JPS63298733A - Production of magneto-optical recording element - Google Patents

Production of magneto-optical recording element

Info

Publication number
JPS63298733A
JPS63298733A JP13287787A JP13287787A JPS63298733A JP S63298733 A JPS63298733 A JP S63298733A JP 13287787 A JP13287787 A JP 13287787A JP 13287787 A JP13287787 A JP 13287787A JP S63298733 A JPS63298733 A JP S63298733A
Authority
JP
Japan
Prior art keywords
film
magneto
substrate
magnetic material
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13287787A
Other languages
Japanese (ja)
Other versions
JP2565338B2 (en
Inventor
Yoshifumi Sakurai
桜井 良文
Hisao Arimune
久雄 有宗
Yasuo Nishiguchi
泰夫 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62132877A priority Critical patent/JP2565338B2/en
Publication of JPS63298733A publication Critical patent/JPS63298733A/en
Application granted granted Critical
Publication of JP2565338B2 publication Critical patent/JP2565338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve corrosion resistance and oxidation resistance by installing a vapor deposition source consisting of an Fe element and rare earth metal element and a substrate for film formation in a reaction vessel and forming a recording film consisting of a magnetic material having high-density packability by a vacuum deposition method on this substrate. CONSTITUTION:The vapor deposition source consisting of the Fe element and rare earth metal element and the substrate for film formation are installed in the reaction vessel and the recording film consisting of the magnetic material having the high-density packability is formed on this substrate by the vacuum deposition method. The high-density packability is expressed by a substantial no decrease in the angle of Kerr rotation of the recording film consisting of the magnetic material in an atmosphere of 60 deg.C and 70% relative humidity. The corrosion resistance and oxidation resistance of the magnetic material film for magneto-optical recording is thereby improved and the long-period reliability of the magneto-optical characteristics is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はFe元素を含有する光磁気記録用磁性体膜の耐
食性及び耐酸化性を向上させて光磁気特性の長期信頼性
を達成した光磁気記録素子の製法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides an optical system that achieves long-term reliability of magneto-optical characteristics by improving the corrosion resistance and oxidation resistance of a magnetic film for magneto-optical recording containing Fe element. The present invention relates to a method for manufacturing a magnetic recording element.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、光磁気記録媒体を用いた高密度記録が盛んに研究
されており、その記録方式は大量の情報を高密度に記録
するために集束レーザー光を投光し、記録媒体を局部加
熱することによってビットを書込み、そして、磁気光学
効果を利用して読出すという方式であり、この媒体には
希土類−遷移金属元素から成る非晶質金属垂直磁化膜が
用いられる。
In recent years, high-density recording using magneto-optical recording media has been actively researched, and the recording method is to project a focused laser beam and locally heat the recording medium in order to record a large amount of information at high density. In this method, bits are written using a magneto-optical effect, and then read using magneto-optical effects, and this medium uses an amorphous metal perpendicularly magnetized film made of a rare earth-transition metal element.

この希土類金属元素にはGd、Tb、Dy等が、一方の
遷移金属元素にはFe、Co、Ni等が提案され、それ
ぞれの元素を少なくとも一種選択して組合せ、これによ
って媒体用材料としており、例えばTbFe。
Gd, Tb, Dy, etc. have been proposed as the rare earth metal elements, and Fe, Co, Ni, etc. have been proposed as the transition metal elements, and at least one of each element is selected and combined to form a material for the medium. For example, TbFe.

TbFeCo、 GdTbFe、 GdDyFe、 N
dDyFeCo等がある。
TbFeCo, GdTbFe, GdDyFe, N
There are dDyFeCo and the like.

