JP2735276B2 - Mn-Al ferromagnetic thin film and method for producing the same - Google Patents

Mn-Al ferromagnetic thin film and method for producing the same

Info

Publication number
JP2735276B2
JP2735276B2 JP7060289A JP7060289A JP2735276B2 JP 2735276 B2 JP2735276 B2 JP 2735276B2 JP 7060289 A JP7060289 A JP 7060289A JP 7060289 A JP7060289 A JP 7060289A JP 2735276 B2 JP2735276 B2 JP 2735276B2
Authority
JP
Japan
Prior art keywords
thin film
film
ferromagnetic thin
ratio
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7060289A
Other languages
Japanese (ja)
Other versions
JPH01315108A (en
Inventor
輝明 竹内
正昭 二本
幸雄 本多
一正 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7060289A priority Critical patent/JP2735276B2/en
Publication of JPH01315108A publication Critical patent/JPH01315108A/en
Application granted granted Critical
Publication of JP2735276B2 publication Critical patent/JP2735276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、マンガンとアルミニウムの合金薄膜に係
り、特にバルク合金と同等の大きな自発磁化および磁気
異方性を発生させるのに好適な膜に関する。
The present invention relates to a manganese-aluminum alloy thin film, and more particularly to a film suitable for generating large spontaneous magnetization and magnetic anisotropy equivalent to a bulk alloy.

【従来の技術】[Prior art]

マンガン(Mn)とアルミニウム(Al)の合金は、ある
結晶構造の場合に強磁性体となることが知られており、
そのバルク結晶は永久磁石等に応用されている。近年、
この材料を薄膜化する試みもなされている。その一例
は、ジャーナル・オブ・アプライド・フィジックス,61
(1987年)第4281頁から第4283頁(J.Appil.Phys.61(1
987),pp.4281−4283)において論じられたスパッタ法
により形成したMn−Al合金膜で、MnとAlの比は膜内で一
定である。
An alloy of manganese (Mn) and aluminum (Al) is known to be a ferromagnetic material in a certain crystal structure.
The bulk crystal has been applied to permanent magnets and the like. recent years,
Attempts have been made to make this material thinner. One example is the Journal of Applied Physics, 61
(1987) p. 4281 to p. 4283 (J. Appil. Phys. 61 (1
987), pp.4281-4283), the ratio of Mn to Al is constant in the Mn-Al alloy film formed by the sputtering method.

【発明が解決しようとする課題】[Problems to be solved by the invention]

上記従来技術においては、成膜条件を種々変化させて
も、得られた膜の自発磁化は最大のものでも120emu/cc
であり、バルク合金のそれの1/4程度しかないという問
題があった。 この原因は、MnとAlの比率は一定でも得られた膜に、
強磁性を発生する構造(τ相)と共に、非磁性の構造
(ε相)が含まれているためである。 本発明の第1の目的は、膜内全体にτ相を有し、バル
ク合金と同等の自発磁化を有するMn−Al強磁性体薄膜を
得ることにある。 さらに、磁性デバイスにおいては磁気異方性も重要な
特性であり、たとえば、垂直磁気記録においては、膜垂
直方向の異方性が不可欠である。 本発明の第2の目的は、上記従来技術においては得ら
れなかった磁気異方性を発生させることにある。
In the above prior art, the spontaneous magnetization of the obtained film is 120 emu / cc at the maximum even if the film forming conditions are variously changed.
However, there is a problem that the thickness is only about 1/4 of that of the bulk alloy. The reason for this is that even if the ratio of Mn and Al is constant,
This is because a non-magnetic structure (ε phase) is included together with a structure that generates ferromagnetism (τ phase). A first object of the present invention is to obtain a Mn-Al ferromagnetic thin film having a τ phase throughout the film and having spontaneous magnetization equivalent to that of a bulk alloy. In magnetic devices, magnetic anisotropy is also an important characteristic. For example, in perpendicular magnetic recording, anisotropy in the direction perpendicular to the film is indispensable. A second object of the present invention is to generate magnetic anisotropy that cannot be obtained by the above-mentioned conventional technology.

【課題を解決するための手段】[Means for Solving the Problems]

上記本発明の第1の目的は、Mn−Al膜中のMnの分量比
が該膜の面方向で概略一定であり、かつ45−65at%の範
囲内で膜厚方向で変動しているMn−Al膜を作製すること
により達成できる。 上記本発明の第2の目的は、Mn−Al膜中のMnの分量比
が該膜の面方向で概略一定であり、膜厚方向で変動して
おり、かつ上記膜の膜厚方向の少なくとも一部分で上記
Mnの分量比が45−65at%の範囲内にあり、かつ変動して
いるMn−Al膜を作製することにより達成できる。
The first object of the present invention is to provide an Mn-Al film in which the Mn content ratio is approximately constant in the plane direction of the film and fluctuates in the film thickness direction within the range of 45 to 65 at%. -It can be achieved by preparing an Al film. The second object of the present invention is that the quantitative ratio of Mn in the Mn-Al film is substantially constant in the plane direction of the film, fluctuates in the film thickness direction, and at least in the film thickness direction of the film. Partly above
This can be achieved by forming a Mn-Al film in which the Mn content ratio is in the range of 45 to 65 at% and fluctuates.

