JPS63302268A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS63302268A
JPS63302268A JP13575387A JP13575387A JPS63302268A JP S63302268 A JPS63302268 A JP S63302268A JP 13575387 A JP13575387 A JP 13575387A JP 13575387 A JP13575387 A JP 13575387A JP S63302268 A JPS63302268 A JP S63302268A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
check valve
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13575387A
Other languages
Japanese (ja)
Inventor
悦雄 柴田
中越 猛
和明 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13575387A priority Critical patent/JPS63302268A/en
Publication of JPS63302268A publication Critical patent/JPS63302268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、蒸気圧縮式冷媒回路を有する冷暖房装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a heating and cooling system having a vapor compression refrigerant circuit.

〈従来技術〉 近年、ヒートポンプ式の冷暖房装置は、インバータの搭
載やマイクロプロセッサによるサイクル制御等により機
能性が向上し、しかも安全性、清浄性に優れていること
から、家庭用冷暖房機器としてその地位を確立してきた
<Conventional technology> In recent years, heat pump type air-conditioning equipment has improved its functionality by incorporating inverters and cycle control using microprocessors, and is also superior in safety and cleanliness, so it has gained its status as a household air-conditioning equipment. has been established.

また、今後の研究開発により、さらに高機能化、高効率
化が実現し、飛躍的な需要拡大が期待できる。
Furthermore, future research and development will lead to even higher functionality and efficiency, and we can expect a dramatic increase in demand.

ヒートポンプサイクルの高機能化、高効率北東の一つと
して非共沸混合冷媒の採用が考えられる。
The use of non-azeotropic mixed refrigerants can be considered as one way to improve the functionality and efficiency of heat pump cycles.

従来のヒートポンプ式の冷暖房装置は単一冷媒を採用し
たものがほとんどであり、以下のようなサイクルを形成
していた。
Most conventional heat pump air conditioning systems use a single refrigerant, forming the following cycle.

従来のヒートポンプ式冷暖房装置のサイクルを第2図に
示す。実線矢印は冷房時、破線矢印は暖房時の冷媒の流
れを示す。冷房運転時は圧縮機llから吐出した高温、
高圧の冷媒蒸気は電磁四方弁12を介して室外熱交換器
13に入り、室外空気に放熱して凝縮する。凝縮した冷
媒は膨張弁14で減圧され低温、低圧となり室内熱交換
器15で室内空気から吸熱して気化する。気化した冷媒
は圧縮機11に吸入され、再び高温、高圧の蒸気になっ
て、冷房サイクルを形成していた。
Figure 2 shows the cycle of a conventional heat pump air conditioning system. Solid arrows indicate the flow of refrigerant during cooling, and dashed arrows indicate the flow of refrigerant during heating. During cooling operation, high temperature discharged from compressor 1,
The high-pressure refrigerant vapor enters the outdoor heat exchanger 13 via the electromagnetic four-way valve 12, radiates heat to the outdoor air, and condenses. The condensed refrigerant is depressurized by the expansion valve 14 and becomes low temperature and pressure, and is vaporized by absorbing heat from the indoor air in the indoor heat exchanger 15. The vaporized refrigerant was sucked into the compressor 11 and turned into high-temperature, high-pressure steam again, forming a cooling cycle.

一方、ヒートポンプ暖房運転時は圧縮機2から吐出した
高温、高圧の冷媒蒸気は電磁四方弁12を介してまず室
内熱交換器15に入り、室内空気に放熱して凝縮する。
On the other hand, during the heat pump heating operation, the high temperature, high pressure refrigerant vapor discharged from the compressor 2 first enters the indoor heat exchanger 15 via the electromagnetic four-way valve 12, radiates heat to the indoor air, and condenses.

凝縮した冷媒は膨張弁14で減圧され低温、低圧となり
室外熱交換器13で室外空気から吸熱して気化する。気
化した冷媒は圧縮機11に吸入され、再び高温、高圧の
蒸気になって、暖房サイクルを形成していた。
The condensed refrigerant is depressurized by the expansion valve 14 to become low temperature and low pressure, and is vaporized by absorbing heat from the outdoor air in the outdoor heat exchanger 13. The vaporized refrigerant was sucked into the compressor 11 and turned into high-temperature, high-pressure steam again, forming a heating cycle.