しかしながら、このような磁性媒体は酸化され易いとい
う欠点があり、この酸化が進行すると媒体が透明化し、
光磁気特性を低下させる。特にFe元素から成る垂直磁
化膜であれば、それ以外の遷移金属から成る垂直磁化膜
に比べて酸化され易いということが知られている。
However, such a magnetic medium has the disadvantage that it is easily oxidized, and as this oxidation progresses, the medium becomes transparent.
Decrease magneto-optical properties. In particular, it is known that a perpendicularly magnetized film made of Fe element is more easily oxidized than a perpendicularly magnetized film made of other transition metals.

また、この垂直磁化膜は主にスパッタリング法によって
成膜されており、この成膜方法によれば、i)  ・・
・垂直磁化膜の元素組成比が広範囲となる、ii)・・
・その元素組成比のコントロールが容易である、iii
 )  ・・・各元素の蒸気圧差が成膜に影響しない、
iv)  ・・・容積の小さい真空槽を用いて大面積に
成膜することができる、■)・・・基板に対する密着力
が優れている、・・・などの利点があり、そのため、今
日、スパッタリング法によって成膜された垂直磁化膜に
ついて研究報告が多くなされている。
In addition, this perpendicular magnetization film is mainly formed by a sputtering method, and according to this film formation method, i)...
・The elemental composition ratio of the perpendicularly magnetized film is wide-ranging, ii)...
・It is easy to control the elemental composition ratio, iii
) ...The vapor pressure difference of each element does not affect the film formation,
iv) It has the advantages of being able to form a film over a large area using a vacuum chamber with a small volume, and ■) It has excellent adhesion to the substrate. Many research reports have been made on perpendicularly magnetized films formed by sputtering.

このようにスパッタリング法が主流であるが、この成膜
方法とそれ以外の成膜方法との差による耐食性及び耐酸
化性の優劣についてはほとんど論じられていない。
As described above, the sputtering method is the mainstream, but there has been little discussion of the differences in corrosion resistance and oxidation resistance between this film forming method and other film forming methods.

〔発明の目的〕[Purpose of the invention]

本発明者等は上記事情に鑑み、鋭意研究の結果、Fe元
素を含む希土類−遷移金属元素系垂直磁化膜を真空蒸着
法によって形成した場合には、それと同じ組成の垂直磁
化膜をスパッタリング法によって形成した場合に比べて
耐食性及び耐酸化性が顕著に向上することを見い出した
In view of the above circumstances, the present inventors have conducted intensive research and found that when a rare earth-transition metal element-based perpendicularly magnetized film containing Fe is formed by vacuum evaporation, a perpendicularly magnetized film with the same composition is formed by sputtering. It has been found that the corrosion resistance and oxidation resistance are significantly improved compared to the case where it is formed.

従って本発明は上記知見により完成されたものであり、
その目的は耐食性及び耐酸化性が著しく向上し、長期信
頼性を達成した光磁気記録素子の製法を提供することに
ある。
Therefore, the present invention has been completed based on the above findings,
The purpose is to provide a method for manufacturing a magneto-optical recording element that has significantly improved corrosion resistance and oxidation resistance and achieves long-term reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、反応室内部にFe元素及び希土類金属
元素から成る蒸着源並びに成膜用基体が設置され、真空
蒸着法により該基体上に高密度充填性磁性体記録膜を形
成することを特徴とする光磁気記録素子の製法が提供さ
れる。
According to the present invention, an evaporation source and a film-forming substrate made of Fe element and rare earth metal elements are installed inside a reaction chamber, and a densely packed magnetic recording film is formed on the substrate by a vacuum evaporation method. A method for manufacturing a characteristic magneto-optical recording element is provided.

以下、本発明の製法を詳細に説明する。The manufacturing method of the present invention will be explained in detail below.