【作用】[Action]

上記本発明の第1の目的を達成するに至った経緯は次
のとおりである。 上記従来技術において自発磁化が小さいのは、強磁性
構造のτ相が準安定状態にあることに起因しているの
で、τ相の方がε相よりも安定に発生する条件を模索し
た。その一つとして、自発磁化の異なる種々のMn−Al合
金を切断し、断面の組成を微視的に調べた。その結果、
自発磁化の大きなものはτ相のみで構成されており、自
発磁化の小さいものはτ相とε相が混在しているという
ことが分かった。そして、このτ相が存在する領域の組
成を調べると、τ相内でのMnの分量比は45〜65at%であ
り、かつ組成が変動していた。 以上の発見から薄膜においてもMnの分量比を45〜65at
%の範囲で人工的に変動させることによってτ相を優先
的に形成すれば大きな自発磁化が得られると予想し、薄
膜の積層技術により上記組成の変動の実現を試みた。 すなわち、基板上にMnとAlを真空蒸着法等により交互
に積層し、これら2つのMnとAl元素を相互に拡散させれ
ば、膜の厚み方向でMnの分量比が変動すると考えた。 この考えに基づき、蒸着速度,蒸着時間および基板の
加熱温度をパラメータとして、Mnの分量比の変動形態の
異なる種々の薄膜を作製した。 作製した薄膜の構造は、第1図(a)に示すような、
Mn分量の多い膜、およびAl分量の多い膜が交互に積層し
た構造となっている。 また、この薄膜のMnの分量比の膜厚方向の分布は第1
図(b)のようになっている。第1図(b)はMn分量の
多い(過剰)膜とAl分量の多い(過剰)膜とを積層した
状態のMn分量比の変動を示している。Alの分量比は100a
t%からMnの分量比を差引いたものである。Mnの分量引
の変動の範囲は0から100の範囲である。aとbの領域
は各々MnとAlの相互拡散が起ってもMnとAlが混ざらず純
粋なMnおよびAlが残った領域である。cとdの領域はMn
とAlの相互拡散が生じた領域であり、Mnの分量比は除々
に変わっている。層の厚さが薄いとMnとAlの相互拡散は
Mn層とAl層の全領域におよび、その結果、上記aおよび
bの領域は存在せず、cおよびdの組成変動領域のみと
なる。この場合のMn分量比の膜厚方向の分布を第1図
(c)に示す。Mn分量比の変動範囲はx1からx2である。 第8図に後述の実施例で作製した薄膜の成膜条件、Mn
分量比の分布および自発磁化等の磁気特性を示す。 試料No.1−11の薄膜では、自発磁化は450emu/ccであ
る。この値はバルク合金の自発磁化の値と等しい。した
がって、本発明の第1の目的を達成した薄膜が実現して
いることがわかる。 この時のMn分量比の最小値x1の内で最も小さい値は、
試料No.3の45at%であり、最大値x2の内で最も大きい値
は、試料No.6,7の65at%である。したがって、Mn分量比
の変動範囲は45−65at%である。また、積層数を50〜10
00の範囲で変化させても450emu/ccの自発磁化が得ら
れ、周期を8Å〜20Åの範囲で変化させても450emu/cc
の自発磁化が得られている。したがって、積層数および
周期の異なる種々の構造の膜を作製してもバルク合金と
等しい自発磁化が得られることがわかる。さらに、試料
No.11の構造は、周期およびMn分量比の極小値,極大値
が膜厚方向にランダムな値をとっている。このような構
造の試料においても上記3つのパラメータが一定の試料
と同じく自発磁化は450emu/ccである。 したがって、Mnの分量比が45−65at%の範囲内にあれ
ば、積層数、周期およびMn分量比の極小値,極大値が異
なる構造の膜であってもバルク合金の場合と等しい自発
磁化が得られることがわかる。 また、試料No.12においては、膜の自発磁化が100emu/
ccとバルク合金に比べ小さい。この原因は、この膜のMn
の分量比が0〜100at%の範囲で変化していることにあ
ると考えられる。この膜の一部分であるMnの分量比が45
〜65at%の領域ではτ相が生じ、その自発磁化はバルク
合金と同じ値すなわち450emu/ccを有しているが、Mnの
分量比が上記範囲からはずれた領域ではε相が形成され
るため、そこでの自発磁化の値は零である。膜の自発磁
化は、これらの領域での値の平均値となる。この試料で
は、τ相の領域とε相の領域とが1:3の膜厚比で存在し
ているため、自発磁化の平均値は450×1/(1+3)=1
12emu/ccと算出される。この値は上記100emu/ccと概略
一致している。このことからもまたMnの分量比を45〜65
at%の範囲内とすることが強磁性発生の条件であること
がわかる。 次に本発明の第2の目的を達成するための手段につい
てその作用を説明する。 第8図からわかるように、全ての試料において異方性
磁界が発生しており、本発明の第2の目的を達成した薄
膜が実現していることがわかる。 特に、試料No.12では異方性磁界の値が6000Oeと大き
い。 なお、この試料では自発磁化の値が100emu/ccと小さ
い。しかし、光磁気記録用媒体等には使用可能である。 上記2つの試料の特徴はMn分量比の変化率が大きいこ
とにある。これはMn分量比の変化率と異方性磁界とが、
第8図の全試料において比例関係にあることからわか
る。 本発明のMn−Al強磁性体薄膜の作製方法の一つとし
て、真空中で200−350℃の基板加熱の下で基板上にMnと
Alを交互に被着する方法がある。基板としては、{10
0}面のNaCl型単結晶が好ましく、特に{100}面のMgO
単結晶が好ましい。 一般に、室温程度の低温で膜の形成を行なうと、結晶
の乱れが大きく、良好な特性が得られない。 強磁性薄膜においては、自発磁化,異方性磁界等が減
少する等の影響がある。一方、膜形成時の温度が高すぎ
ると膜組成が変化する等の悪影響が生じる。例えば、飽
和蒸気圧が異なる多種の元素を被着する場合、基板温度
が高すぎると飽和蒸気圧の高い元素が、被着中に基板よ
り再蒸発するために、所望の組成が得られない。 本発明のMn−Al薄膜においては、第8図の結果より明
らかなように、基板を200℃〜350℃に加熱して膜形成を
行うことにより良好な結果が得られている。 なお、実施例においてはMnを先に被着した。Alを先に
被着した場合には、実施例の場合より自発磁化、および
異方性磁界は少し劣るが、従来のMn−Al薄膜よりは優れ
ていることを確認している。
The background to achieve the first object of the present invention is as follows. In the above prior art, the spontaneous magnetization is small due to the fact that the τ phase of the ferromagnetic structure is in a metastable state. Therefore, a condition in which the τ phase is generated more stably than the ε phase was sought. As one of them, various Mn-Al alloys having different spontaneous magnetizations were cut, and the composition of the cross section was examined microscopically. as a result,
It was found that those having a large spontaneous magnetization consisted of only the τ phase, and those having a small spontaneous magnetization contained both the τ phase and the ε phase. When the composition of the region where the τ phase exists was examined, the quantitative ratio of Mn in the τ phase was 45 to 65 at%, and the composition varied. From the above findings, even in thin films, the content ratio of Mn was 45 to 65 at.
It was expected that a large spontaneous magnetization would be obtained if the τ phase was formed preferentially by artificially changing the composition in the range of%. That is, it was considered that if Mn and Al were alternately stacked on the substrate by a vacuum deposition method or the like and these two Mn and Al elements were mutually diffused, the Mn quantitative ratio would fluctuate in the thickness direction of the film. Based on this idea, various thin films having different variations in the Mn fraction ratio were prepared using the deposition rate, deposition time, and substrate heating temperature as parameters. The structure of the fabricated thin film is as shown in FIG.
It has a structure in which films with a large amount of Mn and films with a large amount of Al are alternately stacked. The distribution in the thickness direction of the Mn fraction ratio of this thin film is the first.
It is as shown in FIG. FIG. 1 (b) shows the variation in the Mn content ratio when a film with a large Mn content (excess) and a film with a large Al content (excess) are stacked. Al content ratio is 100a
It is obtained by subtracting the ratio of Mn from t%. The range of variation of the discount of Mn is in the range of 0 to 100. The regions a and b are regions in which Mn and Al are not mixed and pure Mn and Al remain even when mutual diffusion of Mn and Al occurs. The area of c and d is Mn
In this region, Al and Al have been interdiffused, and the ratio of Mn is gradually changing. If the layer thickness is small, the interdiffusion between Mn and Al
