JPH0462814A - Method for producing artificial grid film - Google Patents

Method for producing artificial grid film

Info

Publication number
JPH0462814A
JPH0462814A JP16421190A JP16421190A JPH0462814A JP H0462814 A JPH0462814 A JP H0462814A JP 16421190 A JP16421190 A JP 16421190A JP 16421190 A JP16421190 A JP 16421190A JP H0462814 A JPH0462814 A JP H0462814A
Authority
JP
Japan
Prior art keywords
film
ion
target
magnetic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16421190A
Other languages
Japanese (ja)
Inventor
Susumu Hashimoto
進 橋本
Shiho Okuno
奥野 志保
Koichiro Inomata
浩一郎 猪俣
Keiichirou Yusu
圭一郎 柚須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16421190A priority Critical patent/JPH0462814A/en
Publication of JPH0462814A publication Critical patent/JPH0462814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable an artificial grid film with a sharp interface of a lamination film, a high orientation property of a crystal orientation, and a vertical magnetization by using the ion beam sputter method and specifying acceleration energy of the ion in the artificial grid layer where a specific magnetic metal layer and a non-magnetic layer consisting of a non-magnetic transition metal are alternately laminated. CONSTITUTION:In an artificial grid film where a magnetic metal layer consisting of Co1-xFex (0<x<1) and a non-magnetic metal layer of precious metals Pt, Pd, Ru, Au, and Ag or at least one type of Al and Cu are laminated alternately, the ion beam sputtering is used as a manufacturing method and an acceleration energy of ion is 600 eV or less. Ions which are generated by an ion gun (1) are accelerated and are radiated to a target, sputter atoms constituting the target, and the sputtered atoms are deposited on a substrate(S). The target is rotated alternately to enable a lamination film to be produced. An ion gun (2) is used to emit ions during cleaning or formation of film of the substrate.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は人工格子膜、特に垂直磁気異方性をもつ人工格
子膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a superlattice film, particularly a superlattice film having perpendicular magnetic anisotropy.

(従来の技術) 一般に、膜面に垂直な方向に磁化容易軸を有し、室温よ
り高いキュリー温度を有する磁性薄膜は、レーザ光等の
光ビームを照射することによって数μm以下の情報を記
録、再生することかでき、高密度の磁気記録媒体として
用いることができる。
(Prior art) Generally, a magnetic thin film that has an axis of easy magnetization perpendicular to the film surface and a Curie temperature higher than room temperature records information of several micrometers or less by irradiating it with a light beam such as a laser beam. , and can be used as a high-density magnetic recording medium.

このような記録媒体として、M n B i等の多結晶
金属薄膜、Gd1G(ガドリニウム鉄ガーネット)等の
化合物単結晶薄膜、Tb−Fe、Gd−Co。
Such recording media include polycrystalline metal thin films such as MnBi, compound single crystal thin films such as Gd1G (gadolinium iron garnet), Tb-Fe, and Gd-Co.

Tb−Co、Tb−Fe−Coなどの希土類−鉄族の非
晶質合金膜などがある。
Examples include rare earth-iron group amorphous alloy films such as Tb-Co and Tb-Fe-Co.

MnB1等の多結晶金属薄膜はキュリー温度(Tc)を
利用して書き込みが行なわれるが、Tc=360℃程度
と高いため、書き込みに大きなエネルギーを要する欠点
がある。又、多紅品体であるため化学量論的な組成の薄
膜を作成する必要が有り、製造が困難であるという欠点
もある。
Writing is performed on polycrystalline metal thin films such as MnB1 using the Curie temperature (Tc), but since Tc is as high as about 360° C., there is a drawback that writing requires a large amount of energy. In addition, since it is a polyurethane material, it is necessary to create a thin film with a stoichiometric composition, which makes it difficult to manufacture.

又、Gd1G等はGGG (ガドリニウムガリウムガー
ネット)単結晶基板上に膜形成か行なわれるため、この
基板の状態に磁気特性か影響されやすいこと、大面積の
基板を得にくい等の欠点がある。
Furthermore, since films such as Gd1G are formed on a GGG (gadolinium gallium garnet) single crystal substrate, there are drawbacks such as the fact that the magnetic properties are easily influenced by the condition of this substrate and that it is difficult to obtain a large-area substrate.