磁性体記録膜にFe元素を含む場合、Co、Niを遷移
金属の主成分に含む磁性体記録膜に比べて酸化され易い
ということが知られているが、上記のような本発明の製
法によれば、Fe元素を含む磁性体記録膜が著しく優れ
た耐食性(耐酸化性)向上効果を示しており、真空蒸着
法によって成膜した場合にその磁性体記録膜が酸化され
にくくなることは予期し得ず、全く予想外の成果であっ
た。
It is known that when a magnetic recording film contains Fe element, it is more easily oxidized than a magnetic recording film containing Co and Ni as main components of transition metals. According to the authors, a magnetic recording film containing the Fe element shows a remarkable effect of improving corrosion resistance (oxidation resistance), and it is expected that the magnetic recording film will be less susceptible to oxidation when it is formed by vacuum evaporation. This was a completely unexpected result.

この点について推論するならば、本発明の蒸着膜であれ
ば、磁性体膜用構成元素以外に何等ガス元素(Arなど
)を含んでおらず、そして、飛来粒子のエネルギが小さ
いので成膜表面を荒らさないで堆積されており、そのた
めに非常に安定且つ緻密な膜構造となり、これにより、
OHイオンや酸素イオンが磁性体膜の表層部で捕捉され
、その表面酸化層が化学的に安定した不働態層となり、
この酸化層がOHイオンや酸素イオンが深部へ侵入する
のを阻止し、その結果、耐食性及び耐酸化性に優れた磁
性体記録膜になると本発明者等は考える。
Inferring this point, the vapor-deposited film of the present invention does not contain any gas elements (such as Ar) other than the constituent elements for the magnetic film, and the energy of the flying particles is small, so the film-deposited film is It is deposited without disturbing the surface, resulting in a very stable and dense film structure.
OH ions and oxygen ions are captured on the surface layer of the magnetic film, and the surface oxidation layer becomes a chemically stable passive layer.
The present inventors believe that this oxide layer prevents OH ions and oxygen ions from penetrating deep into the film, resulting in a magnetic recording film with excellent corrosion resistance and oxidation resistance.

然るに、スパッタ膜であれば、Arガスなどの不活性ガ
ス元素を膜中に含んでいるのでそれが膜中より外部へ抜
け、また、スパッタ粒子の飛来エネルギが大きいために
成膜が荒れ、そのために疎な膜構造となり、これにより
、011イオンや酸素イオンが深部へ侵入し、酸化物が
多量に生成するに伴って大きな体積膨張が生じ、その結
果、膜構造を破壊し、腐食及び孔食が顕著になるものと
考えられる。
However, in the case of a sputtered film, since it contains inert gas elements such as Ar gas, it escapes from the inside of the film to the outside, and the flying energy of the sputtered particles is large, causing the film to become rough. As a result, 011 ions and oxygen ions penetrate deep into the membrane, causing a large volume expansion as a large amount of oxide is generated.As a result, the membrane structure is destroyed, leading to corrosion and pitting. It is thought that this will become noticeable.

このように真空蒸着法により成膜した磁性体記録膜はス
パッタリング法により成膜した磁性体記録膜に比べ充填
密度が大きくなっており、その増加比率を本発明i等が
繰り返し行った実験により求めたところ、約10〜30
χであった。
As described above, the magnetic recording film formed by the vacuum evaporation method has a higher packing density than the magnetic recording film formed by the sputtering method, and the increase ratio was determined through repeated experiments by the present invention i and others. Approximately 10 to 30
It was χ.

上記充填密度は磁性体材料の種類によって異なるが、そ
の高密度充填性を表わす場合、いずれの材料であっても
カー回転角が低下しないという点で共通している。
Although the above-mentioned packing density differs depending on the type of magnetic material, it is common that the Kerr rotation angle does not decrease regardless of the material used to express its high-density packing property.