The entire region of the Mn layer and the Al layer is covered, and as a result, the regions a and b do not exist, but only the composition fluctuation regions c and d. FIG. 1 (c) shows the distribution of the Mn ratio in the film thickness direction in this case. The variation range of the Mn content ratio is x 2 from x 1. FIG. 8 shows the conditions for forming a thin film, Mn
The distribution of the ratio and the magnetic properties such as spontaneous magnetization are shown. The spontaneous magnetization of the thin film of Sample No. 1-11 is 450 emu / cc. This value is equal to the value of the spontaneous magnetization of the bulk alloy. Therefore, it can be seen that a thin film that has achieved the first object of the present invention has been realized. At this time, the smallest value of the minimum value x 1 of the Mn fraction ratio is:
Sample No. 3 is 45 at%, and the largest value among the maximum values x 2 is 65 at% of Sample Nos. 6 and 7. Therefore, the variation range of the Mn fraction ratio is 45-65 at%. In addition, the number of laminations
A spontaneous magnetization of 450 emu / cc can be obtained even when changed in the range of 00, and 450 emu / cc even when the period is changed in the range of 8 ° to 20 °.
Is obtained. Therefore, it can be seen that spontaneous magnetization equal to that of the bulk alloy can be obtained even when films having various structures with different numbers of layers and periods are manufactured. In addition, the sample
In the structure of No. 11, the minimum value and the maximum value of the period and the Mn fraction ratio have random values in the film thickness direction. The spontaneous magnetization of the sample having such a structure is 450 emu / cc as in the case of the sample in which the above three parameters are constant. Therefore, if the Mn content ratio is in the range of 45-65 at%, spontaneous magnetization equal to that of the bulk alloy can be obtained even for films having different numbers of laminations, periods, and minimum and maximum values of the Mn content ratio. It can be seen that it can be obtained. In sample No. 12, the spontaneous magnetization of the film was 100 emu /
Smaller than cc and bulk alloys. This is because the Mn
Is considered to be in the range of 0 to 100 at%. The fractional ratio of Mn, which is a part of this film, is 45
In the region of ~ 65 at%, a τ phase is generated, and the spontaneous magnetization has the same value as that of the bulk alloy, that is, 450 emu / cc. , Where the value of the spontaneous magnetization is zero. The spontaneous magnetization of the film is the average of the values in these regions. In this sample, the τ phase region and the ε phase region exist at a film thickness ratio of 1: 3, so that the average value of the spontaneous magnetization is 450 × 1 / (1 + 3) = 1.
Calculated as 12 emu / cc. This value approximately matches the above-mentioned 100 emu / cc. From this, it is also necessary to set the Mn ratio to 45 to 65.
It is understood that the condition of at% is a condition for generating ferromagnetism. Next, the operation of the means for achieving the second object of the present invention will be described. As can be seen from FIG. 8, anisotropic magnetic fields were generated in all the samples, and it was found that thin films that achieved the second object of the present invention were realized. In particular, in Sample No. 12, the value of the anisotropic magnetic field is as large as 6000 Oe. In this sample, the value of spontaneous magnetization is as small as 100 emu / cc. However, it can be used for a magneto-optical recording medium or the like. The feature of the two samples is that the rate of change of the Mn fraction ratio is large. This is because the rate of change of the Mn fraction ratio and the anisotropic magnetic field are
It can be seen from the proportional relationship in all the samples in FIG. As one method for producing the Mn-Al ferromagnetic thin film of the present invention, Mn is formed on a substrate under heating of the substrate at 200 to 350 ° C. in vacuum.
There is a method of alternately depositing Al. As a substrate, {10
NaCl-type single crystal of 0 plane is preferable, and MgO of {100} plane is particularly preferable.
Single crystals are preferred. In general, when a film is formed at a low temperature of about room temperature, crystal disorder is large and good characteristics cannot be obtained. The ferromagnetic thin film has effects such as a decrease in spontaneous magnetization, an anisotropic magnetic field, and the like. On the other hand, if the temperature during the film formation is too high, adverse effects such as a change in the film composition occur. For example, when depositing various elements having different saturated vapor pressures, if the substrate temperature is too high, a desired composition cannot be obtained because elements having a high saturated vapor pressure re-evaporate from the substrate during deposition. In the Mn-Al thin film of the present invention, as is clear from the results in FIG. 8, good results have been obtained by heating the substrate to 200 ° C. to 350 ° C. to form the film. In the examples, Mn was applied first. When Al is first deposited, the spontaneous magnetization and the anisotropic magnetic field are slightly inferior to those of the example, but it is confirmed that they are superior to the conventional Mn-Al thin film.

【実施例】【Example】

実施例1. 本発明の実施例1を第2図及び第3図(a),(b)
により説明する。 本実施例では、第2図に示す電子ビーム蒸着装置を用
いた。真空槽5に電子銃加熱装置1を2台置き、それぞ
れの電子銃加熱装置のるつぼ20にマンガン(Mn)および
アルミニウム(Al)を入れて加熱し、1×10-9Torrの真
空度の下で両者を同時に蒸着させる。この状態で2つの
シャッタ2を交互に開閉することにより、ステージ4に
取付けられたガラス基板12にMnとAlをMn,Alの順で交互
に被着させる。試料1においては、被着速度はいずれも
1秒あたり0.5Åで、それぞれ10秒おきにシャッタを開
閉した。したがって1回のシャッタ開放により、膜厚5
Å相当の層が被着される。基板温度は250℃に保って100
0層積層した。 試料1の膜の断面構造及び膜厚方向の組成変化をそれ
ぞれ第3図(a),(b)に示す。被着層の厚さが5Å
であるとMnとAlの相互拡散はMn層とAl層の全領域におよ
び、その結果、厚さが5Åの組成が変動した領域のみが
存在する。 この領域でのMn分量比の変動率は、Mn分量比の最大値
が54at%,最小値が46at%であることから、(54〔at
%〕−46〔at%〕)/5〔Å〕=1.6 〔at%/Å〕である。この膜の磁気特性を測定した結
果、膜の自発磁化は、バルク合金と同等の450emu/ccで
あり、異方性磁界は1400Oeであった。 さらに、成膜条件を変えた種々の膜を作製した。変化
させた成膜条件は、作製時の基板温度,MnとAlのシャッ
タ開放時間,蒸着レートR及び積層数Nである。作製し
た試料No.2〜10の成膜条件を第8図に示す。これらの試
料におけるMn組成の分布及び異方性磁界と自発磁化との
2つの蒸気特性も第8図に示す。基板は、試料No.6−8
では{100}面のMgO単結晶であり、他の試料ではガラス
である。この2種類の基板上に基板温度200℃〜350℃の
範囲の温度で、MnとAlを、シャッタ2の開閉によりMn,A
lの順に交互に被着した。蒸着レートは0.5Å/sec及び1
Å/secであり、シャッタ開放時間は8〜12秒の範囲であ
る。 Mn分量比の膜厚方向分布は、基板温度,シャッタ開放
時間,蒸着レートで決まるが、試料No.2〜10において
も、MnとAlの相互拡散はMn層とAl層の全領域に及び、そ
の結果,組成が変動した領域のみが存在する。この組成
が変動した領域の幅すなわち、第1図(c)におけるc
及びdの値は、これらの試料では4〜6Åの範囲にあ
る。また、Mn分量比は、いずれも試料でも45〜65at%の
範囲内にあった。これら試料No.2〜10の膜の自発磁化は
450emu/ccであり、バルク合金と等しい値であった。な
お、試料1と試料2の比較、試料6と試料7の比較から
明らかなように、積層数を変えても膜の自発磁化の値は
変わらなかった。 試料No.2〜10の異方性磁界は第8図に示したように30
0Oeから2200Oeにわたっている。これは、同図に示したM
n分量変化率に比例している。したがって、Mn分量変化
率が大きくなる成膜条件を選ぶことにより、異方性磁界
の向上が期待できる。 実施例2. 本発明の実施例2を第4図(a)および第4図(b)
により説明する。本実施例で示す試料No.11は第2図の
電子ビーム蒸着装置を用いて作製した。ガラス基板12上
に、MnおよびAlの蒸着速度0.5Å/sec、基板温度250℃で
MnとAlをMn,Alの順に交互に合計1000層被着した。また
本実施例はMnおよびAlの蒸着時間をランダムに変えた。
この為、シャッタ開放時間を、Mnの場合は10秒から12秒
の範囲で変化させ、Alの場合は8秒から10秒の範囲で変
化させた。 この結果、第4図(a)に示すように、Mn過剰の層と
Al過剰層が交互に積層した強磁性体膜が作製される。こ
の時、各層の膜厚は実施例1の場合と異なり等しくな
い。また、第4図(b)に示すように、Mn分量比の極大
値および極小値もまた実施例1の場合と異なり一定では
ない。Mn分量比の最大値は58at%であり、最小値は46at
%である。 本実施例の強磁性体膜は、450emu/ccの自発磁化を有
していることがわかった。この値はバルク合金の値と同
等である。また、異方性磁界は1000Oeであった。 実施例3. 磁気異方性を出現させるために行なった実施例3を第
5図(a)および第5図(b)により説明する。磁気異
方性は対称的に関係しているため、組成変化が大きいほ
ど大きくなる。この観点から、試料No.12では成膜条件
を選び、第5図(b)に示すように、Mnの比率が0at%
から100at%まで変化する急峻な構造とした。第5図
(a)はこの条件下で作製したMn過剰とAl過剰の層から
成る超格子構造膜11でガラス基板12上に各層に厚さ20オ
ングストローム〔Å〕で、1000層積層されている。 以下、作製方法を説明する。蒸着装置は第2図に示し
た電子ビーム蒸着装置を用いた。ガラス基板12上に、Mn
およびAlの蒸着速度0.5Å/sec、基盤温度200℃でMnとAl
をMn,Alの順に交互に合計1000層被着した。本実施例で
は、MnおよびAlの蒸着時間を40秒間と長くした。また、
基板加熱温度も200℃と低い加熱温度を選んだ。 本実施例では、蒸着時間が長いので、各層の膜厚が大
きく蒸着中のMnとAlの相互拡散によってもMnとAlが混合
しない領域が存在する。この結果、Mn分量比は0〜100a
t%まで変化し、Mn分量比が変化した領域の厚さは15Å
となる。したがって、Mn分量比の変化率は 100〔at%〕/15〔Å〕=6.7〔at%/Å〕であり、大き
な変化率が得られる。この膜11の磁気特性を測定した結
果、6000Oeと大きな異方性磁界を確認した。 また、膜11の自発磁化は100emu/ccであった。この値
は実施例1および2における値に比べて小さい。これ
は、実施例1および2における膜中のMn分量比は45−65
at%の範囲にあるのに対し、本実施例における膜ではこ
の範囲からはずれた値の領域が存在する為である。Mnの
分量比が45−65at%の範囲にある膜の領域はτ相であ
り、この範囲からずれた値の範囲にある領域はε相であ
る。これらの相は第5図(b)から明らかなように層構
造となっており、1つの層内は同じ相から成っている。
τ相は強磁性でその自発磁化は450emu/ccであるが、ε
相は光磁性ではないため自発磁化は零である。膜全体の
自発磁化は、強磁性相の層と非強磁性用の層がもつ自発
磁化の平均値となる。 本実施例の膜においては、τ相の領域の厚さとε相の
領域の厚さは1:3であるため、自発磁化の平均値は450×
1/(1+3)=112emu/ccと算出され、上記100emu/ccと
概略一致する。 実施例4. 本実施例では、第6図に示す電子ビーム蒸着装置を用
いる。電子銃加熱装置7内にある2つのるつぼ20に、そ
れぞれMnとAlを入れ、るつぼの位置を切換えてガラス基
板12にMnとAlをMn,Alの順に交互に被着させる。蒸着速
度は膜厚換算でそれぞれ1秒あたり5オングストローム
とし、10秒毎に2つのるつぼ位置を切換えた。基板温度
は250℃とし、合計1000層積層した。 本実施例では、蒸着速度が大きいので各層の膜厚が大
きく、実施例3と同様蒸着中のMnとAlの相互拡散によっ
ても、MnとAlが混合しない領域が存在する。 実施例5. 本実施例では、第7図に示すスパッタリング装置を用
いる。この装置はターゲットホルダ9に取り付けられた
MnとAlの2つのターゲット8からスパッタリングにより
Mn粒子とAl粒子を同時に飛出させ、ターゲット8の表面
に相対したステージ4を回転してステージに保持された
基板12にMnとAlとをMn,Alの順に交互に被着させるもの
である。MnとAlの被着量が膜厚換算で共に5オングスト
ロームになるように、ステージ4の回転速度とスパッタ
リング条件を調整した。基板温度は250℃とし、1000層
積層した。 本実施例では、実施例1の試料No.1と同等の構造の膜
が得られ、自発磁化および異方性磁界の値も450emu/c
c、1400Oeと同等の値が得られた。 なお、スパッタリング装置のステージ4の回転速度を
変えることにより層厚を種々変化させることができる。
Embodiment 1 FIGS. 2 and 3 (a) and (b) show Embodiment 1 of the present invention.
This will be described below. In this embodiment, the electron beam evaporation apparatus shown in FIG. 2 was used. Two electron gun heaters 1 are placed in a vacuum chamber 5, and manganese (Mn) and aluminum (Al) are put into crucibles 20 of the respective electron gun heaters and heated, and are heated under a vacuum of 1 × 10 -9 Torr. To deposit both at the same time. By alternately opening and closing the two shutters 2 in this state, Mn and Al are alternately deposited on the glass substrate 12 attached to the stage 4 in the order of Mn and Al. In Sample 1, the deposition speed was 0.5 ° per second, and the shutter was opened and closed every 10 seconds. Therefore, the film thickness 5
Å A considerable layer is deposited. Keep substrate temperature at 250 ° C for 100
Zero layers were laminated. FIGS. 3 (a) and 3 (b) show the cross-sectional structure of the film of Sample 1 and the composition change in the film thickness direction, respectively. Deposition layer thickness is 5mm
In this case, the interdiffusion of Mn and Al extends over the entire region of the Mn layer and the Al layer, and as a result, only a region having a thickness of 5 ° and a composition change is present. Since the maximum value of the Mn fraction ratio is 54 at% and the minimum value is 46 at% in this region, the variation rate of the Mn fraction ratio is (54 [at
%]-46 [at%]) / 5 [Å] = 1.6 [at% / Å]. As a result of measuring the magnetic properties of this film, the spontaneous magnetization of the film was 450 emu / cc, which is equivalent to that of the bulk alloy, and the anisotropic magnetic field was 1400 Oe. Furthermore, various films were formed under different film forming conditions. The changed film formation conditions are the substrate temperature at the time of fabrication, the shutter open time of Mn and Al, the deposition rate R, and the number of layers N. FIG. 8 shows the film forming conditions of the manufactured sample Nos. 2 to 10. FIG. 8 also shows the distribution of the Mn composition and the two vapor characteristics of the anisotropic magnetic field and the spontaneous magnetization in these samples. Substrate is sample No.6-8
Is a {100} plane MgO single crystal, and the other samples are glass. Mn and Al are deposited on these two kinds of substrates at a substrate temperature of 200 ° C. to 350 ° C.
They were applied alternately in the order of l. The deposition rate is 0.5Å / sec and 1
Å / sec, and the shutter release time is in the range of 8 to 12 seconds. The distribution of the Mn fraction ratio in the film thickness direction is determined by the substrate temperature, the shutter open time, and the deposition rate. In Sample Nos. 2 to 10, the mutual diffusion of Mn and Al extends over the entire region of the Mn layer and the Al layer. As a result, only the region where the composition fluctuates exists. The width of the region where the composition fluctuated, that is, c in FIG.
And d are in the range of 4-6 ° for these samples. Further, the Mn fraction ratio was in the range of 45 to 65 at% for all samples. The spontaneous magnetization of the films of Sample Nos. 2 to 10 is
450 emu / cc, which was equal to that of the bulk alloy. As apparent from the comparison between Sample 1 and Sample 2 and between Sample 6 and Sample 7, the value of the spontaneous magnetization of the film did not change even when the number of layers was changed. The anisotropic magnetic field of Sample Nos. 2 to 10 was 30 as shown in FIG.
It ranges from 0 Oe to 2200 Oe. This is the M shown in the figure.
It is proportional to the n-quantity change rate. Therefore, an improvement in the anisotropic magnetic field can be expected by selecting film forming conditions that increase the Mn content change rate. Embodiment 2 FIGS. 4 (a) and 4 (b) show Embodiment 2 of the present invention.
This will be described below. Sample No. 11 shown in this example was manufactured using the electron beam evaporation apparatus shown in FIG. On the glass substrate 12, the deposition rate of Mn and Al is 0.5n / sec, and the substrate temperature is 250 ° C.
Mn and Al were alternately deposited in the order of Mn and Al for a total of 1000 layers. In this embodiment, the deposition time of Mn and Al was changed at random.
For this reason, the shutter opening time was changed in the range of 10 to 12 seconds for Mn, and was changed in the range of 8 to 10 seconds for Al. As a result, as shown in FIG.
A ferromagnetic film in which Al excess layers are alternately stacked is manufactured. At this time, the thicknesses of the respective layers are not the same as in the first embodiment. Further, as shown in FIG. 4 (b), the maximum value and the minimum value of the Mn fraction ratio are not constant, unlike the case of the first embodiment. The maximum value of the Mn fraction ratio is 58 at%, and the minimum value is 46 at%.
%. It was found that the ferromagnetic film of this example had a spontaneous magnetization of 450 emu / cc. This value is equivalent to the value of the bulk alloy. The anisotropic magnetic field was 1000 Oe. Embodiment 3 Embodiment 3 performed to make the magnetic anisotropy appear will be described with reference to FIGS. 5 (a) and 5 (b). Since magnetic anisotropy is symmetrically related, it increases as the composition change increases. From this viewpoint, the film formation conditions were selected for sample No. 12, and the Mn ratio was 0 at% as shown in FIG.
From 100% to 100at%. FIG. 5 (a) shows a superlattice structure film 11 composed of Mn-excess and Al-excess layers produced under this condition, and 1000 layers each having a thickness of 20 angstroms [Å] are laminated on a glass substrate 12. . Hereinafter, the manufacturing method will be described. As the vapor deposition device, the electron beam vapor deposition device shown in FIG. 2 was used. On the glass substrate 12, Mn
And Al at a deposition rate of 0.5Å / sec and a substrate temperature of 200 ° C
Were deposited alternately in the order of Mn and Al for a total of 1000 layers. In this example, the deposition time of Mn and Al was increased to 40 seconds. Also,
The substrate heating temperature was selected as low as 200 ° C. In this embodiment, since the deposition time is long, the thickness of each layer is large, and there is a region where Mn and Al do not mix even when Mn and Al are interdiffused during the deposition. As a result, the Mn fraction ratio is 0 to 100a.
tÅ, the thickness of the region where the Mn fraction ratio changed was 15 mm
Becomes Therefore, the change rate of the Mn fraction ratio is 100 [at%] / 15 [Å] = 6.7 [at% / Å], and a large change rate can be obtained. As a result of measuring the magnetic properties of the film 11, a large anisotropic magnetic field of 6000 Oe was confirmed. The spontaneous magnetization of the film 11 was 100 emu / cc. This value is smaller than the values in Examples 1 and 2. This means that the Mn content ratio in the films in Examples 1 and 2 was 45-65.
This is because the film in the present embodiment has a region with a value out of the range, whereas the film is in the range of at%. The region of the film where the ratio of Mn is in the range of 45-65 at% is the τ phase, and the region where the value deviates from this range is the ε phase. These phases have a layered structure as is apparent from FIG. 5 (b), and one layer is composed of the same phase.
The τ phase is ferromagnetic and its spontaneous magnetization is 450 emu / cc.
Since the phase is not photomagnetic, the spontaneous magnetization is zero. The spontaneous magnetization of the entire film is the average value of the spontaneous magnetizations of the ferromagnetic phase layer and the non-ferromagnetic layer. In the film of this example, the thickness of the τ-phase region and the thickness of the ε-phase region were 1: 3, so the average value of the spontaneous magnetization was 450 ×
1 / (1 + 3) = 112 emu / cc, which is almost the same as the above 100 emu / cc. Embodiment 4 In this embodiment, an electron beam evaporation apparatus shown in FIG. 6 is used. Mn and Al are put into the two crucibles 20 in the electron gun heating device 7, respectively, and the positions of the crucibles are switched so that Mn and Al are alternately deposited on the glass substrate 12 in the order of Mn and Al. The deposition rate was 5 Å per second in terms of film thickness, and the two crucible positions were switched every 10 seconds. The substrate temperature was 250 ° C., and a total of 1000 layers were laminated. In this embodiment, since the deposition rate is high, the thickness of each layer is large, and there is a region where Mn and Al do not mix even by mutual diffusion of Mn and Al during the deposition as in the third embodiment. Embodiment 5 In this embodiment, a sputtering apparatus shown in FIG. 7 is used. This device was attached to the target holder 9
Sputtering from two targets 8 of Mn and Al
The Mn particles and the Al particles are simultaneously ejected, the stage 4 facing the surface of the target 8 is rotated, and Mn and Al are alternately deposited on the substrate 12 held on the stage in the order of Mn and Al. . The rotation speed of the stage 4 and the sputtering conditions were adjusted so that the deposition amounts of Mn and Al were both 5 Å in terms of film thickness. The substrate temperature was 250 ° C., and 1000 layers were stacked. In this example, a film having a structure equivalent to that of the sample No. 1 of Example 1 was obtained, and the values of the spontaneous magnetization and the anisotropic magnetic field were 450 emu / c.
c, values equivalent to 1400 Oe were obtained. The layer thickness can be variously changed by changing the rotation speed of the stage 4 of the sputtering apparatus.

【発明の効果】【The invention's effect】

本発明によれば、永久磁石材料であるMn−Al合金を薄
膜化しても自発磁化の減少を避けることができ、また、
磁気異方性を発生させることもできるので、種々の磁気
デバイスへの応用が可能となる。
According to the present invention, it is possible to avoid a decrease in spontaneous magnetization even if the Mn-Al alloy as a permanent magnet material is thinned,
Since magnetic anisotropy can be generated, it can be applied to various magnetic devices.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の断面図、第1図(b)および第
1図(c)は本発明の組成分布を示す図、第2図は電子
ビーム蒸着装置の概略図、第3図(a)は本発明の実施
例1の断面図、第3図(b)は実施例1の組成分布を示
す図、第4図(a)は本発明の実施例2の断面図、第4
図(b)は実施例2の組成分布を示す図、第5図(a)
は本発明の実施例3の断面図、第5図(b)は実施例3
の組成分布を示す図、第6図は電子ビーム蒸着装置の概
略図、第7図はスパッタリング装置の概略図、第8図は
実施例1〜3で作製したMn−Al強磁性体薄膜の成膜条
件,Mn分量比の分布および磁気特性を表わす図である。 1……電子銃加熱装置、2……シャッタ、3……基板、 4……ステージ、5……真空槽、6……排気装置、 7……3連式電子銃加熱装置、8……ターゲット、 9……ターゲットホルダ、10……アパーチャ、 11……薄膜、12……基板、20……るつぼ。
1 (a) is a sectional view of the present invention, FIGS. 1 (b) and 1 (c) are diagrams showing the composition distribution of the present invention, FIG. 2 is a schematic diagram of an electron beam evaporation apparatus, and FIG. FIG. 3A is a sectional view of Example 1 of the present invention, FIG. 3B is a diagram showing a composition distribution of Example 1, FIG. 4A is a sectional view of Example 2 of the present invention, FIG. 4
FIG. 5 (b) shows the composition distribution of Example 2, and FIG. 5 (a)
FIG. 5 is a sectional view of a third embodiment of the present invention, and FIG.
FIG. 6 is a schematic view of an electron beam evaporation apparatus, FIG. 7 is a schematic view of a sputtering apparatus, and FIG. 8 is a schematic view of the Mn-Al ferromagnetic thin film prepared in Examples 1 to 3. FIG. 3 is a diagram showing film conditions, distribution of Mn fraction ratio, and magnetic characteristics. DESCRIPTION OF SYMBOLS 1 ... Electron gun heating device, 2 ... Shutter, 3 ... Substrate, 4 ... Stage, 5 ... Vacuum tank, 6 ... Exhaust device, 7 ... Triple electron gun heating device, 8 ... Target , 9 ... target holder, 10 ... aperture, 11 ... thin film, 12 ... substrate, 20 ... crucible.

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn−Al膜中のMnの分量比が該膜の面方向で
既略一定であり、膜厚方向で変動しており、かつ上記膜
の膜厚方向の少なくとも一部分において上記Mnの分量比
が45−65at%の範囲内にありかつ変動していることを特
徴とするMn−Al強磁性体薄膜。
An amount ratio of Mn in a Mn-Al film is substantially constant in a plane direction of the film, fluctuates in a film thickness direction, and at least a part of the film in the film thickness direction of the Mn-Al film. The Mn-Al ferromagnetic thin film, wherein the content ratio of the Mn-Al ferromagnetic thin film is in the range of 45-65 at% and fluctuates.
【請求項2】上記Mnの分量比の最大値が100at%で、最
小値が0at%である請求項1記載のMn−Al強磁性体薄
膜。
2. The Mn-Al ferromagnetic thin film according to claim 1, wherein the maximum value of the Mn fraction ratio is 100 at% and the minimum value is 0 at%.
【請求項3】上記Mnの分量比は上記膜の全体に亘って45
−65at%の範囲にある請求項1記載のMn−Al強磁性体薄
膜。
3. The composition ratio of Mn is 45% over the entirety of the film.
The Mn-Al ferromagnetic thin film according to claim 1, wherein the thickness is in the range of -65at%.
【請求項4】上記Mnの分量比は上記膜厚方向に周期的に
変動している請求項1,2または3記載のMn−Al強磁性体
薄膜。
4. The Mn-Al ferromagnetic thin film according to claim 1, wherein the Mn quantitative ratio fluctuates periodically in the film thickness direction.
【請求項5】上記Mnの分量比は上記膜厚方向にランダム
に変動している請求項1,2または3記載のMn−Al強磁性
体薄膜。
5. The Mn-Al ferromagnetic thin film according to claim 1, wherein the Mn content ratio fluctuates randomly in the film thickness direction.
【請求項6】上記Mn−Al膜はNaCl型単結晶基板の{10
0}面上に形成されている請求項1,2または3記載のMn−
Al強磁性体薄膜。
6. The Mn-Al film is a NaCl-type single crystal substrate of # 10
The Mn- according to claim 1, 2 or 3, which is formed on a 0 ° plane.
Al ferromagnetic thin film.
【請求項7】上記NaCl型単結晶はMgO単結晶である請求
項6記載のMn−Al強磁性体薄膜。
7. The Mn-Al ferromagnetic thin film according to claim 6, wherein the NaCl-type single crystal is a MgO single crystal.
【請求項8】請求項1記載のMn−Al強磁性体薄膜を真空
中で、200−350℃の範囲内に加熱した基板上にMnとAlを
交互に被着させることにより形成することを特徴とする
Mn−Al強磁性体薄膜の製造方法。
8. An Mn-Al ferromagnetic thin film according to claim 1 formed by alternately depositing Mn and Al on a substrate heated in a temperature range of 200 to 350 ° C. in a vacuum. Feature
A method for producing a Mn-Al ferromagnetic thin film.
【請求項9】上記被着はMn,Alの順に行なう請求項8記
載の強磁性体薄膜の製造方法。
9. The method for producing a ferromagnetic thin film according to claim 8, wherein the deposition is performed in the order of Mn and Al.
【請求項10】上記基板はNaCl型単結晶から成り、上記
被着面は{100}面である請求項9記載のMn−Al強磁性
体薄膜の製造方法。
10. The method for producing a Mn-Al ferromagnetic thin film according to claim 9, wherein said substrate is made of a NaCl-type single crystal, and said adherend surface is a {100} plane.
【請求項11】上記NaCl型単結晶はMgO単結晶である請
求項10記載のMn−Al強磁性体薄膜の製造方法。
11. The method for producing a Mn-Al ferromagnetic thin film according to claim 10, wherein said NaCl-type single crystal is a MgO single crystal.
【請求項12】上記被着は真空蒸着法による請求項8記
載のMn−Al強磁性体薄膜の製造方法。
12. The method for producing a Mn-Al ferromagnetic thin film according to claim 8, wherein said deposition is performed by a vacuum deposition method.
JP7060289A 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same Expired - Lifetime JP2735276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060289A JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-69414 1988-03-25
JP6941488 1988-03-25
JP7060289A JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01315108A JPH01315108A (en) 1989-12-20
JP2735276B2 true JP2735276B2 (en) 1998-04-02

Family

ID=26410619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060289A Expired - Lifetime JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2735276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398911B2 (en) * 2015-08-26 2018-10-03 株式会社豊田中央研究所 Permanent magnet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH01315108A (en) 1989-12-20

Similar Documents

Publication Publication Date Title
CA1093690A (en) Magnetic recording material having columnar crystals
US4743491A (en) Perpendicular magnetic recording medium and fabrication method therefor
US5158933A (en) Phase separated composite materials
Takahashi et al. Synthesis of Fe/sub 16/N/sub 2/films by using reactive plasma
Malmhäll et al. Thickness dependence of magnetic hysteretic properties of rf‐sputtered amorphous Tb–Fe alloy thin films
JP2735276B2 (en) Mn-Al ferromagnetic thin film and method for producing the same
US5231294A (en) Manganese-aluminum and manganese-silicon magnetic films, and magnetic recording medium
Russak et al. Magnetic and structural characterization of sputtered FeN multilayer films
Nagakubo et al. Effects of hydrogen and nitrogen ion bombardments on soft magnetism of iron films during double‐ion‐beam sputtering
JPH0451963B2 (en)
JPH0454367B2 (en)
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
Hoshi et al. Deposition of Fe‐N films by means of an opposed targets sputtering type plasma source
US6346175B1 (en) Modification of in-plate refractory metal texture by use of refractory metal/nitride layer
JP3001313B2 (en) Magneto-optical recording medium
JP2871990B2 (en) Magnetoresistive element thin film
Iwatsubo et al. Surface morphology and uniaxial magnetic anisotropy of Fe films deposited by dual ion beam sputtering
Nakagawa et al. Preparation of soft magnetic Fe-N films by ion beam deposition method with strict control of plasma potential
JPH03265105A (en) Soft magnetic laminate film
JP3177281B2 (en) Magneto-optical recording medium
JPH04127508A (en) Mn-al ferromagnetic thin film and manufacture thereof
Nagakubo et al. Synthesis and magnetic properties of iron nitride thin films by double ion beam sputtering
Kubota et al. Magnetism and crystal structure of Fe/Si multilayered films prepared by ion beam sputtering
Song et al. Magnetic and magneto-optical properties of Tb-Fe-Co/Ta multilayers
JPH08255712A (en) Magnetic thin film and its manufacturing method