〈 発明が解決しようとする問題点 〉上記従来のサイ
クルはR12やR22等の単一冷媒用のサイクルであり
、冷媒の流れは冷房とヒートポンプ暖房では逆になる。
<Problems to be Solved by the Invention> The conventional cycle described above is a cycle for a single refrigerant such as R12 or R22, and the flow of the refrigerant is reversed between cooling and heat pump heating.

単一冷媒の場合、一定圧力では、蒸気および凝縮の過程
は等温変化であり特に問題とはならなかった。
In the case of a single refrigerant, at a constant pressure, the vapor and condensation processes are isothermal changes and did not pose any particular problem.

非共沸混合冷媒(たとえば、R12−Rl3B1、R1
52a−R13Bl、R22−Rll。
Non-azeotropic mixed refrigerants (e.g. R12-Rl3B1, R1
52a-R13Bl, R22-Rll.

R22−Rl3B1の混合物)を用いた冷媒回路の蒸発
器では、冷媒液は気液平衡を保ちながら冷媒蒸気となる
。この間、蒸発温度は次第に上昇していく。凝縮器では
全くこの逆で、凝縮温度は次第に低下していく。一方、
空気は蒸発器では熱を奪われて低温になり、凝縮器では
熱を得て高温となる。これらの温度関係をまとめると表
−1になる。
In the evaporator of the refrigerant circuit using a mixture of R22-Rl3B1), the refrigerant liquid becomes refrigerant vapor while maintaining vapor-liquid equilibrium. During this time, the evaporation temperature gradually increases. In the condenser, the condensation temperature is exactly the opposite, and the condensation temperature gradually decreases. on the other hand,
In the evaporator, air loses heat and becomes lower in temperature, and in the condenser, it gains heat and becomes higher in temperature. Table 1 summarizes these temperature relationships.

この非共沸混合冷媒の冷媒回路は、向流方式の熱交換を
行うことにより、相変化の温度が濃度に依存する特性を
利用して冷媒と冷却流体あるいは加熱流体との熱交換損
失を減少させ、成績係数を向上させることができる。向
流方式とは、空気流に対して、冷媒の入口が最も風下の
列にあり、出口が最も風上の列にあって、冷媒が風下の
列から順次風上の列に流れるように配管された場合をい
う。また、これと逆の場合を並流方式という。
This refrigerant circuit for non-azeotropic mixed refrigerants reduces heat exchange losses between the refrigerant and the cooling fluid or heating fluid by using the characteristic that the phase change temperature depends on the concentration by performing heat exchange in a countercurrent manner. and improve the coefficient of performance. Countercurrent method refers to piping in which the refrigerant inlet is located in the most leeward row and the outlet is located in the most windward row, so that the refrigerant flows sequentially from the leeward row to the upwind row. This refers to cases where The opposite case is called parallel current method.

従来のヒートポンプサイクルでは上述の如く、冷房と暖
房では冷媒の流れが全く逆になり、また、送風機による
熱交換器への空気の流れは、常に一定方向である。その
ため、冷房運転時に向流方式の熱交換を行う冷媒回路で
は暖房運転時に並流方式の熱交換となり、また暖房運転
時に向流方式の熱交換を行う冷媒回路では冷房運転時に
並流方式の熱交換となり、冷房・暖房とも向流方式とは
成り得なかった。
In the conventional heat pump cycle, as mentioned above, the flow of refrigerant is completely opposite during cooling and heating, and the flow of air to the heat exchanger by the blower is always in the same direction. Therefore, a refrigerant circuit that performs countercurrent heat exchange during cooling operation uses parallel current heat exchange during heating operation, and a refrigerant circuit that performs countercurrent heat exchange during heating operation uses parallel current heat exchange during cooling operation. Since it was replaced, it was not possible to use a countercurrent system for both cooling and heating.

本発明はこのような点に鑑みて創案されたもので、向流
方式の蒸発器および凝縮器が、冷房時にも、暖房時にも
、実現可能な冷暖房装置を提供するものである。
The present invention was devised in view of these points, and provides an air-conditioning/heating device that uses a countercurrent type evaporator and condenser for both cooling and heating.