即ち、本発明の製法により得た磁性体膜は充填ぎ度が高
く、そのために表面に不働態膜が生成され、その結果、
酸化が促進される環境下であっても酸化されず、実質上
カー回転角が低下しないことを確認しており、そこで、
本発明における上記高密度充填性は、本発明者等が繰り
返し行った実験結果に基づき、温度60℃且つ相対湿度
70χの雰囲気下でカー回転角が実質上低下しないこと
によって表わし得るものとする。尚、このカー回転角は
成膜直後より不働態膜が生成される間に若干低下する場
合があるが、その低下分については本発明の主旨より除
外する。
That is, the magnetic film obtained by the manufacturing method of the present invention has a high degree of filling, so that a passive film is generated on the surface, and as a result,
We have confirmed that it does not oxidize even in environments that promote oxidation, and that the Kerr rotation angle does not substantially decrease.
The above-mentioned high-density packing property in the present invention can be expressed by the fact that the Kerr rotation angle does not substantially decrease in an atmosphere of a temperature of 60°C and a relative humidity of 70χ, based on the results of experiments repeatedly conducted by the inventors. Note that although this Kerr rotation angle may decrease slightly during the formation of the passive film from immediately after film formation, this decrease is excluded from the scope of the present invention.

本発明の製法においてはFe元素を必須不可欠な遷移金
属元素とするものであるが、それ以外の遷移金属元素(
Co + N i)を含有してもよい、また、一方の希
土類金属元素にはGd、Dy、Nd、5ffl、Eu4
btHo等々があり、そして、この元素と上記遷移金属
元素を組合せて成膜する。
In the production method of the present invention, Fe element is used as an essential transition metal element, but other transition metal elements (
Co + Ni) may be contained, and one of the rare earth metal elements may include Gd, Dy, Nd, 5ffl, Eu4
btHo, etc., and a film is formed by combining this element with the above-mentioned transition metal elements.

このようにして成膜された磁性体記録膜には例えばTb
Fe、 DyFe、 GdTbFe、 TbFeCo、
 DyFeCo、 GdDyFe。
The magnetic recording film formed in this way has, for example, Tb.
Fe, DyFe, GdTbFe, TbFeCo,
DyFeCo, GdDyFe.

NdFeCo、 GdDyFeCo、 NdDyFeC
o、 TbDyFeCo、 GdTbPeCo。
NdFeCo, GdDyFeCo, NdDyFeC
o, TbDyFeCo, GdTbPeCo.

GdTbDyFe等々がある。There are GdTbDyFe, etc.

また、本発明に述べる真空蒸着法はそれ自体当業者であ
れば周知の方法であればよく、例えば電子ビーム蒸着法
、抵抗加熱蒸着法、フラッシュ蒸着法、イオンブレーテ
ィング蒸着法、クラスターイオンビーム蒸着法などがあ
り、その他にArガスなどのスパッタ粒子を用いないで
真空中で成膜が行われるイオンビームスパッタ法でもよ
いと考える。
Further, the vacuum evaporation method described in the present invention may be any method well known to those skilled in the art, such as electron beam evaporation, resistance heating evaporation, flash evaporation, ion brating evaporation, cluster ion beam evaporation. In addition, an ion beam sputtering method in which film formation is performed in a vacuum without using sputtered particles such as Ar gas may also be used.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 本例においては電子ビーム2元蒸着装置を用いて成膜を
行う、この装置においては一方の蒸着源に希土類金属元
素が、他方の蒸着源に遷移金属元素がそれぞれ用いられ
ており、両者ともに電子ビームが印加され、その印加に
伴う発熱によって気化され、基体上に所定の組成比で成
膜される。
(Example 1) In this example, film formation is performed using an electron beam dual evaporation device. In this device, a rare earth metal element is used for one evaporation source, and a transition metal element is used for the other evaporation source. , both are applied with an electron beam, vaporized by the heat generated by the application, and formed into a film with a predetermined composition ratio on the substrate.

この蒸着装置を用いる場合、各々の蒸着源としてTbイ
ンゴット及びFeインゴットを設置し、更に回転駆動さ
れるガラス製基板を設置し、下記の成膜条件(A)によ
って0.2μmの厚みのTbFe膜を製作した。
When using this evaporation apparatus, a Tb ingot and a Fe ingot are installed as each evaporation source, a glass substrate that is driven to rotate is installed, and a TbFe film with a thickness of 0.2 μm is formed under the following film forming conditions (A). was produced.