これに対し、GdCo、Tb−Fe等の希土類鉄族の非
晶質合金薄膜(RE−TM膜)は、任意の大きさの磁性
薄膜が形成できること、組成制御が容易であること、結
晶粒界かないため再生S/N比が良好である等の利点を
有し、近年研究が盛んである。しかしながらこのRE−
TM膜は一般に磁気光学ファラデー効果及びカー効果(
Kerr効果)か小さく、C/N比等が充分てなく、ま
た、耐食性に劣る問題があった。
On the other hand, rare earth iron group amorphous alloy thin films (RE-TM films) such as GdCo and Tb-Fe have the following advantages: a magnetic thin film of any size can be formed, composition can be easily controlled, and grain boundaries It has advantages such as a good reproduced S/N ratio because of the low temperature, and has been actively researched in recent years. However, this RE-
TM films generally exhibit magneto-optical Faraday effect and Kerr effect (
Kerr effect) was small, the C/N ratio, etc. was insufficient, and the corrosion resistance was poor.

一方、最近新しい垂直磁化膜としてCo / P t 
On the other hand, Co/Pt has recently been developed as a new perpendicular magnetization film.
.

Co / P dなどの人工格子膜か注目されている。Artificial lattice films such as Co/Pd are attracting attention.

これらは通常のスパッタや超高真空蒸着法で作製されて
おり、coおよびPtまたはPdが適当な膜厚(4〜1
0人程度)のとき垂直磁化膜になることか知られている
。また、この膜は400〜500nmという短波長でカ
ー効果か0.3〜0.4°と大きく、短波長対応の高密
度光磁気記録媒体として期待されている。
These are produced by ordinary sputtering or ultra-high vacuum evaporation, and are coated with co and Pt or Pd to an appropriate film thickness (4 to 1
It is known that the film becomes perpendicularly magnetized when the magnetic field is about 0. Furthermore, this film has a large Kerr effect of 0.3 to 0.4 degrees at short wavelengths of 400 to 500 nm, and is expected to be used as a high-density magneto-optical recording medium compatible with short wavelengths.

このような人工格子膜における垂直磁化の原因は表面異
方性にあるため、多層膜における界面を鋭く制御する必
要かある。そのためには表面のできるたけ清浄な膜を作
ること、エピタキシャル膜長させることなとか要求され
る。この目的のためにはM’BEや超高真空蒸着法か望
ましいが、これらは装置か高価であったり、装置を稼動
させるための時間かかかり過ぎたりする欠点がある。
Since the cause of perpendicular magnetization in such a superlattice film is surface anisotropy, it is necessary to sharply control the interface in the multilayer film. To achieve this, it is necessary to make the surface of the film as clean as possible and to increase the epitaxial film length. For this purpose, M'BE and ultra-high vacuum evaporation methods are desirable, but these methods have drawbacks such as expensive equipment and excessive time required to operate the equipment.

一方、スパッタ法は簡便であるが、成膜中の真空度力用
0〜10”Torrと高くなく、基板がプラズマにさら
されるため基板の温度が上昇し、界面での拡散か生じや
すく、シャープな界面を得にくいという欠点かある。ま
た、結晶方位を制御した優れたエピタキシャル膜を得難
いという欠点もあった。
On the other hand, the sputtering method is simple, but the vacuum level during film formation is not high (0 to 10" Torr), the substrate is exposed to plasma, the temperature of the substrate rises, diffusion at the interface is likely to occur, and sharp There is also a drawback that it is difficult to obtain an excellent epitaxial film with controlled crystal orientation.

(発明か解決しようとする課題) 本発明は積層膜の界面がシャープで、しがも結晶方位の
配向性が高く、垂直磁化を示す人工格子膜を提供するこ
とを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide an artificial lattice film that has a sharp interface between laminated films, has high crystal orientation, and exhibits perpendicular magnetization.