〈 問題点゛を解決するための手段 〉本発明による問
題点解決手段は、第1図のごとく、圧縮機l、室内熱交
換器2、室外熱交換器3および膨張弁6を有し非共沸混
合冷媒を用いた蒸気圧縮式の冷媒回路Xが設けられ、該
冷媒回路Xは、圧縮機lの吐出口が吐出切替弁4を介し
て室内熱交換器2の冷媒入口Aおよび室外熱交換器3の
冷媒入口Cに分岐接続され、圧縮機lの吸入口が吸入切
替弁5を介して室内熱交換器2の冷媒出口Bおよび室外
熱交換器3の冷媒出口りに分岐接続され、膨張弁6の入
口Eが、前記室内熱交換器2の出口Bに第一逆止弁7を
介して接続されると共に室外熱交換器3の出口りに第二
逆止弁8を介して接続され、膨張弁6の出口Fが、前記
室内熱交換器2の入口Aに第三逆止弁9を介して接続さ
れると共に前記室外熱交換器3の入口Cに第四逆止弁l
Oを介して接続されてなる。
<Means for Solving the Problem> The means for solving the problem according to the present invention, as shown in FIG. A vapor compression type refrigerant circuit X using a boiling mixed refrigerant is provided, and the refrigerant circuit The suction port of the compressor 1 is branch-connected to the refrigerant inlet B of the indoor heat exchanger 2 and the refrigerant outlet B of the outdoor heat exchanger 3 via the suction switching valve 5. The inlet E of the valve 6 is connected to the outlet B of the indoor heat exchanger 2 via a first check valve 7, and is connected to the outlet of the outdoor heat exchanger 3 via a second check valve 8. , an outlet F of the expansion valve 6 is connected to the inlet A of the indoor heat exchanger 2 via a third check valve 9, and a fourth check valve l is connected to the inlet C of the outdoor heat exchanger 3.
They are connected via O.

〈作用〉 上記問題点解決手段において、冷房運転時、圧縮機lか
ら吐出された冷媒は吐出切替弁4を経由した後、第四適
正弁IOにより逆止され室外熱交換器3の冷媒入口Cか
ら室外熱交換器3に流入する。そして、第二逆止弁8を
経由した後、第一逆止弁7により室内熱交換器2に流入
せず、膨張弁6に流入する。次に、第三逆止弁9を経て
室内熱交換器2の冷媒入口Aから室内熱交換器2に流入
し、吸入切替弁5を経由した後、再び圧縮mlに戻る。
<Operation> In the problem solving means described above, during cooling operation, the refrigerant discharged from the compressor 1 passes through the discharge switching valve 4, and then is reverse-controlled by the fourth appropriate valve IO and is transferred to the refrigerant inlet C of the outdoor heat exchanger 3. It flows into the outdoor heat exchanger 3 from there. After passing through the second check valve 8, the air does not flow into the indoor heat exchanger 2 due to the first check valve 7, but instead flows into the expansion valve 6. Next, the refrigerant flows into the indoor heat exchanger 2 from the refrigerant inlet A of the indoor heat exchanger 2 through the third check valve 9, passes through the suction switching valve 5, and then returns to compressed ml.

また、暖房運転時は、圧縮機lから吐出された冷媒は吐
出切替弁4を経由した後、第三逆止弁9により逆止され
室内熱交換器2の冷媒入口Aから室内熱交換器2に流入
する。そして、第一逆止弁7を経由した後、第二逆止弁
8により室外熱交換器3に流入せず、膨張弁6に流入す
る。次に、′第四逆止弁IOを経て室外熱交換器3の冷
媒入口Cから室外熱交換器3に流入し、吸入切替弁5を
経由した後、再び圧縮機1に戻る。このとき、室内熱交
換器2および室外熱交換器3において、空気は冷媒の出
口B、Dから入口A、Cに流れ、常に一定方向である。
In addition, during heating operation, the refrigerant discharged from the compressor 1 passes through the discharge switching valve 4, and then is checked by the third check valve 9 and flows from the refrigerant inlet A of the indoor heat exchanger 2 to the indoor heat exchanger 2. flows into. Then, after passing through the first check valve 7, the second check valve 8 prevents the air from flowing into the outdoor heat exchanger 3, but flows into the expansion valve 6. Next, the refrigerant flows into the outdoor heat exchanger 3 from the refrigerant inlet C of the outdoor heat exchanger 3 via the fourth check valve IO, passes through the suction switching valve 5, and then returns to the compressor 1 again. At this time, in the indoor heat exchanger 2 and the outdoor heat exchanger 3, air flows from refrigerant outlets B and D to inlets A and C, always in a constant direction.

以上のように、゛室内熱交換器2と室外熱交換器3の冷
媒の流れは冷房運転、暖房運転ともに同一方向となり、
冷媒の流れと空気の流れを冷暖房いずれも向流にするこ
とができる。
As described above, the flow of refrigerant in the indoor heat exchanger 2 and outdoor heat exchanger 3 is in the same direction during both cooling and heating operations.
The flow of refrigerant and air can be made countercurrent for both heating and cooling.

〈実施例〉 第1図は本発明の実施例を示す冷暖房装置のシステム図
である。本装置は、非共沸混合冷媒を用いた冷媒回路X
が、圧縮4111.室内熱交換器2、室外熱交換器3、
吐出切替弁4、吸入切替弁5、膨張弁6、第一逆止弁7
、第二逆止弁8、第三逆止弁9および第四逆止弁10か
ら構成されている。
<Embodiment> FIG. 1 is a system diagram of a heating and cooling device showing an embodiment of the present invention. This device uses a refrigerant circuit X using a non-azeotropic mixed refrigerant.
However, compression 4111. indoor heat exchanger 2, outdoor heat exchanger 3,
Discharge switching valve 4, suction switching valve 5, expansion valve 6, first check valve 7
, a second check valve 8, a third check valve 9, and a fourth check valve 10.

圧縮機lの吐出口は吐出切替弁4を介して室内熱交換器
2の冷媒入口A及び室外熱交換器3の冷媒入口Cに接続
されている。圧縮機lの吸入側は吸入切替弁5を介して
室内熱交換器2の冷媒出口B及び室外熱交換器3の冷媒
出口りに接続されている。そして、膨張弁6の入口Eは
室内熱交換器2の冷媒出口B及び室外熱交換器3の冷媒
出口りと第一逆止弁7、第二逆止弁8を介しておのおの
接続されている。膨張弁6の出口Fは室内熱交換器2の
冷媒入口Aおよび室外熱交換器3の冷媒入口Cと第三逆
止弁9、第四逆止弁lOを介しておのおの接続されてい
る。
A discharge port of the compressor 1 is connected to a refrigerant inlet A of the indoor heat exchanger 2 and a refrigerant inlet C of the outdoor heat exchanger 3 via a discharge switching valve 4 . The suction side of the compressor I is connected to the refrigerant outlet B of the indoor heat exchanger 2 and the refrigerant outlet of the outdoor heat exchanger 3 via the suction switching valve 5. The inlet E of the expansion valve 6 is connected to the refrigerant outlet B of the indoor heat exchanger 2 and the refrigerant outlet B of the outdoor heat exchanger 3 via a first check valve 7 and a second check valve 8, respectively. . An outlet F of the expansion valve 6 is connected to a refrigerant inlet A of the indoor heat exchanger 2 and a refrigerant inlet C of the outdoor heat exchanger 3 via a third check valve 9 and a fourth check valve IO, respectively.

次に冷暖房装置の動作を説明する。室内熱交換器2の波
形の矢印Gは室内空気の流れを、室外熱交換器3の波形
の矢印Hは室外空気の流れを表わしている。これらの空
気は常に一定方向へ流れている。また、冷媒の流れを冷
房運転時は実線の矢印、暖房運転時は破線の矢印で示す
Next, the operation of the air conditioning system will be explained. The wavy arrow G of the indoor heat exchanger 2 represents the flow of indoor air, and the wavy arrow H of the outdoor heat exchanger 3 represents the flow of outdoor air. This air always flows in one direction. In addition, the flow of refrigerant is shown by solid line arrows during cooling operation, and by broken line arrows during heating operation.

冷房運転時は、吐出切替弁4が実線の矢印■の方向に開
き、吸入切替弁5が実線の矢印Jの方向に開いている。
During the cooling operation, the discharge switching valve 4 is opened in the direction of the solid arrow ■, and the suction switching valve 5 is opened in the direction of the solid arrow J.

まず、圧縮機1から吐出された高温高圧の冷媒蒸気は吐
出切替弁4を経て第四逆止弁10により逆止されて室外
熱交換器3に冷媒入口Cから流入する。室外熱交換器3
において室外空気に熱を排出し、冷媒は凝縮・液化する
。次に、第二逆止弁8を経て第一逆止弁7で逆止され膨
張弁6に流入し、減圧されて低温低圧の気液混合状態に
なる。そして、逆止弁9.IOの向きと冷媒圧力の関係
により第三逆止弁9を経て室内熱交換器2に冷媒入口A
から流入し、室内熱交換器2において室内空気から吸熱
して冷房が行われる。この熱交換によって冷媒は低温低
圧の蒸気となり、吸入切替弁5を経て圧縮機lに吸入さ
れ、再び圧縮されるサイクルを繰返す。
First, high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the discharge switching valve 4, is checked by the fourth check valve 10, and flows into the outdoor heat exchanger 3 from the refrigerant inlet C. Outdoor heat exchanger 3
The heat is discharged into the outdoor air, and the refrigerant condenses and liquefies. Next, the liquid passes through the second check valve 8, is checked by the first check valve 7, and flows into the expansion valve 6, where it is depressurized and becomes a low-temperature, low-pressure gas-liquid mixed state. and check valve 9. Depending on the relationship between the direction of IO and the refrigerant pressure, the refrigerant inlet A passes through the third check valve 9 and enters the indoor heat exchanger 2.
The indoor heat exchanger 2 absorbs heat from the indoor air and performs cooling. Through this heat exchange, the refrigerant becomes a low-temperature, low-pressure vapor, which is sucked into the compressor 1 via the suction switching valve 5, and the cycle of being compressed again is repeated.

暖房運転時は、吐出切替弁4が破線の矢印にの方向に開
き、吸入切替弁5が破線の矢印りの方向に開いている。
During heating operation, the discharge switching valve 4 opens in the direction of the broken line arrow, and the suction switching valve 5 opens in the direction of the broken line arrow.

まず、圧縮機lから吐出された高温高圧の冷媒蒸気は吐
出切替弁4を経て第三逆止弁9により逆止されて室内熱
交換器2に冷媒入口Aから流入し、室内熱交換器2にお
いて室内空気に熱を伝達し暖房が行われる。この熱交換
によって冷媒は凝縮・液化し、次に、第一逆止弁7を経
て第二逆止弁8で逆止され膨張弁6に流入し、減圧され
て低温低圧の気液混合状態になる。そして、逆止弁9.
lOの向きと冷媒圧力の関係により第四逆止弁10を経
て室外熱交換器3に冷媒入口Cから流入し、室外熱交換
器3において室外空気から集熱して低温低圧の蒸気とな
り、吸入切替弁5を経て圧縮Itに吸入され、再び圧縮
されるサイクルを繰返す。
First, high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the discharge switching valve 4, is checked by the third check valve 9, and flows into the indoor heat exchanger 2 from the refrigerant inlet A. Heating is performed by transferring heat to the indoor air. Through this heat exchange, the refrigerant condenses and liquefies, then passes through the first check valve 7, is checked by the second check valve 8, and flows into the expansion valve 6, where it is depressurized and becomes a low-temperature, low-pressure gas-liquid mixed state. Become. and check valve 9.
Depending on the relationship between the direction of lO and the refrigerant pressure, the refrigerant flows into the outdoor heat exchanger 3 from the refrigerant inlet C via the fourth check valve 10, collects heat from the outdoor air in the outdoor heat exchanger 3, becomes low temperature and low pressure steam, and is switched to suction. It is sucked into the compression It via the valve 5, and the cycle of being compressed again is repeated.

上記に示すように、冷房運転・暖房運転いずれにおいて
も、室内熱交換器2ては冷媒は冷媒入口Aから冷媒出口
Bの方向に流れ、室内空気と向流方式の熱交換を行う。
As shown above, in both cooling and heating operations, the refrigerant in the indoor heat exchanger 2 flows from the refrigerant inlet A to the refrigerant outlet B, performing countercurrent heat exchange with the indoor air.

また、室外熱交換器3では冷媒入口Cから冷媒出口りの
方向に流れ、室外空気と向流方式の熱交換を行う。
Further, in the outdoor heat exchanger 3, the refrigerant flows from the refrigerant inlet C to the refrigerant outlet, and performs countercurrent heat exchange with the outdoor air.

なお、冷暖房装置の冷媒−空気熱交換器は、一般にフィ
ンチューブ式熱交換器が使用され、1列の熱交換器では
、冷媒と空気は直交流となり、向流または並流とはなり
えない。フィンチューブ熱交換器が2列以上の場合、空
気流に対して、冷媒の入口が最も風下の列にあり、出口
が最も風上の列にあって、冷媒が風下の列から順次風上
の列に流れるように配管された場合が向流となる。逆の
場合が並流である。実際には各列の中では、冷媒と空気
は直交流となるので、厳密には直交流と向流の混合とい
うことになるが、ここではこれを向流と称することとす
る。このためフィンチューブ熱交換器では列数が大きい
方が向流の効果が大きいことになる。
Note that fin-tube heat exchangers are generally used for refrigerant-air heat exchangers in air conditioning equipment, and in a single-row heat exchanger, the refrigerant and air flow in cross flow, and cannot flow in countercurrent or parallel flow. . When there are two or more rows of fin-tube heat exchangers, the refrigerant inlet is located in the most leeward row, the outlet is located in the most windward row, and the refrigerant is sequentially distributed upwind from the leeward row. Countercurrent flow occurs when piping is arranged so that the flow flows in rows. The opposite case is parallel flow. In reality, the refrigerant and air flow in a cross flow in each row, so strictly speaking, it is a mixture of cross flow and countercurrent flow, but this will be referred to as countercurrent flow here. Therefore, in a fin-tube heat exchanger, the larger the number of rows, the greater the effect of counterflow.

〈発明の効果〉 以上の説明から明らかな通り、非共沸混合冷媒では、蒸
発器(冷房時の室内熱交換器、暖房時の室外熱交換器)
は、熱交換するにつれて冷媒の温度が上昇する。一方、
凝縮器(冷房時の室外熱交換器、暖房時の室内熱交換器
)は、熱交換するにつれて冷媒の温度が低下する。本発
明による冷暖房装置では、冷媒と空気間で向流方式の熱
交換を行うので、室内熱交換器あるいは室外熱交換器に
おける熱交換損失を減少することができる。
<Effects of the Invention> As is clear from the above explanation, non-azeotropic mixed refrigerants are used in evaporators (indoor heat exchangers during cooling, outdoor heat exchangers during heating).
The temperature of the refrigerant increases as heat is exchanged. on the other hand,
In a condenser (an outdoor heat exchanger during cooling, an indoor heat exchanger during heating), the temperature of the refrigerant decreases as heat is exchanged. In the heating and cooling apparatus according to the present invention, heat exchange is performed in a countercurrent manner between the refrigerant and air, so that heat exchange loss in the indoor heat exchanger or the outdoor heat exchanger can be reduced.

また、蒸発器における熱交換損失の低下によって圧縮機
に吸入される冷媒温度が上昇し吸入圧力が高くなる。こ
れによって、冷媒の密度が大きくなり圧縮機の冷媒質量
流量が増加し、能力の向上が図れる。
Furthermore, due to the reduction in heat exchange loss in the evaporator, the temperature of the refrigerant sucked into the compressor increases, and the suction pressure increases. This increases the density of the refrigerant, increases the refrigerant mass flow rate of the compressor, and improves the capacity.

また、凝縮器における熱交換損失の低下によって圧縮機
から吐出される冷媒温度が低下し吐出圧力か低くなるが
、上記の吸入圧力の増大と吐出圧力の低下によって、圧
縮機の圧縮比が減少し、成績係数を向上することができ
る。
In addition, due to the decrease in heat exchange loss in the condenser, the temperature of the refrigerant discharged from the compressor decreases and the discharge pressure decreases, but due to the above-mentioned increase in suction pressure and decrease in discharge pressure, the compression ratio of the compressor decreases. , the coefficient of performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す冷暖房装置のシステム図
、第2図は従来の冷暖房装置のシステム図である。 1:圧縮機、2:室内熱交換器、3;室外熱交換器、4
:吐出切替弁、5:吸入切替弁、6:膨張弁、7:第一
逆止弁、8:第二逆止弁、9:第三逆止弁、lO:第四
逆止弁、ll:圧縮機、12:電磁四方弁、13二室外
熱交換器、14:膨張弁、15.室内熱交換器、X:冷
媒回路。
FIG. 1 is a system diagram of a heating and cooling device showing an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional heating and cooling device. 1: Compressor, 2: Indoor heat exchanger, 3; Outdoor heat exchanger, 4
: Discharge switching valve, 5: Suction switching valve, 6: Expansion valve, 7: First check valve, 8: Second check valve, 9: Third check valve, lO: Fourth check valve, ll: Compressor, 12: Solenoid four-way valve, 13 Two outdoor heat exchangers, 14: Expansion valve, 15. Indoor heat exchanger, X: Refrigerant circuit.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内熱交換器、室外熱交換器および膨張弁を有
し非共沸混合冷媒を用いた冷媒回路が設けられ、該冷媒
回路は、圧縮機の吐出口が吐出切替弁を介して室内熱交
換器の冷媒入口および室外熱交換器の冷媒入口に接続さ
れ、圧縮機の吸入口が吸入切替弁を介して室内熱交換器
の冷媒出口および室外熱交換器の冷媒出口に接続され、
膨張弁の入口が、前記室内熱交換器の出口に第一逆止弁
を介して接続されると共に室外熱交換器の出口に第二逆
止弁を介して接続され、膨張弁の出口が、前記室内熱交
換器の入口に第三逆止弁を介して接続されると共に前記
室外熱交換器の入口に第四逆止弁を介して接続されてな
ることを特徴とする冷暖房装置。
A refrigerant circuit is provided that includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion valve and uses a non-azeotropic mixed refrigerant. connected to a refrigerant inlet of the heat exchanger and a refrigerant inlet of the outdoor heat exchanger, and a suction port of the compressor is connected to a refrigerant outlet of the indoor heat exchanger and a refrigerant outlet of the outdoor heat exchanger via a suction switching valve;
The inlet of the expansion valve is connected to the outlet of the indoor heat exchanger via a first check valve and the outlet of the outdoor heat exchanger via a second check valve, and the outlet of the expansion valve is connected to the outlet of the indoor heat exchanger via a first check valve. An air-conditioning/heating device, characterized in that it is connected to the inlet of the indoor heat exchanger via a third check valve, and is connected to the inlet of the outdoor heat exchanger via a fourth check valve.
JP13575387A 1987-05-29 1987-05-29 Air conditioner Pending JPS63302268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13575387A JPS63302268A (en) 1987-05-29 1987-05-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13575387A JPS63302268A (en) 1987-05-29 1987-05-29 Air conditioner

Publications (1)

Publication Number Publication Date
JPS63302268A true JPS63302268A (en) 1988-12-09

Family

ID=15159062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13575387A Pending JPS63302268A (en) 1987-05-29 1987-05-29 Air conditioner

Country Status (1)

Country Link
JP (1) JPS63302268A (en)

Similar Documents

Publication Publication Date Title
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
US4057977A (en) Reverse cycle heat pump circuit
CN215892840U (en) Energy-saving dehumidifying refrigeration heat exchange device
JP3286038B2 (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP2698118B2 (en) Air conditioner
JPS63302268A (en) Air conditioner
JPS63302269A (en) Air conditioner
JPS63302264A (en) Air conditioner
JPH1068560A (en) Refrigeration cycle device
JPS6117318Y2 (en)
JPH10196984A (en) Air conditioner
KR20050043089A (en) Heat pump
JPH09318178A (en) Air conditioner
CN210463633U (en) Special air conditioner using heat pipe heat exchanger as indoor heat exchanger
JPH07103622A (en) Air-conditioner
JPH0861799A (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JPS63302263A (en) Air conditioner
JPH01139960A (en) Air conditioner
JPH11264629A (en) Cross fin coil type heat exchanger
CN208881525U (en) A kind of direct-type heat pump system, air-conditioning and automobile
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH01312365A (en) Cooling and heating device
JPS586226Y2 (en) Air conditioning equipment