底1膚ぼL」尤− 到達真空度・・・10−S〜1O−6TOrr印加電力
(Tbインゴット)・・・120〜14〇−印加電力(
Feインゴット)・・・270一基板回転数・・・19
rpm また比較例として直流2元マグネトロンスパッタリング
装置にTbターゲット及びPeターゲット並びにガラス
製基板を設置し、下記の成膜条件(B)によって0.2
μmの厚みのTbFe膜を製作した。
Bottom 1 level L'' - Ultimate vacuum...10-S~1O-6TOrr applied power (Tb ingot)...120~140-applied power (
Fe ingot)...270 - Substrate rotation speed...19
rpm In addition, as a comparative example, a Tb target, a Pe target, and a glass substrate were installed in a DC binary magnetron sputtering apparatus, and the following film forming conditions (B) were used.
A TbFe film with a thickness of μm was fabricated.

成膜条件 (B) 到達真空度・・・約10− ’Torrスパッタ用Ar
のガス圧・・・7 X 10− ″Torr印加電力(
Tbインゴット)・・・50〜85−印加電力(Feイ
ンゴット)・・・100〜1301(基板回転数・・・
20rpm+ かくして得られた磁性体記録膜について、TbFe蒸着
膜とTbFeスパッタ膜のそれぞれの原子組成をICP
発光分光分析により求めたところ、前者はTbzz、o
 F13ta、oであり、後者はTbt+、i Fev
s、4であり、いずれもFeリッチ組成のカーループを
示し、概ね同一組成であることを確認した。また、それ
ぞれの充填密度をマイクロ天秤により測定したところ、
前者が9.60g/ccであり、後者が8.03g/c
cであった。
Film forming conditions (B) Ultimate vacuum...approximately 10-'Torr Ar for sputtering
Gas pressure...7 x 10-'' Torr applied power (
Tb ingot)...50-85 - Applied power (Fe ingot)...100-1301 (Substrate rotation speed...
20 rpm+ Regarding the thus obtained magnetic recording film, the atomic composition of each of the TbFe vapor deposited film and the TbFe sputtered film was determined by ICP.
As determined by emission spectrometry, the former is Tbzz, o
F13ta, o, the latter is Tbt+, i Fev
s and 4, both of which showed Kerr loops with Fe-rich compositions, and it was confirmed that they had roughly the same composition. In addition, when the packing density of each was measured using a microbalance,
The former is 9.60g/cc and the latter is 8.03g/cc
It was c.

これらの磁性体記録膜を温度60度且つ相対湿度70χ
の雰囲気下に放置し、それぞれのカー回転角を経時的に
測定したところ、第1図に示す通りの結果を得た。
These magnetic recording films were heated at a temperature of 60 degrees and a relative humidity of 70χ.
The Kerr rotation angles of each were measured over time and the results shown in FIG. 1 were obtained.

図中、横軸は放置時間であり、縦軸はカー回転角θK(
t)の成膜直後のカー回転角θK  (0)に対する比
率であり、そして、Q印はTbFe蒸着膜のプロットで
あり、・印はTbFeスパッタ膜における非腐食部のプ
ロットであり、a、bはそれぞれの特性曲線である。
In the figure, the horizontal axis is the standing time, and the vertical axis is the Kerr rotation angle θK (
t) to the Kerr rotation angle θK (0) immediately after film formation, and the Q mark is a plot of the TbFe vapor deposited film, the * mark is a plot of the non-corroded part of the TbFe sputtered film, a, b are their respective characteristic curves.

