JP2759150B2 - Magnetic recording thin film and method of manufacturing the same - Google Patents

Magnetic recording thin film and method of manufacturing the same

Info

Publication number
JP2759150B2
JP2759150B2 JP22987988A JP22987988A JP2759150B2 JP 2759150 B2 JP2759150 B2 JP 2759150B2 JP 22987988 A JP22987988 A JP 22987988A JP 22987988 A JP22987988 A JP 22987988A JP 2759150 B2 JP2759150 B2 JP 2759150B2
Authority
JP
Japan
Prior art keywords
thin film
layer
magnetic recording
film
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22987988A
Other languages
Japanese (ja)
Other versions
JPH0279210A (en
Inventor
裕康 定別当
利雄 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIO KEISANKI KK
Original Assignee
KASHIO KEISANKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIO KEISANKI KK filed Critical KASHIO KEISANKI KK
Priority to JP22987988A priority Critical patent/JP2759150B2/en
Publication of JPH0279210A publication Critical patent/JPH0279210A/en
Application granted granted Critical
Publication of JP2759150B2 publication Critical patent/JP2759150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば垂直磁気記録や光磁気記録等の高
密度記録に応用することができる磁気記録薄膜に関す
る。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording thin film applicable to high-density recording such as perpendicular magnetic recording and magneto-optical recording.

[従来の技術及びその課題] 従来の多結晶の高密度記録材料としては、光磁気材料
としてのMnBiが初期のものとして有名であるが、相転移
による構造不安定性等の問題があり実用化されていな
い。
[Conventional technology and its problems] As a conventional polycrystalline high-density recording material, MnBi as a magneto-optical material is famous as an initial material, but has been put into practical use due to problems such as structural instability due to phase transition. Not.

また、MnSb、PtMnSb等のMn及びSbを含む多結晶材料が
記録材料として研究されており、特に、PtMnSbはカー回
転角が大きく注目されている。しかしながら、これらの
材料は磁化容易軸が面内方向にあり、垂直磁化膜になら
ないため、極カー効果を利用することができず、光磁気
記録には不向きである。更に、PtMnSbでは高価なPtを含
むので、コストが高いという問題がある。
In addition, polycrystalline materials containing Mn and Sb, such as MnSb and PtMnSb, have been studied as recording materials, and PtMnSb has attracted much attention in terms of the Kerr rotation angle. However, since these materials have an easy axis of magnetization in an in-plane direction and do not become a perpendicular magnetization film, the polar Kerr effect cannot be used, and thus these materials are not suitable for magneto-optical recording. Furthermore, since PtMnSb contains expensive Pt, there is a problem that the cost is high.

この発明は以上のような事情に鑑みてなされたもので
あって、磁化容易軸が膜面に垂直であり、高密度記録が
可能で高SN比の磁気記録薄膜及びその製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and provides a magnetic recording thin film having an easy axis of magnetization perpendicular to the film surface, capable of high-density recording, and having a high SN ratio, and a method of manufacturing the same. With the goal.

[課題を解決するための手段] この発明に係る磁気記録薄膜は、Mn(マンガン)、Al
(アルミニウム)及びSb(アンチモン)を構成元素とす
る磁気記録薄膜であって、Mn、Alからなる第1の極薄層
とSbからなる第2の極薄層とが交互に存在する積層構造
をなし、前記第1の極薄層と前記第2の極薄層の層界面
で原子拡散が生じていることを特徴とする。
[Means for Solving the Problems] The magnetic recording thin film according to the present invention comprises Mn (manganese), Al
A magnetic recording thin film comprising (aluminum) and Sb (antimony) as constituent elements, wherein a laminated structure in which first ultrathin layers made of Mn and Al and second ultrathin layers made of Sb are present alternately. None, wherein atomic diffusion occurs at a layer interface between the first ultrathin layer and the second ultrathin layer.

また、この発明に係る磁気記録薄膜の製造方法は、Mn
−Al合金からなる第1の極薄層と、Sbからなる第2の極
薄層とを交互に且つ周期的に積層した薄膜を形成し、こ
の薄膜を真空中で熱処理して各層間に原子拡散を生じさ
せることを特徴とする。
Further, the method for manufacturing a magnetic recording thin film according to
-Forming a thin film in which a first ultra-thin layer made of an Al alloy and a second ultra-thin layer made of Sb are alternately and periodically laminated, and heat-treating this thin film in vacuum to form an atomic layer between each layer; It is characterized by causing diffusion.

[作用] この発明においては、Mn−Al合金からなる第1の極薄
層と、Sbからなる第2の極薄層とを交互に且つ周期的に
積層した薄膜を形成し、熱処理により各層間に原子拡散
を生じさせ、前述したMnXAlySbZで表わされる組成の磁
気記録薄膜を形成する。この組成の磁性薄膜は膜面に垂
直に磁化容易軸が存在し、垂直磁気メモリや光磁気メモ
リの高密度記録に適用することができる。また、熱処理
前の構造を互いに組成が異なる極薄層を交互に積層した
構造としたので、熱処理による原子拡散が積層薄膜全体
に亘って生じるのではなく、主に層界面を通してのみ生
じる。従って、結晶粒成長が抑制され、微細結晶の薄膜
を得ることができる。
[Function] In the present invention, a thin film is formed by alternately and periodically laminating a first ultrathin layer made of a Mn-Al alloy and a second ultrathin layer made of Sb, and heat treatment is performed on each layer. Causes atomic diffusion to form a magnetic recording thin film having a composition represented by Mn X Al y Sb Z described above. The magnetic thin film having this composition has an easy axis of magnetization perpendicular to the film surface, and can be applied to high-density recording of a perpendicular magnetic memory or a magneto-optical memory. Further, since the structure before the heat treatment is a structure in which ultrathin layers having different compositions are alternately laminated, the atomic diffusion due to the heat treatment does not occur over the entire laminated thin film but mainly only through the layer interface. Therefore, crystal grain growth is suppressed, and a thin film of fine crystals can be obtained.

[実施例] 以下、この発明について具体的に説明する。EXAMPLES Hereinafter, the present invention will be described specifically.

この発明では、磁性元素Mnと、Al及びSbとからなる磁
性薄膜を基本としている。即ち、極めて薄いMn−Al合金
層及びSb層を交互に複数回積層し、その後、所定時間熱
処理することによりMnXAlySbZ(x,y,zはz=1−(x+
y)の関係を有する。)で表わされる組成の磁気記録薄
膜を形成する。この場合に、0.4<x<0.5及び0.4<y
<0.5、又は、0<x<0.08及び0<y<0.08であるれ
ば、残留磁化比(Mr⊥/M)が1以上である。即
ち、磁化容易軸が膜面に垂直に存在する垂直磁化膜であ
る。
The present invention is based on a magnetic thin film composed of a magnetic element Mn and Al and Sb. That is, an extremely thin Mn-Al alloy layer and an Sb layer are alternately laminated a plurality of times, and then heat-treated for a predetermined time, whereby Mn X Al y Sb Z (x, y, z is z = 1− (x +
y). A magnetic recording thin film having a composition represented by the formula (1) is formed. In this case, 0.4 <x <0.5 and 0.4 <y
If <0.5, or 0 <x <0.08 and 0 <y <0.08, the residual magnetization ratio (M r⊥ / M r ) is 1 or more. That is, it is a perpendicular magnetization film having an easy axis of magnetization perpendicular to the film surface.

この場合において、熱処理温度を例えば350℃以上に
セットすると、各極薄層間で原子拡散が生じ、Mn−Al−
Sb結晶合金が生じる。このように、原子拡散が局部的に
生じる場合には、粒成長が抑制され、得られる薄膜の結
晶粒は微細なものとなる。
In this case, if the heat treatment temperature is set to, for example, 350 ° C. or higher, atomic diffusion occurs between the ultrathin layers, and Mn-Al-
A Sb crystal alloy forms. As described above, when atom diffusion occurs locally, grain growth is suppressed, and the crystal grains of the obtained thin film become fine.

このように、垂直磁化膜であり、しかも結晶粒が微細
であるから、磁気記録薄膜として優れた磁気特性を示
す。即ち、高密度記録が可能であり、高SN比の磁気記録
薄膜を得ることができる。
Thus, since it is a perpendicular magnetization film and the crystal grains are fine, it exhibits excellent magnetic properties as a magnetic recording thin film. That is, high-density recording is possible, and a magnetic recording thin film having a high SN ratio can be obtained.

なお、MnXAlySbZにおいて、xが0.08≦x≦0.4の範囲
の場合には、Mr⊥/Mが1より小さくなってしま
う。従って、xを前述した0.4<x<0.5又は0<x<0.
08の範囲内に設定することが好ましい。
Incidentally, in the Mn X Al y Sb Z, x is the case in the range of 0.08 ≦ x ≦ 0.4 is, M r⊥ / M r becomes smaller than 1. Therefore, x is set to 0.4 <x <0.5 or 0 <x <0.
It is preferable to set within the range of 08.

このような磁気記録薄膜を基板上に形成する場合に
は、真空蒸着又はDCスパッタリング、RFスパッタリング
等の各種スパッタリングを用いることができる。これら
により成膜した場合には、成膜直後の薄膜はアモルファ
ス状態となっている。この場合に、基板としては、材質
上安定なもの、例えばガラスを用いることができる。
When such a magnetic recording thin film is formed on a substrate, various types of sputtering such as vacuum evaporation, DC sputtering, and RF sputtering can be used. When these films are formed, the thin film immediately after the film formation is in an amorphous state. In this case, a stable material, for example, glass can be used as the substrate.

なお、このような磁気記録薄膜においては、極薄層の
厚み、積層数及び熱処理条件を変化させることにより、
結晶粒サイズ及び磁気特性を広範囲に亘って制御するこ
とができる。
In such a magnetic recording thin film, by changing the thickness of the ultra-thin layer, the number of layers and the heat treatment conditions,
Grain size and magnetic properties can be controlled over a wide range.

次に、この発明に基いて実際にサンプルを作成して試
験した試験例について説明する。第1図は基板上に各極
薄層を積層して形成した薄膜を示す断面図である。先
ず、ガラス製の基板1の上に、RFスパッタリングによ
り、MnAlからなる第1の極薄層3及びSbからなる第2の
極薄層4を交互に且つ周期的に積層して薄膜2を形成し
た。このスパッタリングに際しては、RFスパッタリング
装置内にMnAl合金ターゲットとSbターゲットとを取付
け、基板を回転可能に設置し、基板を交互に各ターゲッ
トの真上に位置させ、これらターゲットに交互にRF電力
を供給して極薄層を積層させた。この場合に、スパッタ
リング装置内を1.0×10-3Torrのガス圧とし、基板温度
を室温又は200℃に設定した。
Next, a description will be given of a test example in which a sample is actually prepared and tested based on the present invention. FIG. 1 is a cross-sectional view showing a thin film formed by laminating ultra-thin layers on a substrate. First, the first ultrathin layer 3 made of MnAl and the second ultrathin layer 4 made of Sb are alternately and periodically laminated on a glass substrate 1 by RF sputtering to form a thin film 2. did. At the time of this sputtering, the MnAl alloy target and the Sb target are mounted in the RF sputtering device, the substrate is installed rotatably, the substrate is alternately positioned directly above each target, and RF power is alternately supplied to these targets Then, an extremely thin layer was laminated. In this case, the inside of the sputtering apparatus was set to a gas pressure of 1.0 × 10 −3 Torr, and the substrate temperature was set to room temperature or 200 ° C.

このようにして、条件及び組成が異なるA1乃至L2の19
種類のサンプルを作成した。
In this way, the conditions and compositions of A1 to L2 are different.
Different types of samples were created.

第1表は各サンプルの極薄層の厚みの設定値、積層さ
れた極薄層の1周期の厚みの設定値、積層数、1周期の
組成、X線回折ピークから求めた1周期の厚み、スパッ
タリングの際の基板温度及び熱処理条件を示すものであ
る。なお、サンプルA2,B1,B2,D3,F1ついては、熱処理条
件を2段階に変化させた。
Table 1 shows the set value of the thickness of the ultra-thin layer of each sample, the set value of the thickness of one cycle of the laminated ultra-thin layer, the number of layers, the composition of one cycle, and the thickness of one cycle obtained from the X-ray diffraction peak. 3 shows the substrate temperature and heat treatment conditions during sputtering. The heat treatment conditions for samples A2, B1, B2, D3, and F1 were changed in two stages.

これらのサンプルのうち200℃でスパッタリングした
サンプルD2,J2以外は、小角側のX線回折において、各
層の干渉による回折ピークが得られた。即ち、これらの
サンプルは、組成変調構造であることが確認された。な
お、サンプルAlは200℃でスパッタリングしたものであ
るが組成変調構造を維持していた。このように組成変調
構造であれば、回折ピークにより各層の厚みを検出する
ことができ、例えば、サンプルA2においては、第2図に
示すようにの小角側にX線回折ピークが存在し、このピ
ークから1周期の厚みを求めると33.8Åとなった。他の
サンプルについても同様にして層厚を求めた。第1表に
示すように、各サンプルについて成膜後の1周期の層厚
が設定値とほぼ一致した。また、基板温度を室温にして
スパッタリングしたものは、X線回折により結晶に由来
するピークは存在せず、アモルファス状態であることが
確認された。これに対し、基板温度200℃でスパッタリ
ングしたものは、この時点でX線回折により結晶の存在
が確認された。また、基板温度200℃以上でスパッタリ
ングした試料以外の試料では、いずれも成膜直後におい
て室温で強磁性を示さなかった。
Except for samples D2 and J2 which were sputtered at 200 ° C. among these samples, diffraction peaks due to interference of each layer were obtained in X-ray diffraction on the small angle side. That is, it was confirmed that these samples had a composition modulation structure. In addition, although the sample Al was sputtered at 200 ° C., the composition modulation structure was maintained. With such a composition modulation structure, the thickness of each layer can be detected by a diffraction peak. For example, in sample A2, an X-ray diffraction peak exists on the small angle side as shown in FIG. The thickness of one cycle from the peak was 33.8 °. The layer thickness was determined for other samples in the same manner. As shown in Table 1, for each sample, the layer thickness in one cycle after film formation almost coincided with the set value. In addition, it was confirmed by X-ray diffraction that the sputtered film at the substrate temperature of room temperature had no crystal-derived peak and was in an amorphous state. On the other hand, in the case of sputtering at a substrate temperature of 200 ° C., the presence of crystals was confirmed by X-ray diffraction at this time. In addition, samples other than the sample sputtered at a substrate temperature of 200 ° C. or higher did not show ferromagnetism at room temperature immediately after film formation.

熱処理後、いずれのサンプルもMn−Al−Sb強磁性結晶
合金が生成された。このことは、各極薄層間で原子拡散
が生じたことを示すものである。
After the heat treatment, the Mn-Al-Sb ferromagnetic crystal alloy was generated in each of the samples. This indicates that atomic diffusion has occurred between the ultrathin layers.

各サンプルのブロードなX線回折ピークから求めた結
晶粒径は、500Å以下であると推定された。
The crystal grain size determined from the broad X-ray diffraction peak of each sample was estimated to be 500 ° or less.

次に、これらサンプルの磁気特性を把握した結果につ
いて説明する。第3図は、横軸にMn−Al−Sb合金のMn含
有量(原子%)をとり、縦軸に室温における飽和磁化の
強さ(emu)をとって、これらの関係を示すグラフであ
る。図中白丸は500℃で5時間熱処理を施したサンプ
ル、黒丸は370℃で8時間熱処理を施したサンプル、白
三角は基板を200℃にしてスパッタリングした後に500℃
で5時間熱処理をしたサンプルを示す(以下の第4図乃
至第6図も同様)。なお、これら熱処理温度は基板の実
際の温度である。このグラフによれば、飽和磁化の強度
がMnがほぼ25原子%でピークを示すことが確認された。
Next, the results of grasping the magnetic properties of these samples will be described. FIG. 3 is a graph showing the relationship between the Mn content (atomic%) of the Mn-Al-Sb alloy on the horizontal axis and the saturation magnetization intensity (emu) at room temperature on the vertical axis. . In the figure, open circles are samples heat-treated at 500 ° C for 5 hours, black circles are samples heat-treated at 370 ° C for 8 hours, and open triangles are 500 ° C after sputtering the substrate at 200 ° C.
5 shows a sample heat-treated for 5 hours (the same applies to FIGS. 4 to 6 below). These heat treatment temperatures are actual temperatures of the substrate. According to this graph, it was confirmed that the intensity of the saturation magnetization peaked when Mn was approximately 25 atomic%.

第4図及び第5図はいずれも、横軸に第3図と同様Mn
の含有量(原子%)をとり、縦軸に室温における膜の保
磁力(Oe)をとって、これらの関係を示すグラフであ
り、第4図は膜面に平行に磁場を印加した場合であり、
第5図は膜面に垂直に磁場を印加した場合である。な
お、これらブラフはAlとMnの原子比率が同等の場合につ
いて示すものである(つまり、x=y)。これらグラフ
によれば、特にMnが40原子%を超えると(即ち、xが0.
4を超えると)、膜面に垂直に磁場を印加した際の保磁
力が大きくなることが確認された。
4 and 5, the horizontal axis represents Mn as in FIG.
Is the coercive force (O e ) of the film at room temperature on the vertical axis, and the relationship is shown in FIG. And
FIG. 5 shows a case where a magnetic field is applied perpendicular to the film surface. Note that these bluffs show the case where the atomic ratios of Al and Mn are equal (that is, x = y). According to these graphs, especially when Mn exceeds 40 atomic% (that is, when x is 0.
4), it was confirmed that the coercive force when a magnetic field was applied perpendicular to the film surface increased.

第6図は、横軸にMn含有量をとり、縦軸に磁場を膜面
に垂直に印加した場合の残留磁化Mr⊥と膜面に平行に
印加した場合の残留磁化Mとの比(Mr⊥/M
をとって、これらの間の関係を示すグラフである。ここ
で、Mr⊥/Mが1より大きければその膜が垂直磁化
膜であると考えられる。このグラフからすると、Mn含有
量が40原子%より多い組成、及び8原子%より少ない組
成においてMr/Mrが1より大となり、垂直磁化膜とな
る。即ち、MnxAlySbzにおいて0<x<0.08及び0.4<x
であれば垂直磁化膜となる。
FIG. 6 shows the ratio between the residual magnetization M rM when a magnetic field is applied perpendicular to the film surface and the residual magnetization M r when a magnetic field is applied perpendicular to the film surface, with the Mn content plotted on the horizontal axis. (M r⊥ / M r)
5 is a graph showing the relationship between them. Here, if M r⊥ / M r is greater than 1, it is considered that the film is a perpendicular magnetization film. According to this graph, when the Mn content is more than 40 atomic% and when the Mn content is less than 8 atomic%, M r / M r becomes larger than 1, and a perpendicular magnetization film is obtained. That is, 0 <x <0.08 and 0.4 <x in Mn x Al y Sb z
Then, it becomes a perpendicular magnetization film.

なお、これらサンプルのカー効果を確認した結果、い
ずれも比較的大きいカー回転角(θ)を得ることがで
き、特にx<0.2においてθが約0.5゜と大きな値を示
した。
In addition, as a result of confirming the Kerr effect of these samples, a relatively large Kerr rotation angle (θ k ) was obtained in each case, and particularly, when x <0.2, θ k showed a large value of about 0.5 °.

このように、MnxAlySbzの磁性薄膜において、特に、
0.4<x<0.5及び0.4<y<0.5、又は、0<x<0.08及
び0<y<0.08の場合には、結晶粒が微細であり、垂直
磁化膜であり、しかもx>0.4で垂直に磁場を印加した
際の保磁力が大きく、x<0.08でカー回転角が大きい。
従って、この組成範囲において、特に高密度記録特性が
良好であり、また、結晶粒子が微細であるためノイズ低
減による高SN比が期待される。
Thus, in the magnetic thin film of Mn x Al y Sb z , in particular,
In the case of 0.4 <x <0.5 and 0.4 <y <0.5, or 0 <x <0.08 and 0 <y <0.08, the crystal grains are fine and the film is a perpendicular magnetization film. The coercive force when a magnetic field is applied is large, and the Kerr rotation angle is large when x <0.08.
Therefore, in this composition range, high density recording characteristics are particularly good, and a high SN ratio due to noise reduction is expected because the crystal grains are fine.

[発明の効果] この発明によれば、磁化容易軸が膜面に垂直に存在
し、しかも結晶粒径が極めて小さい磁気記録薄膜を得る
ことができる。このような薄膜は、高密度記録が可能で
あり、高SN比を達成することができる。このように、こ
の発明によれば、磁気記録薄膜として優れた特性を得る
ことができ、極めて有用である。
[Effects of the Invention] According to the present invention, a magnetic recording thin film having an easy axis of magnetization perpendicular to the film surface and having a very small crystal grain size can be obtained. Such a thin film enables high-density recording and achieves a high SN ratio. As described above, according to the present invention, excellent characteristics can be obtained as a magnetic recording thin film, which is extremely useful.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る磁気記録薄膜を形成するための
極薄層を基板上に形成した状態を示す断面図、第2図は
成膜直後の薄膜の小角側のX線回折パターンを示す図、
第3図は薄膜のMn含有量と室温における飽和磁化との関
係を示すグラフ図、第4図及び第5図は薄膜のMn含有量
と室温における保磁力との関係を示すグラフ図、第6図
は薄膜のMn含有量と残留磁化比との関係を示すグラフ図
である。 1……基板、2……薄膜、3,4……極薄層。
FIG. 1 is a cross-sectional view showing a state in which an extremely thin layer for forming a magnetic recording thin film according to the present invention is formed on a substrate, and FIG. 2 shows an X-ray diffraction pattern on the small angle side of the thin film immediately after film formation. Figure,
FIG. 3 is a graph showing the relationship between the Mn content of the thin film and the saturation magnetization at room temperature. FIGS. 4 and 5 are graphs showing the relationship between the Mn content of the thin film and the coercive force at room temperature. The figure is a graph showing the relationship between the Mn content of the thin film and the residual magnetization ratio. 1 ... substrate, 2 ... thin film, 3,4 ... very thin layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 10/12 H01F 10/12 41/16 41/16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 10/12 H01F 10/12 41/16 41/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn(マンガン)、Al(アルミニウム)及び
Sb(アンチモン)を構成元素とする磁気記録薄膜であっ
て、Mn、Alからなる第1の極薄層とSbからなる第2の極
薄層とが交互に存在する積層構造をなし、前記第1の極
薄層と前記第2の極薄層の層界面で原子拡散が生じてい
ることを特徴とする磁気記録薄膜。
1. Mn (manganese), Al (aluminum) and
A magnetic recording thin film containing Sb (antimony) as a constituent element, wherein the thin film has a laminated structure in which first ultrathin layers made of Mn and Al and second ultrathin layers made of Sb are present alternately. A magnetic recording thin film wherein atomic diffusion occurs at a layer interface between the first ultrathin layer and the second ultrathin layer.
【請求項2】Mn−Al合金からなる第1の極薄層と、Sbか
らなる第2の極薄層とを交互に且つ周期的に積層した薄
膜を形成し、この薄膜を真空中で熱処理して各層間に原
子拡散を生じさせることを特徴とする磁気記録薄膜の製
造方法。
2. A thin film in which a first ultra-thin layer made of an Mn-Al alloy and a second ultra-thin layer made of Sb are alternately and periodically laminated, and this thin film is heat-treated in a vacuum. And causing atomic diffusion between the respective layers.
【請求項3】前記薄膜は、スパッタリング又は真空蒸着
により形成されることを特徴とする請求項第2項に記載
の磁気記録薄膜の製造方法。
3. The method according to claim 2, wherein said thin film is formed by sputtering or vacuum deposition.
JP22987988A 1988-09-16 1988-09-16 Magnetic recording thin film and method of manufacturing the same Expired - Lifetime JP2759150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22987988A JP2759150B2 (en) 1988-09-16 1988-09-16 Magnetic recording thin film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22987988A JP2759150B2 (en) 1988-09-16 1988-09-16 Magnetic recording thin film and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0279210A JPH0279210A (en) 1990-03-19
JP2759150B2 true JP2759150B2 (en) 1998-05-28

Family

ID=16899138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22987988A Expired - Lifetime JP2759150B2 (en) 1988-09-16 1988-09-16 Magnetic recording thin film and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2759150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074044A1 (en) * 1999-05-28 2000-12-07 Fujitsu Limited Magnetic recording medium and magnetic disk
JP6985708B2 (en) * 2015-10-27 2021-12-22 スピンセンシングファクトリー株式会社 Mn-based ferromagnetic thin film and its manufacturing method, and magnetic tunnel junction element having Mn-based ferromagnetic thin film

Also Published As

Publication number Publication date
JPH0279210A (en) 1990-03-19

Similar Documents

Publication Publication Date Title
US4539265A (en) Magnetic recording medium
JP2002216330A (en) Magnetic recording medium
EP0410627A1 (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
JP2544586B2 (en) Thin film magnetic recording medium, magnetic disk drive, barium ferrite thin film manufacturing method, and longitudinal magnetic recording method
JP2872226B2 (en) Perpendicular magnetization film and method of manufacturing the same
Carcia et al. Sputtered Pt/Co multilayers for magneto-optical recording
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
US4539264A (en) Magnetic recording medium
Morisako et al. Sputtered hexagonal Ba‐ferrite films for high‐density magnetic recording media
Hoshi et al. Control of orientation and crystallite size of barium ferrite thin films in sputter deposition
JPS58147540A (en) Thin film permanent magnet and its manufacture
US5231294A (en) Manganese-aluminum and manganese-silicon magnetic films, and magnetic recording medium
JP3593761B2 (en) Oxide magnetic body and method of manufacturing the same
JP3559332B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
US5250338A (en) Magnetic recording medium
JPH0821502B2 (en) Thin film permanent magnet
JPH03265105A (en) Soft magnetic laminate film
JP3636478B2 (en) Magneto-optical thin film, magneto-optical recording medium, and manufacturing method thereof
JPH08255712A (en) Magnetic thin film and its manufacturing method
JP2735276B2 (en) Mn-Al ferromagnetic thin film and method for producing the same
JPH04111302A (en) Artificial lattice film
Hoshi et al. Preparation of c-axis-oriented barium ferrite thin films with small crystallite size
JP2512101B2 (en) Method and apparatus for producing crystalline magneto-optical recording medium
Watanabe et al. Anomalous behavior of magnetization and perpendicular magnetic anisotropy for Heusler compound type multilayer films, PtMnSb/CuMnSb