Production of grain-oriented silicon steel sheet with superlow iron loss