第1図より明らかな通り、TbFe蒸着膜はカー回転角
が低下せず、これに対してTbFeスパッタ膜は漸次カ
ー回転角が小さくなり、終いにその回転方向が反転する
ことが判る。これは表面酸化層が増加したことに起因す
る現象であることは明らがである。尚、両者の膜ともに
保磁力(Hc)は若干減少する位の変化しか示さなかっ
た。
As is clear from FIG. 1, the Kerr rotation angle of the TbFe vapor-deposited film does not decrease, whereas the Kerr rotation angle of the TbFe sputtered film gradually decreases, and finally the direction of rotation is reversed. It is clear that this phenomenon is caused by an increase in the surface oxidation layer. Note that the coercive force (Hc) of both films showed only a slight decrease.

(例2) (例1)にて得たそれぞれのTbFe膜の孔食量を(例
1)と同じ環境下で経時的に追った。その結果は第2図
に示す通りである。
(Example 2) The amount of pitting corrosion of each TbFe film obtained in (Example 1) was tracked over time under the same environment as (Example 1). The results are shown in FIG.

この孔食量は透明腐食部と不透明部の面積比を画像解析
装置により求めた値で示した。
The amount of pitting corrosion was expressed as the area ratio of the transparent corroded area to the opaque area determined by an image analysis device.

第2図において、横軸は放置時間であり、縦軸は孔食量
を示し、そして、○印はTbFe蒸着膜のプロットであ
り、・印はTbFeスパッタ膜のプロットであり、c、
dはそれぞれの特性曲線である。
In FIG. 2, the horizontal axis is the standing time, the vertical axis is the amount of pitting corrosion, the ○ mark is a plot of the TbFe vapor deposited film, the * mark is the plot of the TbFe sputtered film, c,
d is each characteristic curve.

第2図より明らかな通り、TbFe蒸着膜は表面の光沢
がなくなるが、孔食が生じなく、不透明な金属膜を呈し
ていた。然るに、TbFeスパッタ膜は大部分孔食が生
じ、透明な酸化膜となった。
As is clear from FIG. 2, although the surface of the TbFe vapor deposited film lost its luster, pitting corrosion did not occur and it exhibited an opaque metal film. However, most of the TbFe sputtered film suffered pitting corrosion and became a transparent oxide film.

また、上記TbFe蒸着膜及びTbFeスパッタ膜を常
温・常温下で1年間放置したところ、蒸着膜には全く孔
食が発生せず、これに対してスパッタ膜は孔食が顕著に
なることを確認した。
Furthermore, when the TbFe vapor-deposited film and TbFe sputtered film were left at room temperature for one year, it was confirmed that no pitting corrosion occurred in the vapor-deposited film, whereas pitting corrosion became more pronounced in the sputtered film. did.

更に本実施例においては、TbFe磁性体記録膜につい
て詳しく述べたが、TbFeCo、 DyFeCo、 
GdTbFe。
Furthermore, in this example, the TbFe magnetic recording film was described in detail, but TbFeCo, DyFeCo,
GdTbFe.

GdDyFe等のTbFe以外の磁性体記録膜について
も同じ結果が得られることを確認した。
It was confirmed that the same results could be obtained with magnetic recording films other than TbFe, such as GdDyFe.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の製法によれば、高密度充填性の磁
性体記録膜を形成することができ、これにより2耐食性
及び耐酸化性の向上が著しくなり、その結果、高性能且
つ長期信幀性の光磁気記録素子が提供できる。
As described above, according to the manufacturing method of the present invention, it is possible to form a highly densely packed magnetic recording film, which significantly improves corrosion resistance and oxidation resistance, resulting in high performance and long-term reliability. A flexible magneto-optical recording element can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁性体記録膜におけるカー回転角の経時変化を
示す線図であり、第2図は孔食量の経時変化を示す線図
である。 特許出願人(663)   京セラ株式会社代表者 安
城 欽寿 同    桜井 良文
FIG. 1 is a diagram showing the change over time in the Kerr rotation angle in a magnetic recording film, and FIG. 2 is a diagram showing the change over time in the amount of pitting corrosion. Patent applicant (663) Kyocera Corporation Representative Kinjudo Anjo Yoshifumi Sakurai

Claims (2)