[発明の構成コ (課題を解決するだめの手段及び作用)本発明はCo1
−xFe工(o≦X≦1)からなる磁性金属層(好まし
くは3〜15人)と、例えばPt、Pd、Ru、Au、
Agの貴金属もしくはAj2.Cuの少なくとも一種□
4L磁性金属層(好ましくは6〜45人)とか交互に積
層された人工格子膜であり、その製法としてイオンビー
ムスパッタ法を用い、イオンの加速エネルギーを600
eV以下で行うことを特徴とする人工格子膜の製造方法
である。
[Composition of the invention (means and operation for solving the problem) The present invention is Co1
-xFe (o≦X≦1) magnetic metal layer (preferably 3 to 15 people) and, for example, Pt, Pd, Ru, Au,
Noble metal of Ag or Aj2. At least one type of Cu□
It is an artificial lattice film in which 4L magnetic metal layers (preferably 6 to 45 layers) are alternately laminated, and the ion beam sputtering method is used to manufacture it, and the acceleration energy of ions is increased to 600%.
This is a method for producing an artificial lattice film, characterized in that it is carried out at eV or less.

本発明において、Co 1x Fe X (0≦X≦1
)およびMは垂直磁化を得るために必須の元素であり、
またそれぞれの膜厚3〜15人と6〜45人が垂直磁化
を得るために好ましい膜厚である。イオンビームスパッ
タ法は通常のスパッタ法に比べ高真空中て成膜でき、し
かも基板がプラズマにさらされることかないので基板の
温度上昇が少なく人工格子膜における界面反応の抑制が
期待される。ところが実際に人工格子膜を作製してみる
と加速電圧の制御が非常に重要であることがわかり本発
明に到った。
In the present invention, Co 1x Fe X (0≦X≦1
) and M are essential elements to obtain perpendicular magnetization,
In addition, a film thickness of 3 to 15 and 6 to 45 is preferable for obtaining perpendicular magnetization. Ion beam sputtering allows film formation in a high vacuum compared to normal sputtering, and since the substrate is not exposed to plasma, it is expected to reduce the temperature rise of the substrate and suppress interfacial reactions in the superlattice film. However, when we actually produced a superlattice film, we found that controlling the accelerating voltage is very important, leading to the present invention.

第1図のイオンビームスパッタ(IBS)装置の模式図
である。イオンガン(1)で発生したイオンは加速され
てターゲットに照射され、ターゲットを構成している原
子をはね飛ばし、はね飛ばされた原子は基板(S)上に
堆積する。積層膜を作製するためにはターゲットを交互
に回転させる。
FIG. 2 is a schematic diagram of the ion beam sputtering (IBS) apparatus of FIG. 1; The ions generated by the ion gun (1) are accelerated and irradiated onto the target, and the atoms constituting the target are thrown off, and the thrown off atoms are deposited on the substrate (S). To produce a laminated film, the targets are rotated alternately.

イオンカン(2)は基板のクリーニングや成膜中にイオ
ンを照射するためのものである。
The ion can (2) is for irradiating ions during substrate cleaning or film formation.

イオンの加速エネルギーが大きすぎるとはね飛ばされた
ターゲットを構成している原子のエネルギーも大きくな
り、その結果基板上で原子の移動が起り易く積層膜中の
原子のミクシングが生じ鋭い界面をもつ人工格子膜を得
にくいことになる。
If the acceleration energy of the ions is too large, the energy of the atoms that make up the repelled target will also be large, and as a result, atoms will easily move on the substrate, causing mixing of atoms in the laminated film, resulting in sharp interfaces. This makes it difficult to obtain an artificial lattice film.

種々実験の結果、加速エネルギーEが600eV以下の
とき界面のシャープな人工格子膜を作製できることがわ
かった。もちろん加速エネルギーが小さずぎるとスパッ
タ原子がターゲットがら飛びたぜなくなるので小さすぎ
てもいけない。好ましい範囲は50〜600eVであり
、さらには200−500eVである。
As a result of various experiments, it was found that a superlattice film with a sharp interface can be produced when the acceleration energy E is 600 eV or less. Of course, if the acceleration energy is too small, the sputtered atoms will not fly away from the target, so it must not be too small. A preferred range is 50-600eV, more preferably 200-500eV.

界面のシャープさの程度は小角X線における高次のピー
クの有無で確認することができ、より高次のピークがあ
る程界面はよりシャープであると言える。また、磁化曲
線の挙動からもわかる。すなわぢ、界面のンヤープな程
垂直磁化になり易い。
The degree of sharpness of the interface can be confirmed by the presence or absence of higher-order peaks in small-angle X-rays, and it can be said that the higher the peaks, the sharper the interface. It can also be seen from the behavior of the magnetization curve. In other words, the narrower the interface, the more perpendicular magnetization is likely to occur.

(実施例) 以下、実施例を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using Examples.

実施例1 第1図に示したイオンビームスパッタ装置を用いてCo
 / P tから成る人工格子膜を作製した。Coとp
tから成る各ターゲットを用い、ターゲットを回転する
ことで積層膜を作製した。
Example 1 Using the ion beam sputtering apparatus shown in FIG.
An artificial lattice film made of /Pt was prepared. Co and p
A laminated film was produced by rotating the target using each target consisting of t.

基板は石英ガラスを用いた。The substrate used was quartz glass.

予め4X10 7Torrの真空度まで排気後、メイン
ガン(イオンガン1)にArガス(純度9999%)を
分圧が]、、5X10 4Torrになるまて導入し、
Arをイオン化し、加速電圧を種々変えてイオンビーム
としてターゲットに照射した。
After evacuation to a vacuum level of 4X10 7 Torr in advance, Ar gas (9999% purity) was introduced into the main gun (ion gun 1) until the partial pressure reached 5X10 4 Torr.
Ar was ionized and the target was irradiated as an ion beam with various acceleration voltages.

ターゲットは所定の時間ごとにCoとptを交互に回転
させ、coとptの各膜厚を変化させた人工格子膜を作
製した。以下、COの膜厚をt。。。
The Co and PT targets were alternately rotated at predetermined intervals to produce an artificial lattice film in which the thicknesses of each of the Co and PT films were varied. Hereinafter, the film thickness of CO is t. . .

Ptの膜厚をt、Co層とpt層のくり返し数t をnとし、この人工格子膜を(tco/1Pt)nと表
示することにする。
Let the film thickness of Pt be t, the number of repetitions t of the Co layer and PT layer be n, and this artificial lattice film will be expressed as (tco/1Pt)n.

加速電圧V を変えて(too/l、t)−(5/15
)7の人工格子膜を作製したときのVB300Vおよび
100OVにおけるX線パターンを第2図に示した。3
00Vのときは人工周期に伴う3次までの回折線が見ら
れるのに対し、1000Vのときは2次の回折線しか見
られない。
By changing the acceleration voltage V (too/l, t) - (5/15
) The X-ray pattern at VB of 300 V and 100 OV when the superlattice film of No. 7 was prepared is shown in FIG. 3
At 00V, diffraction lines up to the 3rd order due to the artificial period can be seen, whereas at 1000V, only 2nd order diffraction lines can be seen.

これはVBloooVの場合は界面でのPtとCo原子
の混合が生しており、300Vではその程度が少ないこ
とを示している。VB=600V以下のとき3次までの
ピークが認められた。
This shows that in the case of VBloooV, there is a mixture of Pt and Co atoms at the interface, and the degree of this is small at 300V. When VB=600V or less, peaks up to third order were observed.

第3図はVB−300■および100OVて作製した上
記膜のカーヒステリシス(波長400nmで測定)を示
したものである。300Vの膜は完全な垂直磁化膜であ
るが、100OVの膜は角型比が悪く界面がかなり乱れ
ていることを示している。600V以下の膜は300■
の膜と同様であった。
FIG. 3 shows the Kerr hysteresis (measured at a wavelength of 400 nm) of the above films prepared at VB-300 and 100OV. The 300V film is a perfect perpendicular magnetization film, but the 100OV film has a poor squareness ratio and shows that the interface is considerably disordered. 300■ for membranes below 600V
It was similar to the membrane of

以上のように加速電圧を600V以下で作製した人工格
子膜は界面がンヤープであり、優れた垂直磁化膜か得ら
れた。また、界面のシャープさを定量的に示す物性値と
して磁気異方性の測定から求められる表面異方性エネル
ギーKsがある。
As described above, the artificial lattice film produced at an accelerating voltage of 600 V or less had a sharp interface, and an excellent perpendicularly magnetized film was obtained. Further, as a physical property value quantitatively indicating the sharpness of the interface, there is surface anisotropy energy Ks obtained from measurement of magnetic anisotropy.

K sか大きい程界面はシャープであることを意味する
。上記600V以下で作製した膜について、トルクメー
タを用いて磁気異方性を測定しKsを求めたところ、全
てK s = 0.35〜0.42erg/cJの範囲
にあった。一方、通常のスパッタで作製したものは 0
2〜0.25erg/cJと小さかった。これより本発
明の人工格子膜の方がより界面のシャープな人工格子膜
か得られることかわかる。
The larger Ks means that the interface is sharper. Regarding the films produced at 600 V or less, magnetic anisotropy was measured using a torque meter and Ks was determined, and all were in the range of Ks = 0.35 to 0.42 erg/cJ. On the other hand, those made by normal sputtering have 0
It was as small as 2 to 0.25 erg/cJ. This shows that the superlattice film of the present invention has a sharper interface.

他の組成からなる人工格子膜についても同様な結果であ
った。
Similar results were obtained for superlattice films having other compositions.

[発明の効果] 以上のように、本発明の製造方法によれば界面がシャー
プな人工格子膜を作製することができ、その結果優れた
垂直磁化膜を提供でき、新しい光磁気などの記録媒体を
提供できるなど工業的寄与するところ大である。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, an artificial lattice film with a sharp interface can be produced, and as a result, an excellent perpendicular magnetization film can be provided, which can be used for new recording media such as magneto-optical devices. This makes a great contribution to industry, such as being able to provide the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の人工格子膜を作製する装置例を示す図
。第2図および第3図はそれぞれ人工格子膜のX線パタ
ーンおよび磁化曲線を示す図。
FIG. 1 is a diagram showing an example of an apparatus for producing the artificial lattice film of the present invention. FIGS. 2 and 3 are diagrams showing the X-ray pattern and magnetization curve of the artificial lattice film, respectively.

Claims (1)

【特許請求の範囲】[Claims] Co_1_−_x..Fe_x..(0≦x≦1)から
なる磁性金属層と非磁性遷移金属からなる非磁性層とが
交互に積層された人工格子膜の作成を、イオンビームス
パッタ法を用い、そのイオンの加速エネルギーを600
eV以下とすることを特徴とする人工格子膜の製造方法
Co_1_-_x. .. Fe_x. .. An artificial lattice film in which magnetic metal layers made of (0≦x≦1) and nonmagnetic layers made of nonmagnetic transition metals are alternately laminated is created using the ion beam sputtering method, and the acceleration energy of the ions is reduced to 600%.
A method for producing an artificial lattice film, characterized in that the voltage is below eV.
JP16421190A 1990-06-25 1990-06-25 Method for producing artificial grid film Pending JPH0462814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16421190A JPH0462814A (en) 1990-06-25 1990-06-25 Method for producing artificial grid film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16421190A JPH0462814A (en) 1990-06-25 1990-06-25 Method for producing artificial grid film

Publications (1)

Publication Number Publication Date
JPH0462814A true JPH0462814A (en) 1992-02-27

Family

ID=15788781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16421190A Pending JPH0462814A (en) 1990-06-25 1990-06-25 Method for producing artificial grid film

Country Status (1)

Country Link
JP (1) JPH0462814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015668A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Production method of laminate body, and the laminate body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015668A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Production method of laminate body, and the laminate body

Similar Documents

Publication Publication Date Title
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
JPH05504993A (en) Method for sputtering multilayer bodies for magneto-optical recording
EP0135322B1 (en) An optical magnetic recording member
JP2673807B2 (en) Method for manufacturing magneto-optical recording medium
JPH0454367B2 (en)
JPH0462814A (en) Method for producing artificial grid film
JPS6130017A (en) Manufacture of vertical magnetization thin oxide film
Park et al. Effects of annealing condition on the structural and magnetic properties of FePt thin films
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JPH04111302A (en) Artificial lattice film
JP2738733B2 (en) Magnetic film
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
JPS6363969B2 (en)
JP2824998B2 (en) Magnetic film
JPS60202526A (en) Method and device for production of magnetic recording medium
JP2550098B2 (en) Method for manufacturing magneto-optical recording film
JP2702483B2 (en) Method for manufacturing magneto-optical recording medium
JPS63452A (en) Manufacture of magnetic thin film
JPH0337724B2 (en)
JPS60125933A (en) Production of magnetic medium
JPH05234053A (en) Perpendicularly magnetizable film
JPH0512765B2 (en)
JPH0532817B2 (en)
JPH0316690B2 (en)
JPH0263249B2 (en)