JPS63302264A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPS63302264A JPS63302264A JP13575487A JP13575487A JPS63302264A JP S63302264 A JPS63302264 A JP S63302264A JP 13575487 A JP13575487 A JP 13575487A JP 13575487 A JP13575487 A JP 13575487A JP S63302264 A JPS63302264 A JP S63302264A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- rectifier
- compressor
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims description 142
- 238000001816 cooling Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 25
- 238000004378 air conditioning Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、蒸気圧縮式冷媒回路をaする冷暖房装置に関
する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a heating and cooling system using a vapor compression refrigerant circuit.
〈従来技術〉
近年、ヒートポンプ式の冷暖房装置は、インバータの搭
載やマイクロプロセッサによるサイクル制御等により機
能性が向上し、しかも安全性、清浄性に優れていること
から、家庭用冷暖房機器としてその地位を確立してきた
。<Conventional technology> In recent years, heat pump type air-conditioning equipment has improved its functionality by incorporating inverters and cycle control using microprocessors, and is also superior in safety and cleanliness, so it has gained its status as a household air-conditioning equipment. has been established.
また、今後の研究開発により、さらに高機能化、高効率
化が実現し、飛躍的な需要拡大が期待できる。Furthermore, future research and development will lead to even higher functionality and efficiency, and we can expect a dramatic increase in demand.
ヒートポンプサイクルの高機能化、高効率北東の一つと
して非共沸混合冷媒の採用が考えられる。The use of non-azeotropic mixed refrigerants can be considered as one way to improve the functionality and efficiency of heat pump cycles.
従来のヒートポンプ式の冷暖房装置は単一冷媒を採用し
たものがほとんどであり、以下のようなサイクルを形成
していた。Most conventional heat pump air conditioning systems use a single refrigerant, forming the following cycle.
従来のヒートポンプ式冷暖房装置のサイクルを第2図に
示す。実線矢印は冷房時、破線矢印は暖房時の冷媒の流
れを示す。冷房運転時は圧縮機11から吐出した高温、
高圧の冷媒蒸気は電磁四方弁12を介して室外熱交換器
13に入り、室外空気に放熱して凝縮する。凝縮した冷
媒は膨張弁14で減圧され低温、低圧となり室内熱交換
器15で室内空気から吸熱して気化する。気化した冷媒
は圧縮機11に吸入され、再び高温、高圧の蒸気になっ
て、冷房サイクルを形成していた。Figure 2 shows the cycle of a conventional heat pump air conditioning system. Solid arrows indicate the flow of refrigerant during cooling, and dashed arrows indicate the flow of refrigerant during heating. During cooling operation, the high temperature discharged from the compressor 11,
The high-pressure refrigerant vapor enters the outdoor heat exchanger 13 via the electromagnetic four-way valve 12, radiates heat to the outdoor air, and condenses. The condensed refrigerant is depressurized by the expansion valve 14 and becomes low temperature and pressure, and is vaporized by absorbing heat from the indoor air in the indoor heat exchanger 15. The vaporized refrigerant was sucked into the compressor 11 and turned into high-temperature, high-pressure steam again, forming a cooling cycle.
一方、ヒートポンプ暖房運転時は圧縮機11から吐出し
た高温、高圧の冷媒蒸気は電磁四方弁!2を介してまず
室内熱交換器15に入り、室内空気に放熱して凝縮する
。凝縮した冷媒は膨張弁14で減圧され低温、低圧とな
り室外熱交換器13で室外空気から吸熱して気化する。On the other hand, when the heat pump is in heating operation, the high temperature and high pressure refrigerant vapor discharged from the compressor 11 is controlled by an electromagnetic four-way valve! The heat first enters the indoor heat exchanger 15 via the air filter 2, where it radiates heat to the indoor air and condenses. The condensed refrigerant is depressurized by the expansion valve 14 to become low temperature and low pressure, and is vaporized by absorbing heat from the outdoor air in the outdoor heat exchanger 13.
気化した冷媒は圧縮機2に吸入され、再び高温、高圧の
蒸気になって、暖房サイクルを形成していた。The vaporized refrigerant was sucked into the compressor 2 and turned into high-temperature, high-pressure steam again, forming a heating cycle.
く 発明が解決しようとする問題点 〉上記従来のサイ
クルはR12やR22等の単一冷媒用のサイクルであり
、冷媒の流れは冷房とヒートポンプ暖房では逆になる。Problems to be Solved by the Invention The conventional cycle described above is a cycle for a single refrigerant such as R12 or R22, and the flow of the refrigerant is reversed between cooling and heat pump heating.
単一冷媒の場合、一定圧力では、蒸気および凝縮の過程
は等温変化であり特に問題とはならなかった。In the case of a single refrigerant, at a constant pressure, the vapor and condensation processes are isothermal changes and did not pose any particular problem.
非共沸混合冷媒(たとえば、R12−Rl3B!、R1
52a−R13BISR22−R11、R22−Rl
3B 1の混合物)を用いた冷媒回路の蒸発器では、冷
媒液は気液平衡を保ちながら冷媒蒸気となる。この間、
蒸発温度は次第に上昇していく。凝縮器では全くこの逆
で、凝縮温度は次第に低下していく。一方、空気は蒸発
器では熱を奪われて低温になり、凝縮器では熱を得て高
温となる。これらの温度関係をまとめると表−1になる
。Non-azeotropic mixed refrigerants (e.g. R12-Rl3B!, R1
52a-R13BISR22-R11, R22-Rl
In the evaporator of a refrigerant circuit using a mixture of 3B and 1), the refrigerant liquid becomes refrigerant vapor while maintaining vapor-liquid equilibrium. During this time,
The evaporation temperature gradually increases. In the condenser, the condensation temperature is exactly the opposite, and the condensation temperature gradually decreases. On the other hand, the air loses heat in the evaporator and becomes low temperature, and in the condenser it gains heat and becomes high temperature. Table 1 summarizes these temperature relationships.
表−1
この非共沸混合冷媒の冷媒回路は、向流方式の熱交換を
行うことにより、相変化の温度が濃度に依存する特性を
利用して冷媒と冷却流体あるいは加熱流体との熱交換損
失を減少させ、成績係数を向上させることができる。向
流方式とは、空気流に対して、冷媒の入口が最も風下の
列にあり、出口が最も風上の列にあって、冷媒が風下の
列から順次風上の列に流れるように配管された場合をい
う。また、これと逆の場合を並流方式という。Table 1 This refrigerant circuit for non-azeotropic mixed refrigerants utilizes the characteristic that the temperature of phase change depends on the concentration by performing heat exchange in a countercurrent manner to exchange heat between the refrigerant and the cooling fluid or heating fluid. It can reduce losses and improve coefficient of performance. Countercurrent method refers to piping in which the refrigerant inlet is located in the most leeward row and the outlet is located in the most windward row, so that the refrigerant flows sequentially from the leeward row to the upwind row. This refers to cases where The opposite case is called parallel current method.
従来のヒートポンプサイクルでは上述の如く、冷房と暖
房では冷媒の流れが全く逆になり、また、送風機による
熱交換器への空気の流れは、常に一定方向である。その
ため、冷房運転時に向流方式の熱交換を行う冷媒回路で
は暖房運転時に並流方式の熱交換となり、また暖房運転
時に向流方式の熱交換を行う冷媒回路では冷房運転時に
並流方式の熱交換となり、冷房・暖房とも向流方式とは
成り得なかった。In the conventional heat pump cycle, as mentioned above, the flow of refrigerant is completely opposite during cooling and heating, and the flow of air to the heat exchanger by the blower is always in the same direction. Therefore, a refrigerant circuit that performs countercurrent heat exchange during cooling operation uses parallel current heat exchange during heating operation, and a refrigerant circuit that performs countercurrent heat exchange during heating operation uses parallel current heat exchange during cooling operation. Since it was replaced, it was not possible to use a countercurrent system for both cooling and heating.
本発明はこのような点に鑑みて創案されたもので、向流
方式の蒸発器および凝縮器が、冷房時にも、暖房時にも
、実現可能な冷暖房装置を提供するものである。The present invention was devised in view of these points, and provides an air-conditioning/heating device that uses a countercurrent type evaporator and condenser for both cooling and heating.
く 問題点を解決するための手段 〉
本発明による問題点解決手段は、第1図のごとく、圧縮
機l、室内熱交換器2、室外熱交換器3および膨張弁5
を有し非共沸混合冷媒を用いた冷媒回路Xが設けられ、
前記室内熱交換器2を流れる冷媒の流れ方向を一定方向
とするための第一冷媒整流装置6が設けられ、前記室外
熱交換器3を流れる冷媒の流れ方向を一定方向とするた
めの第二冷媒整流装置7が設けられ、前記室内熱交換器
2は、第一冷媒整流装置6を介して圧縮機!および膨張
弁5に接続され、前記室外熱交換器3は、第二冷媒整流
装置7を介して圧縮機1および膨張弁5に接続されてい
る。Means for Solving the Problems> The means for solving the problems according to the present invention, as shown in FIG.
A refrigerant circuit X using a non-azeotropic mixed refrigerant is provided,
A first refrigerant rectifier 6 is provided for making the flow direction of the refrigerant flowing through the indoor heat exchanger 2 constant, and a second refrigerant straightening device 6 is provided for making the flow direction of the refrigerant flowing through the outdoor heat exchanger 3 constant. A refrigerant rectifier 7 is provided, and the indoor heat exchanger 2 is connected to the compressor through the first refrigerant rectifier 6! The outdoor heat exchanger 3 is connected to the compressor 1 and the expansion valve 5 via a second refrigerant rectifier 7 .
く作用〉
上記問題点解決手段において、冷房運転時、圧縮機lか
ら吐出された冷媒は電磁四方弁4を経由した後、第二冷
媒整流装置7に流入し、第二冷媒整流装置7によって流
れ方向が限定されて室外熱交換器3の冷媒人口3aから
室外熱交換器3に流入する。そして、再び第二冷媒整流
装置7によって流れ方向が限定されて第二冷媒整流装置
7を経て膨張弁5に至る。そして膨張弁5から流出した
冷媒は第一冷媒整流装置6に流入し、第一冷媒整流装置
6によって流れ方向が限定されて室内熱交換器2の冷媒
人口2aから室内熱交換器2に流入し、再び第一冷媒整
流装置6によって流れ方向が限定されて第一冷媒整流装
置6を経て電磁四方弁4に至った後、圧縮機1に戻る。In the above problem solving means, during cooling operation, the refrigerant discharged from the compressor 1 passes through the electromagnetic four-way valve 4, flows into the second refrigerant rectifier 7, and is flown by the second refrigerant rectifier 7. The refrigerant flows into the outdoor heat exchanger 3 from the refrigerant population 3a of the outdoor heat exchanger 3 in a limited direction. Then, the flow direction is again limited by the second refrigerant rectifier 7 and reaches the expansion valve 5 via the second refrigerant rectifier 7. Then, the refrigerant flowing out from the expansion valve 5 flows into the first refrigerant rectifier 6, where the flow direction is limited and the refrigerant flows into the indoor heat exchanger 2 from the refrigerant population 2a of the indoor heat exchanger 2. The flow direction of the refrigerant is again limited by the first refrigerant rectifier 6, and after reaching the electromagnetic four-way valve 4 through the first refrigerant rectifier 6, it returns to the compressor 1.
また、暖房運転時は、圧縮機lから吐出された冷媒は電
磁四方弁4を経由した後、第一冷媒整流装置6に流入し
、第一冷媒整流装置6によって流れ方向が限定されて室
内熱交換器2の冷媒人口2aから室内熱交換器2に流入
する。そして、再び第一冷媒整流装置6によって流れ方
向が限定されて第一冷媒整流装置6を経て膨張弁5に至
る。そして膨張弁5から流出した冷媒は第二冷媒整流装
置7に流入し、第二冷媒整流装置7によって流れ方向が
限定されて室外熱交換器3の冷媒人口3aから室外熱交
換器3に流入し、再び第二冷媒整流装置7によって流れ
方向が限定されて第二冷媒整流装置7を経て電磁四方弁
4に至った後、圧縮機lに戻る。In addition, during heating operation, the refrigerant discharged from the compressor 1 passes through the electromagnetic four-way valve 4 and then flows into the first refrigerant rectifier 6, and the flow direction is limited by the first refrigerant rectifier 6, causing indoor heat. The refrigerant flows into the indoor heat exchanger 2 from the refrigerant population 2a of the exchanger 2. Then, the flow direction is again limited by the first refrigerant rectifier 6 and reaches the expansion valve 5 via the first refrigerant rectifier 6. The refrigerant flowing out from the expansion valve 5 then flows into the second refrigerant rectifying device 7, where the flow direction is limited and the refrigerant flows into the outdoor heat exchanger 3 from the refrigerant population 3a of the outdoor heat exchanger 3. The flow direction of the refrigerant is again limited by the second refrigerant rectifier 7, and after reaching the electromagnetic four-way valve 4 through the second refrigerant rectifier 7, it returns to the compressor 1.
以上のように、室内熱交換器2と室外熱交換器3の冷媒
の流れは冷房運転、暖房運転ともに同一方向となり、冷
媒の流れと空気の流れを冷暖房いずれも向流にすること
ができる。As described above, the flow of the refrigerant in the indoor heat exchanger 2 and the outdoor heat exchanger 3 is in the same direction during both cooling and heating operations, and the flow of the refrigerant and the flow of air can be made countercurrent for both heating and cooling operations.
〈実施例〉
第1図は本発明の実施例を示す冷暖房装置のシステム図
である。本装置は、非共沸混合冷媒を用いた冷媒回路X
が、圧縮機1、室内熱交換器2、室外熱交換器3、電磁
四方弁4、膨張弁5、第一冷媒整流装置6および第二冷
媒整流装置7から構成されている。<Embodiment> FIG. 1 is a system diagram of a heating and cooling device showing an embodiment of the present invention. This device uses a refrigerant circuit X using a non-azeotropic mixed refrigerant.
It is composed of a compressor 1, an indoor heat exchanger 2, an outdoor heat exchanger 3, an electromagnetic four-way valve 4, an expansion valve 5, a first refrigerant rectifier 6, and a second refrigerant rectifier 7.
圧縮機1の吐出口、吸入口は電磁四方弁4を介して第一
冷媒整流装置6の圧縮機接続口6cおよび第二冷媒整流
装置7の圧縮機接続ロアcに接続される。また第一冷媒
整流装置6の膨張弁接続口6dおよび第二冷媒整流装置
7の膨張弁接続ロアdは膨張弁5を介して接続されてい
る。The discharge port and suction port of the compressor 1 are connected to the compressor connection port 6c of the first refrigerant rectifier 6 and the compressor connection lower c of the second refrigerant rectifier 7 via the electromagnetic four-way valve 4. Further, the expansion valve connection port 6d of the first refrigerant rectifier 6 and the expansion valve connection lower d of the second refrigerant rectifier 7 are connected via the expansion valve 5.
また、第一冷媒整流装置6および第二冷媒整流装置7は
、夫々四個の逆止弁6e〜6hおよび7e〜7hを具え
たものである。そして、室内熱交換器2の冷媒人口2a
は第一冷媒整流装置6の冷媒出口6aと接続され、室内
熱交換器2の冷媒出口2bは第一冷媒整流装置6の冷媒
人口6bに接続されている。室外熱交換器3の冷媒人口
3aは第二冷媒整流装置7の冷媒用ロアaと接続され、
室外熱交換器3の冷媒出口3bは第二冷媒整流装置7の
冷媒人ロアbに接続されている。Moreover, the first refrigerant rectifier 6 and the second refrigerant rectifier 7 each include four check valves 6e to 6h and 7e to 7h. Then, the refrigerant population 2a of the indoor heat exchanger 2
is connected to the refrigerant outlet 6a of the first refrigerant rectifier 6, and the refrigerant outlet 2b of the indoor heat exchanger 2 is connected to the refrigerant outlet 6b of the first refrigerant rectifier 6. The refrigerant population 3a of the outdoor heat exchanger 3 is connected to the refrigerant lower a of the second refrigerant rectifier 7,
The refrigerant outlet 3b of the outdoor heat exchanger 3 is connected to the refrigerant lower b of the second refrigerant rectifier 7.
なお第1図中、室内熱交換器2の波形の矢印8は室内空
気の流れを、室外熱交換器3の波形の矢印9は室外空気
の流れを夫々表わしている。これらの空気は常に一定方
向へ流れている。また、冷媒の流れを冷房運転時は実線
の矢印、暖房運転時は破線の矢印で示す。In FIG. 1, the wavy arrows 8 of the indoor heat exchanger 2 represent the flow of indoor air, and the wavy arrows 9 of the outdoor heat exchanger 3 represent the flow of outdoor air. This air always flows in one direction. In addition, the flow of refrigerant is shown by solid line arrows during cooling operation, and by broken line arrows during heating operation.
次に冷暖房装置の動作を説明する。冷房運転時は、圧縮
機lから吐出された高温高圧の冷媒蒸気は電磁四方弁4
(実線)を経て第二冷媒整流装置7の圧縮機接続ロアc
を経て第二冷媒整流装置7に流入し逆止弁の流れ方向に
従い冷媒用ロアaより流出し、室外熱交換器3に冷媒人
口3aを経て室外熱交換器3に流入し、室外空気9に熱
を排出し、冷媒は凝縮・液化する。そして冷媒出口3b
より流出し、第二冷媒整流装置7の冷媒人ロアbを経て
再び第二冷媒整流装置7に流入し、逆止弁の流れ方向に
従い膨張弁接続ロアdから膨張弁5に流入する。そして
、膨張弁5で減圧されて低温低圧の気液混合状態になる
。その後、第一冷媒整流装置6の膨張弁接続口6dから
第一冷媒整流装置6に流入し、逆上弁の流れ方向に従い
冷媒出口6aから室内熱交換器2の冷媒人口2aを経て
室内熱交換器2に流入し、室内空気8から吸熱して冷房
が行われる。この熱交換によって冷媒は低温低圧の蒸気
となり、冷媒出口2bから第一冷媒整流装置6の冷媒人
口6bを経て第一冷媒整流装置6に流入し、逆止弁の流
れ方向に従い圧縮機接続口6Cから電磁四方弁4を経て
圧縮機lに吸入され、再び圧縮されるサイクルを繰返す
。Next, the operation of the air conditioning system will be explained. During cooling operation, the high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 is passed through the electromagnetic four-way valve 4.
(solid line) to the compressor connection lower c of the second refrigerant rectifier 7
The refrigerant flows into the second refrigerant rectifying device 7 through the flow direction of the check valve, flows out from the refrigerant lower a, flows into the outdoor heat exchanger 3 via the refrigerant population 3a, and enters the outdoor air 9. Heat is removed and the refrigerant condenses and liquefies. and refrigerant outlet 3b
The refrigerant flows out through the refrigerant lower b of the second refrigerant rectifying device 7, flows into the second refrigerant rectifying device 7 again, and flows into the expansion valve 5 from the expansion valve connecting lower d according to the flow direction of the check valve. Then, the pressure is reduced by the expansion valve 5, resulting in a low temperature, low pressure gas-liquid mixed state. After that, the refrigerant flows into the first refrigerant rectifier 6 from the expansion valve connection port 6d of the first refrigerant rectifier 6, and then passes through the refrigerant outlet 6a of the indoor heat exchanger 2 from the refrigerant outlet 6a according to the flow direction of the reversal valve for indoor heat exchange. The air flows into the container 2, absorbs heat from the indoor air 8, and performs cooling. Through this heat exchange, the refrigerant becomes a low-temperature, low-pressure vapor, which flows from the refrigerant outlet 2b to the first refrigerant rectifier 6 through the refrigerant population 6b of the first refrigerant rectifier 6, and follows the flow direction of the check valve to the compressor connection port 6C. The air is sucked into the compressor l via the electromagnetic four-way valve 4, and the cycle of being compressed again is repeated.
暖房運転時は、従来の冷暖房装置と同様に電磁四方弁4
が破線の接続となり、冷媒は室内熱交換器2において凝
縮・液化し、室外熱交換器3におい、て蒸発・気化する
が、第一冷媒整流装置6および第二冷媒整流装置70作
用により室内熱交換器2および室外熱交換器3の冷媒の
流れ方向は上記冷房運転と同一となる。During heating operation, the electromagnetic four-way valve 4
is the connection shown by the broken line, and the refrigerant is condensed and liquefied in the indoor heat exchanger 2, and evaporated and vaporized in the outdoor heat exchanger 3. However, due to the actions of the first refrigerant rectifier 6 and the second refrigerant rectifier 70, the indoor heat is The flow direction of the refrigerant in the exchanger 2 and the outdoor heat exchanger 3 is the same as in the cooling operation described above.
上記に示すように、冷房運転・暖房運転いずれにおいて
も、室内熱交換器2では冷媒は冷媒人口2aから冷媒出
口2bの方向に流れ、室内空気と向流方式の熱交換を行
う。また、室外熱交換器3では冷媒人口3aから冷媒出
口3bの方向に流れ、室外空気と向流方式の熱交換を行
う。As shown above, in both the cooling operation and the heating operation, the refrigerant in the indoor heat exchanger 2 flows from the refrigerant population 2a to the refrigerant outlet 2b, and performs countercurrent heat exchange with the indoor air. Further, in the outdoor heat exchanger 3, the refrigerant flows from the refrigerant population 3a toward the refrigerant outlet 3b, and performs countercurrent heat exchange with the outdoor air.
なお、冷暖房装置の冷媒−空気熱交換器は、一般にフィ
ンチューブ式熱交換器が使用され、1列の熱交換器では
、冷媒と空気は直交流となり、向流または並流とはなり
えない。フィンチューブ熱交換器が2列以上の場合、空
気流に対して、冷媒の入口が最も風下の列にあり、出口
が最も風上の列にあって、冷媒が風下の列から順次風上
の列に流れるように配管された場合が向流となる。逆の
場合が並流である。実際には各列の中では、冷媒と空気
は直交流となるので、厳密には直交流と向流の混合とい
うことになるが、ここではこれを向流と称することとす
る。このためフィンチューブ熱交換器では列数が大きい
方が向流の効果が大きいことになる。Note that fin-tube heat exchangers are generally used for refrigerant-air heat exchangers in air conditioning equipment, and in a single-row heat exchanger, the refrigerant and air flow in cross flow, and cannot flow in countercurrent or parallel flow. . When there are two or more rows of fin-tube heat exchangers, the refrigerant inlet is located in the most leeward row, the outlet is located in the most windward row, and the refrigerant is sequentially distributed upwind from the leeward row. Countercurrent flow occurs when piping is arranged so that the flow flows in rows. The opposite case is parallel flow. In reality, the refrigerant and air flow in a cross flow in each row, so strictly speaking, it is a mixture of cross flow and countercurrent flow, but this will be referred to as countercurrent flow here. Therefore, in a fin-tube heat exchanger, the larger the number of rows, the greater the effect of counterflow.
〈発明の効果〉
以上の説明から明らかな通り、非共沸混合冷媒では、蒸
発器(冷房時の室内熱交換器、暖房時の室外熱交換器)
は、熱交換するにつれて冷媒の温度が上昇する。一方、
凝縮器(冷房時の室外熱交換器、暖房時の室内熱交換器
)は、熱交換するにつれて冷媒の温度が低下する。本発
明による冷暖房装置では、冷媒と空気間で向流方式の熱
交換を行うので、室内熱交換器あるいは室外熱交換器に
おける熱交換損失を減少することができる。<Effects of the Invention> As is clear from the above explanation, non-azeotropic mixed refrigerants are used in evaporators (indoor heat exchangers during cooling, outdoor heat exchangers during heating).
The temperature of the refrigerant increases as heat is exchanged. on the other hand,
In a condenser (an outdoor heat exchanger during cooling, an indoor heat exchanger during heating), the temperature of the refrigerant decreases as heat is exchanged. In the heating and cooling apparatus according to the present invention, heat exchange is performed in a countercurrent manner between the refrigerant and air, so that heat exchange loss in the indoor heat exchanger or the outdoor heat exchanger can be reduced.
また、蒸発器における熱交換損失の低下によって圧縮機
に吸入される冷媒温度が上昇し吸入圧力が高くなる。こ
れによって、冷媒の密度が大きくなり圧縮機の冷媒質量
流量が増加し、能力の向上が図れる。Furthermore, due to the reduction in heat exchange loss in the evaporator, the temperature of the refrigerant sucked into the compressor increases, and the suction pressure increases. This increases the density of the refrigerant, increases the refrigerant mass flow rate of the compressor, and improves the capacity.
また、凝縮器における熱交換損失の低下によって圧縮機
から吐出される冷媒温度が低下し吐出圧力が低くなるが
、上記の吸入圧力の増大と吐出圧力の低下によって、圧
縮機の圧縮比が減少し、成績係数を向上することができ
る。Additionally, the reduction in heat exchange loss in the condenser lowers the temperature of the refrigerant discharged from the compressor and lowers the discharge pressure, but due to the above-mentioned increase in suction pressure and decrease in discharge pressure, the compression ratio of the compressor decreases. , the coefficient of performance can be improved.
第1図は本発明の実施例を示す冷暖房装置のシステム図
、第2図は従来の冷暖房装置のシステム図である。
l:圧縮機、2:室内熱交換器、3:室外熱交換器、4
:電磁四方弁、5:膨張弁、6:第一冷媒整流装置、7
:第二冷媒整流装置、8:室内空気の流れ、9;室外空
気の流れ、lK=圧縮機、12:電磁四方弁、13:室
外熱交換器、14:膨張弁、15:室内熱交換器、X:
冷媒回路。FIG. 1 is a system diagram of a heating and cooling device showing an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional heating and cooling device. l: Compressor, 2: Indoor heat exchanger, 3: Outdoor heat exchanger, 4
: Solenoid four-way valve, 5: Expansion valve, 6: First refrigerant rectifier, 7
: second refrigerant rectifier, 8: indoor air flow, 9: outdoor air flow, lK = compressor, 12: electromagnetic four-way valve, 13: outdoor heat exchanger, 14: expansion valve, 15: indoor heat exchanger ,X:
Refrigerant circuit.
Claims (1)
し非共沸混合冷媒を用いた冷媒回路が設けられ、前記室
内熱交換器を流れる冷媒の流れ方向を一定方向とするた
めの第一冷媒整流装置が設けられ、前記室外熱交換器を
流れる冷媒の流れ方向を一定方向とするための第二冷媒
整流装置が設けられ、前記室内熱交換器は、第一冷媒整
流装置を介して圧縮機および膨張弁に接続され、前記室
外熱交換器は、第二冷媒整流装置を介して圧縮機および
膨張弁に接続されていることを特徴とする冷暖房装置。A refrigerant circuit that includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion valve and uses a non-azeotropic mixed refrigerant is provided, and the refrigerant circuit that flows through the indoor heat exchanger is configured to have a constant flow direction. A first refrigerant rectifier is provided, a second refrigerant rectifier is provided for making the flow direction of the refrigerant flowing through the outdoor heat exchanger constant, and the indoor heat exchanger A heating and cooling system characterized in that the outdoor heat exchanger is connected to the compressor and the expansion valve via a second refrigerant rectifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13575487A JPS63302264A (en) | 1987-05-29 | 1987-05-29 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13575487A JPS63302264A (en) | 1987-05-29 | 1987-05-29 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63302264A true JPS63302264A (en) | 1988-12-09 |
Family
ID=15159083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13575487A Pending JPS63302264A (en) | 1987-05-29 | 1987-05-29 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63302264A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327707A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Appliances Inc | Air conditioner |
-
1987
- 1987-05-29 JP JP13575487A patent/JPS63302264A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007327707A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Appliances Inc | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06213518A (en) | Heat pump type air conditioner for mixed refrigerant | |
CN215892840U (en) | Energy-saving dehumidifying refrigeration heat exchange device | |
JP3286038B2 (en) | Air conditioner | |
JP3650358B2 (en) | Air conditioner | |
JPS63302264A (en) | Air conditioner | |
JP3155645B2 (en) | Air conditioner | |
JPS63302269A (en) | Air conditioner | |
JPS63302268A (en) | Air conditioner | |
CN210463633U (en) | Special air conditioner using heat pipe heat exchanger as indoor heat exchanger | |
JPH0861799A (en) | Air conditioner | |
KR20050043089A (en) | Heat pump | |
JPH1068560A (en) | Refrigeration cycle device | |
JPH08145490A (en) | Heat exchanger for heat pump air conditioner | |
JPS63302263A (en) | Air conditioner | |
JPH01139960A (en) | Air conditioner | |
JPS58104466A (en) | Heat pump device | |
JPH07103622A (en) | Air-conditioner | |
JPS63238367A (en) | Refrigeration cycle device | |
JPH01312365A (en) | Cooling and heating device | |
JPH07208822A (en) | Heat pump type refrigerating cycle | |
JPS5849863A (en) | Refrigerating cycle of heat pump type hot-water supply machine | |
JPS595810Y2 (en) | Heat pump air conditioner | |
JP3354244B2 (en) | Refrigeration equipment | |
JP3281438B2 (en) | Air conditioner | |
JPS63302262A (en) | Air conditioner |