【特許請求の範囲】[Claims] (1)反応室内部にFe元素及び希土類金属元素から成
る蒸着源並びに成膜用基体が設置され、真空蒸着法によ
り該基体上に高密度充填性磁性体記録膜を形成すること
を特徴とする光磁気記録素子の製法。
(1) A deposition source made of Fe element and rare earth metal element and a film-forming substrate are installed inside the reaction chamber, and a highly densely packed magnetic recording film is formed on the substrate by a vacuum evaporation method. Manufacturing method of magneto-optical recording element.
(2)前記高密度充填性が温度60℃且つ相対湿度70
%の雰囲気下で磁性体記録膜のカー回転角が実質上低下
しないことによって表わし得ることを特徴とする特許請
求の範囲第(1)項記載の光磁気記録素子の製法。
(2) The high-density packing property is achieved at a temperature of 60°C and a relative humidity of 70°C.
% atmosphere, the Kerr rotation angle of the magnetic recording film does not substantially decrease.
JP62132877A 1987-05-28 1987-05-28 Manufacturing method of magneto-optical recording element Expired - Fee Related JP2565338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132877A JP2565338B2 (en) 1987-05-28 1987-05-28 Manufacturing method of magneto-optical recording element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132877A JP2565338B2 (en) 1987-05-28 1987-05-28 Manufacturing method of magneto-optical recording element

Publications (2)

Publication Number Publication Date
JPS63298733A true JPS63298733A (en) 1988-12-06
JP2565338B2 JP2565338B2 (en) 1996-12-18

Family

ID=15091646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132877A Expired - Fee Related JP2565338B2 (en) 1987-05-28 1987-05-28 Manufacturing method of magneto-optical recording element

Country Status (1)

Country Link
JP (1) JP2565338B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243843A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Production of photothermomagnetic recording medium
JPS61133068A (en) * 1984-12-03 1986-06-20 Matsushita Electric Ind Co Ltd Photomagnetic thin film manufacturing device and its manufacture
JPS61250862A (en) * 1985-04-30 1986-11-07 Nec Home Electronics Ltd Photomagnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243843A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Production of photothermomagnetic recording medium
JPS61133068A (en) * 1984-12-03 1986-06-20 Matsushita Electric Ind Co Ltd Photomagnetic thin film manufacturing device and its manufacture
JPS61250862A (en) * 1985-04-30 1986-11-07 Nec Home Electronics Ltd Photomagnetic recording medium

Also Published As

Publication number Publication date
JP2565338B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5112701A (en) Magneto-optic recording media and process for producing the same
JPS60128606A (en) Photo-magnetic recording medium
JPS63298733A (en) Production of magneto-optical recording element
JPS60243843A (en) Production of photothermomagnetic recording medium
JP2629062B2 (en) Medium for magneto-optical memory
JPH0619859B2 (en) Magneto-optical recording medium
JPS61115257A (en) Photomagnetic recording medium
KR100304864B1 (en) Method of manufacturing optical recording medium
JPH0237545A (en) Production of magneto-optical recording medium
JP2544361B2 (en) Magneto-optical recording medium
JPS61296551A (en) Photomagnetic recording element and its production
JPH04111302A (en) Artificial lattice film
JP2829321B2 (en) Magneto-optical recording medium
JPS59168953A (en) Opto-thermo-magnetic recording medium
JPS61107555A (en) Optomagnetic recording medium
JPH0731831B2 (en) Magneto-optical recording medium
JPS60205846A (en) Optical recording medium
JPS62209750A (en) Photomagnetic recording medium
JPS61115258A (en) Photomagnetic recording medium
JPH06180880A (en) Method of correcting saturated magnetic moment and production of magneto-optical recording medium
JPS6148151A (en) Optical recording medium
JPH0462814A (en) Method for producing artificial grid film
JPS60173745A (en) Photoelectromagnetic recording medium
JPH0254449A (en) Magneto-optical recording medium
JPS62195743A (en) Production of photomagnetic disk

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees