JPH04127508A - Mn-al ferromagnetic thin film and manufacture thereof - Google Patents

Mn-al ferromagnetic thin film and manufacture thereof

Info

Publication number
JPH04127508A
JPH04127508A JP24711590A JP24711590A JPH04127508A JP H04127508 A JPH04127508 A JP H04127508A JP 24711590 A JP24711590 A JP 24711590A JP 24711590 A JP24711590 A JP 24711590A JP H04127508 A JPH04127508 A JP H04127508A
Authority
JP
Japan
Prior art keywords
film
substrate
spontaneous magnetization
thin film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24711590A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hirayama
義幸 平山
Teruaki Takeuchi
輝明 竹内
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Kazumasa Takagi
高木 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24711590A priority Critical patent/JPH04127508A/en
Publication of JPH04127508A publication Critical patent/JPH04127508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make it possible to conduct spontaneous magnetization equal to or higher than a alloy bulk, and to reduce the irregularity of characteristics by a method wherein, after an Mn-Al thin film has been formed on the surface (100) of an MgO single crystal substrate at 0 to 350 deg.C, and a heat treatment is conducted at 200 to 500 deg.C which is higher than the temperature of the substrate when it is formed. CONSTITUTION:Two electron beam heating devices 1 are placed in a vacuum vessel 6, Mn is put in one crucible 4 as the source of vapor deposition, Al is put in other crucible 4, both of them are evaporated simultaneously by heating, and Mn-Al film, in which the quantitative ratio of Mn in the film varies in film thickness direction, is formed by controlling the opening and closing of two shutters 2. Using an MgO single crystal face (100) as a substrate, a deposition operation is conducted by changing the quantitative ratio of Mn in the order of Mn surplus and Al surplus, and the substrate temperature is set in the range of to 350 deg.C. After deposition, a heat treatment is conducted at the temperature higher than the substrate temperature when a deposition operation is conducted, and an MnAl thin film, having the spontaneous magnetization larger than 450emu/cc, can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、マンガンとアルミニウムの合金薄膜に係り、
バルク合金と同等以上の大きな自発磁化および磁気異方
性を安定して得るのに好適な膜及びその製造方法に関す
る6
The present invention relates to an alloy thin film of manganese and aluminum,
6 concerning a film suitable for stably obtaining large spontaneous magnetization and magnetic anisotropy equal to or greater than that of a bulk alloy and its manufacturing method

【従来の技術】[Conventional technology]

マンガン(Mn)とアルミニウム(Al)の合金は、あ
る結晶構造の場合に強磁性体となることが知られており
、そのバルク結晶は永久磁石などに応用されている。近
年この材料を薄膜化する試みもなされている。その例と
して、特開平1−315108には、Mnの分量比が膜
厚方向に変動しているM n −A 1強磁性体薄膜に
ついて記載されている。
It is known that an alloy of manganese (Mn) and aluminum (Al) becomes a ferromagnetic material when it has a certain crystal structure, and its bulk crystal is used in permanent magnets and the like. In recent years, attempts have been made to make this material thinner. As an example, JP-A-1-315108 describes an M n -A 1 ferromagnetic thin film in which the Mn content ratio varies in the film thickness direction.

【発明が解決しようとした課題】[Problem that the invention sought to solve]

上記従来技術においては、Mnの分量比を膜厚方向に変
動させ、バルク合金と同等の450emu/ccの自発
磁化を得ている。しかし、多数の膜を繰返し作製した場
合に、その磁気特性のばらつきが大きいという問題があ
った。 本発明の目的は、M n −A I薄膜の磁気特性のば
らつきを小さくするとともに、自発磁化のより大きなM
 n −A I 薄膜を得ることにある。
In the above-mentioned conventional technology, the Mn content ratio is varied in the film thickness direction to obtain a spontaneous magnetization of 450 emu/cc, which is equivalent to that of a bulk alloy. However, when a large number of films are repeatedly produced, there is a problem in that the magnetic properties vary widely. The purpose of the present invention is to reduce the variation in the magnetic properties of the M n -A I thin film, and to reduce the variation in the magnetic properties of the M n -A I thin film, and to
The objective is to obtain an n-A I thin film.

【課題を解決するための手段1 上記本発明の目的は、Mn−Al薄膜を、MgO単結晶
基板の(100)面上に、0〜350℃の温度範囲で形
成後、形成時の基板温度より高くかつ200〜500℃
の範囲の温度で熱処理することにより達成できる。この
方法で作製したMn−Al薄膜は、バルク合金と同等あ
るいはそれ以上の自発磁化を示し、特性のばらつきも小
さい。 [作用] 上記Mn分量比変動膜を得る過程で、種々の薄膜を繰返
し作製した。これらの薄膜の磁気特性を測定したところ
、そのばらつきが目立った。そこで、この原因について
検討した結果、以下の3つのことが主な原因であること
がわかった。 第一に膜中に多くの格子欠陥が導入されることである。 格子欠陥は磁気特性を劣化させるため。 格子欠陥の導入量の違いが磁気特性のばらつきを生じさ
せる。 第二に成膜条件に制約が多いことである。上記Mn分量
比変動膜は、成膜時の基板温度が200〜350℃に限
られ、Mn分量比の変動範囲も45〜65a t%に限
られるなど、成膜条件に制約が多く、この制約のために
、成膜に基板温度やMn分量比の制御などの複雑さを伴
い、常に所望の条件で成膜を行えるとは限らず、このこ
とから磁気特性にばらつきが生じる。 第三に膜の基板近傍部分と表面近傍とで高温に保持され
る時間が大きく異なるため、それらの部分の磁気特性に
差を生じ、膜全体にわたって良好な磁気特性が得られな
いことである。これは特に成膜を長時間かけて行った場
合に顕著であるにれらの原因を取り除くため、成膜後の
熱処理を試みた結果、以下のような効果がみられた。 基板温度を200〜350℃、Mn分量比変動範囲を4
5〜65a t%として、MgO単結晶基板の(Zoo
)面上に作製した膜は、自発磁化が300〜450e■
u/ccの範囲でばらついていたが、これらに熱処理を
施すことにより、自発磁化はやや増加し、420〜48
0ewu/ccの範囲に収まった。すなわち、熱処理を
施すことにより、自発磁化のばらつきを小さくでき、従
来は最大450 emu / ccの自発磁化しか得ら
れていなかったM n −A l薄膜で450emu/
ccより大きな自発磁化が得られた。これらの効果は膜
中の格子欠陥が部分的に解消されたためと考えられる。 また、基板温度を200℃以下に設定してMgO単結晶
基板の(100)面上に作製した膜は強磁性を示さなか
ったが、これらについても、熱処理を施すことにより、
480emu/ccの自発磁化が得られた。 Mnの分量比の変動についても、45〜65at%の範
囲に限ることなく、0〜100at%の範囲あるいは一
定として作製した膜でも、熱処理により480en+u
/ccの自発磁化が得られた。 すなわち、バルク合金と同等以上の自発磁化を得るため
に、成膜時の基板温度を200〜350℃、Mn分量比
変動範囲を45〜65%と限る必要がない。したがって
、成膜時に条件の厳密なコントロールが必要でないため
、膜作製が容易であり、かつ、成膜条件の制約が多いこ
とによる磁気特性のばらつきが防げる。さらに、上記の
ように基板温度を200℃以下に設定しても、バルク合
金と同等以上の自発磁化を示すM n −A l薄膜を
作製できることは、膜内における自発磁化のばらつきを
小さくするのにも効果がある。 従来のMn分量比変動膜においてバルク合金と同等の自
発磁化を得るためには、基板としてMgO単結晶の(1
00)面を用いるのが好ましかった。そこで、本発明に
至る実験では、主にMgO単結晶基板の(100)面上
に被着させた膜について検討してきた。他の基板、例え
ばガラス、Nacl、LiF、NaF等の上に被着させ
た膜についても同様の検討を行ってみたが、いずれの基
板についても、MgO単結晶基板を用いた場合はどの効
果は得られなかった。強磁性を示す構造がMgO単結晶
の(100)面上で形成されやすいためと考えられる。 さらに、MgO単結晶を用いた場合、基板直上にMn層
あるいはMn過剰層を形成することが好ましく、これは
MgO単結晶基板上にMnが単結晶的に成長しやすいこ
とと関連して、やはり強磁性を示す構造が形成されやす
いためと考えられる。 [実施例1 実施例1 本実施例では第3図に示す電子ビーム蒸着装置を用いた
。真空槽6に電子線加熱装!1を2台置き、蒸着源3の
材料として、一方のるつぼ4にマンガン(Mn)他方の
るつぼ4にアルミニウム(Al)をそれぞれ入れて加熱
し、両者を同時に蒸発させた。蒸着中の真空度はlXl
0−’Torr以下が望ましく、本実施例ではlXl0
”−gT。 rrとした。2つのシャッタ2の開閉を制御することに
より、膜中のMnの分量比が膜厚方向で変動しているM
 n −A l膜を作製した。 作製した薄膜の構造は第4図に示すような、Mn分量の
多い層およびAl分量の多い層が交互に積層した構造と
なっている。Mr+の分量比変動範囲及び変動周期は、
上記従来技術と同じにした。 すなわち、Mnの分量比変動範囲は45〜65at%、
変動周期は20Å以下とした。基板としてはMgO単結
晶の(100)面を用い、Mn過剰、Al過剰の順にM
nの分量比を変化させ、膜の厚さが約4000人になる
まで被着を行った。基板温度も従来技術と同じく、20
0〜350℃の範囲内に設定した。 このようにして作製したM n −A I薄膜について
、その自発磁化を測定したところ、あるものは従来技術
と同様にバルク合金と同等の450e*u/ccの自発
磁化を示したが、数多く作製してみると、自発磁化が3
00〜450e閣u/ccの範囲でばらつくことがわか
った。 そこで、これらの膜の熱処理を試みた。熱処理はlXl
0−’Torrの真空度の下で350℃に1〜8時間保
つことにより行った。熱処理後の膜についても自発磁化
を測定した。 第1図に上記の測定結果を示す。図中の縦線は自発磁化
のばらつきの範囲を、丸印はその平均値を表している。 1〜2時間の熱処理により自発磁化はやや増加し、その
ばらつきの範囲も小さくなっている。これは膜中の欠陥
が部分的に解消されたためと考えられる。この効果は1
時間程度の熱処理で現れ、さらに熱処理を続けても自発
磁化の増加はみられず、4時間以上の長時間の熱処理を
行った場合は、自発磁化は急激に減少してしまう。 これは、拡散により強磁性を示す構造がこわれてしまっ
たためと考えられる。 次に、熱処理を100〜600℃の温度で1時間行った
結果を第2図に示す。この結果は、熱処理が200〜5
00℃の温度で行ったときに有効であり、特に300〜
400℃の温度が良いことを示している。 実施例2 本実施例では実施例1と同様の装置を用い、同様の構造
の膜を作製した。Mnの分量比変動範囲と変動周期も実
施例1と同じにした。ただし、基板温度は従来自発磁化
がほとんど得られなかった200℃以下の温度に設定し
た。ただし、0℃より低温については、成膜装置の構造
上設定できなかったが、冷却の複雑さを伴うため実用上
好ましくないと考えられる。このような条件で作製した
膜について、自発磁化を測定したが、いずれの膜もほと
んど強磁性を示さなかった。 これらの膜にlXl0−7Torrの真空度の下で35
0℃、2時間の熱処理を施したところ、第1表に示した
ように、いずれの膜も380〜480e■u/ccの自
発磁化を示した。 以上のことから本発明は、成膜条件、特に成膜中の基板
加熱温度の制約を少なくするのに効果がある。このこと
により、例えば、基板加熱なしに成膜を行える。 第1表 また、従来の基板温度条件200〜350℃で成膜を行
なった場合、膜厚を4000〜8000人、蒸着速度を
1人/ s e c以下にするなど、成膜に長い時間を
要したとき、成膜中の基板加熱の効果で、初期蒸着層が
その特性を変えてしまい、場合によっては特性劣化を生
ずる。すなわち、基板近傍の自発磁化が小さく、表面近
傍の自発磁化が大きいような薄膜となる。ところが、本
発明によれば、基板加熱なしに成膜が行えるため、成膜
中の特性劣化をさけられ、局所的には磁気特性のゆらぎ
があっても、基板近傍と表面近傍では同じであるなど、
より広い範囲で均一な磁気特性をもった薄膜が得られる
。 実施例3 本実施例では実施例1と同様の装置を用い、2つのシャ
ッタ2を同時に開放することにより、MnとAlを同時
に被着させる。基板としてはMgO単結晶の(100)
面を用い、基板上に膜厚100人のMn層を形成した後
にMnとAlの同時蒸着を行った。蒸着は膜厚が500
0人になるまで行った。これらの膜の自発磁化を測定し
た後、熱処理として、lXl0−’Torrの真空度の
下で、350℃に1時間保ち、再び自発磁化を測定した
。以上の結果を第2表にまとめて示す。蒸着直後は、い
ずれの膜からもほとんど自発磁化が検出されなかったに
もかかわらず、熱処理を施した膜からは、バルク合金と
ほぼ同等の自発磁化を得ることができた。 以上のことから、本発明によれば、Mn分量比を膜厚方
向で変動させることなく、単にMnとAlを同時に被着
させるだけで、バルク合金と同等の4−50 emu/
 ccの自発磁化が得られる。すなわち、成膜時の複雑
なシャッタ制御が不要となり、それに伴う時間や原料消
費の無駄を低減できる。 実施例4 本実施例では、直流スパッタリング装置を用いて、成膜
を行なった。MnとAlの2つのターゲットを用い、A
r圧2mTorr、投入電力密度0 、5 W/ c 
m”、被着速度4人/ s e cの条件で行なった。 基板としてはMgO単結晶の(100)面を用い、膜厚
が5000人となるようにした。 MnとAlを同時に被着させた場合と、MnとAlを交
互に被着させた場合は、それぞれ上記実施例1および2
に示した真空蒸着の場合とほぼ同じ結果となった。すな
わち、はとんど自発磁化が得られない成膜条件で作製し
た試料でも、適当な熱処理を施すことによってバルク合
金とほぼ同等の自発磁化が得られた。 以上のことから本発明はスパッタ法によって成膜した場
合にも適用できる。 【発明の効果】 本発明によれば、バルク合金と同等の自発磁化をもつ、
M n −A 1強磁性体薄膜を容易に作製できるので
、種々の磁気デバイスへの応用が可能となる。
[Means for Solving the Problems 1] The object of the present invention is to form a Mn-Al thin film on the (100) plane of an MgO single crystal substrate in a temperature range of 0 to 350°C, and then Higher and 200-500℃
This can be achieved by heat treatment at a temperature in the range of . The Mn--Al thin film produced by this method exhibits spontaneous magnetization equal to or higher than that of the bulk alloy, and has small variations in properties. [Function] In the process of obtaining the above-mentioned Mn content ratio variable film, various thin films were repeatedly produced. When the magnetic properties of these thin films were measured, variations were noticeable. As a result of examining the causes of this, it was found that the following three factors were the main causes. First, many lattice defects are introduced into the film. Because lattice defects deteriorate magnetic properties. Differences in the amount of lattice defects introduced cause variations in magnetic properties. Second, there are many restrictions on film formation conditions. The above-mentioned Mn content ratio variable film has many restrictions on the film forming conditions, such as the substrate temperature during film formation being limited to 200 to 350°C and the variation range of the Mn content ratio being limited to 45 to 65 at%. Therefore, film formation involves complications such as control of substrate temperature and Mn content ratio, and film formation cannot always be performed under desired conditions, resulting in variations in magnetic properties. Thirdly, because the time for which the film is maintained at high temperature near the substrate and near the surface is maintained at a high temperature for a significantly different time, differences occur in the magnetic properties of these parts, making it impossible to obtain good magnetic properties over the entire film. This is especially noticeable when film formation is carried out over a long period of time.In order to eliminate the cause of this phenomenon, we attempted heat treatment after film formation, and as a result, the following effects were observed. The substrate temperature was set at 200 to 350°C, and the Mn content ratio variation range was set at 4.
(Zoo
) The film fabricated on the surface has a spontaneous magnetization of 300 to 450e■
The spontaneous magnetization varied in the range of u/cc, but by applying heat treatment to these, the spontaneous magnetization increased slightly, and it was 420 to 48
It fell within the range of 0 ewu/cc. In other words, heat treatment can reduce the variation in spontaneous magnetization, and conventionally only a maximum spontaneous magnetization of 450 emu/cc could be obtained with an Mn-Al thin film.
Spontaneous magnetization larger than cc was obtained. These effects are thought to be due to the partial elimination of lattice defects in the film. In addition, films fabricated on the (100) plane of an MgO single crystal substrate at a substrate temperature of 200°C or lower did not exhibit ferromagnetism, but these films could also be treated by heat treatment.
A spontaneous magnetization of 480 emu/cc was obtained. Regarding variations in the Mn content ratio, it is not limited to the range of 45 to 65 at%, and even if the film is prepared in the range of 0 to 100 at% or constant, it can be changed to 480 en + u by heat treatment.
A spontaneous magnetization of /cc was obtained. That is, in order to obtain spontaneous magnetization equivalent to or higher than that of the bulk alloy, it is not necessary to limit the substrate temperature during film formation to 200 to 350° C. and the Mn content ratio variation range to 45 to 65%. Therefore, since strict control of conditions during film formation is not required, film formation is easy, and variations in magnetic properties due to many restrictions on film formation conditions can be prevented. Furthermore, as mentioned above, even if the substrate temperature is set to 200°C or less, it is possible to fabricate a M n -Al thin film that exhibits spontaneous magnetization equal to or higher than that of a bulk alloy, which makes it possible to reduce the variation in spontaneous magnetization within the film. It is also effective. In order to obtain a spontaneous magnetization equivalent to that of a bulk alloy in a conventional variable Mn ratio film, it is necessary to use an MgO single crystal (1
It was preferable to use the 00) plane. Therefore, in the experiments leading up to the present invention, we have mainly studied films deposited on the (100) plane of MgO single crystal substrates. Similar studies were conducted on films deposited on other substrates, such as glass, NaCl, LiF, NaF, etc., but for any of the substrates, what effect did it have when using an MgO single crystal substrate? I couldn't get it. This is thought to be because a structure exhibiting ferromagnetism is likely to be formed on the (100) plane of the MgO single crystal. Furthermore, when using an MgO single crystal, it is preferable to form an Mn layer or an excessive Mn layer directly on the substrate. This is thought to be because a structure exhibiting ferromagnetism is likely to be formed. [Example 1 Example 1 In this example, an electron beam evaporation apparatus shown in FIG. 3 was used. Electron beam heating equipment in vacuum chamber 6! Two crucibles 1 were placed, and manganese (Mn) was placed in one crucible 4 and aluminum (Al) was placed in the other crucible 4 as materials for the vapor deposition source 3, and heated to evaporate both at the same time. The degree of vacuum during vapor deposition is lXl
It is desirable that the value is 0-'Torr or less, and in this example, lXl0
"-gT.rr. By controlling the opening and closing of the two shutters 2, the Mn content ratio in the film varies in the film thickness direction.
An n-Al film was prepared. The structure of the produced thin film is as shown in FIG. 4, in which layers with a large Mn content and layers with a large Al content are alternately laminated. The quantity ratio fluctuation range and fluctuation period of Mr+ are as follows:
Same as the above conventional technology. That is, the variation range of the Mn content ratio is 45 to 65 at%,
The fluctuation period was set to 20 Å or less. The (100) plane of MgO single crystal was used as the substrate, and Mg was added in the order of excess Mn and excess Al.
The deposition was carried out by changing the ratio of n to a film thickness of about 4,000. The substrate temperature is also 20, the same as in the conventional technology.
The temperature was set within the range of 0 to 350°C. When we measured the spontaneous magnetization of the M n -A I thin films produced in this way, some showed a spontaneous magnetization of 450 e*u/cc, which is equivalent to that of bulk alloys, as in the conventional technology, but many As a result, the spontaneous magnetization is 3
It was found that it varies in the range of 00 to 450e cabinet u/cc. Therefore, we attempted heat treatment of these films. Heat treatment is lXl
This was carried out by maintaining the temperature at 350°C for 1 to 8 hours under a vacuum degree of 0-' Torr. The spontaneous magnetization of the film after heat treatment was also measured. FIG. 1 shows the above measurement results. The vertical lines in the figure represent the range of variation in spontaneous magnetization, and the circles represent the average value. After heat treatment for 1 to 2 hours, the spontaneous magnetization increases slightly, and the range of variation becomes smaller. This is considered to be because defects in the film were partially eliminated. This effect is 1
Spontaneous magnetization appears after heat treatment for about 1 hour, and no increase in spontaneous magnetization is observed even if heat treatment is continued, and when heat treatment is performed for a long time of 4 hours or more, spontaneous magnetization rapidly decreases. This is thought to be because the ferromagnetic structure was destroyed by diffusion. Next, heat treatment was performed at a temperature of 100 to 600° C. for 1 hour, and the results are shown in FIG. This result shows that the heat treatment is 200~5
It is effective when carried out at a temperature of 00°C, especially at a temperature of 300°C to
This shows that a temperature of 400°C is good. Example 2 In this example, the same apparatus as in Example 1 was used to produce a film having the same structure. The variation range and variation cycle of the Mn ratio were also the same as in Example 1. However, the substrate temperature was set at a temperature of 200° C. or lower, at which conventionally almost no spontaneous magnetization could be obtained. However, although it was not possible to set a temperature lower than 0° C. due to the structure of the film forming apparatus, it is considered to be undesirable from a practical standpoint because cooling would be complicated. Spontaneous magnetization was measured for the films produced under these conditions, and none of the films showed almost any ferromagnetism. These films were subjected to a vacuum of 1X10-7 Torr at 35
When heat treated at 0 DEG C. for 2 hours, all films exhibited spontaneous magnetization of 380 to 480 eU/cc, as shown in Table 1. From the above, the present invention is effective in reducing restrictions on film formation conditions, particularly on substrate heating temperature during film formation. With this, for example, film formation can be performed without heating the substrate. Table 1 Also, when forming a film under conventional substrate temperature conditions of 200 to 350°C, it takes a long time to form the film, such as by reducing the film thickness to 4,000 to 8,000 people and the deposition rate to 1 person/sec or less. When necessary, the properties of the initially deposited layer change due to the effects of substrate heating during film formation, possibly resulting in property deterioration. In other words, the thin film has a small spontaneous magnetization near the substrate and a large spontaneous magnetization near the surface. However, according to the present invention, since the film can be formed without heating the substrate, deterioration of the properties during film formation can be avoided, and even if there is local fluctuation in the magnetic properties, the magnetic properties are the same near the substrate and near the surface. Such,
A thin film with uniform magnetic properties over a wider range can be obtained. Example 3 In this example, Mn and Al are deposited simultaneously by using the same apparatus as in Example 1 and opening the two shutters 2 at the same time. The substrate is MgO single crystal (100)
After forming a Mn layer with a thickness of 100 layers on the substrate using a surface, Mn and Al were simultaneously vapor-deposited. Vapor deposition has a film thickness of 500
I went until there were 0 people left. After measuring the spontaneous magnetization of these films, the films were kept at 350° C. for 1 hour under a vacuum of 1X10-' Torr as a heat treatment, and the spontaneous magnetization was measured again. The above results are summarized in Table 2. Although almost no spontaneous magnetization was detected in any of the films immediately after deposition, the heat-treated films were able to obtain almost the same spontaneous magnetization as the bulk alloy. From the above, according to the present invention, by simply depositing Mn and Al at the same time without changing the Mn content ratio in the film thickness direction, the 4-50 emu/
cc spontaneous magnetization is obtained. That is, complicated shutter control during film formation is not required, and the associated waste of time and raw material consumption can be reduced. Example 4 In this example, film formation was performed using a DC sputtering apparatus. Using two targets, Mn and Al, A
r pressure 2 mTorr, input power density 0, 5 W/c
The deposition rate was 4 people/sec. The (100) plane of MgO single crystal was used as the substrate, and the film thickness was 5000 people. Mn and Al were deposited simultaneously. Examples 1 and 2 are the case where Mn and Al are deposited alternately and the case where Mn and Al are deposited alternately, respectively.
The results were almost the same as in the case of vacuum evaporation shown in . That is, even in a sample prepared under film-forming conditions in which spontaneous magnetization could hardly be obtained, spontaneous magnetization almost equivalent to that of the bulk alloy was obtained by applying an appropriate heat treatment. From the above, the present invention can also be applied to a case where a film is formed by sputtering. [Effects of the Invention] According to the present invention, the alloy has a spontaneous magnetization equivalent to that of a bulk alloy.
Since the M n -A 1 ferromagnetic thin film can be easily produced, it can be applied to various magnetic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1で作製したM n −Al強
磁性体薄膜の自発磁化と熱処理時間の関係を示す図、第
2図は同じく自発磁化と熱処理湿度の関係を示す図、第
3図は電子ビーム蒸着装置の概略図、第4図は本発明実
施例1で作製したM n −Al強磁性体薄膜の断面図
である。 符号の説明 1・・・電子線加熱装置、2・・・シャッタ、3・・・
蒸着源、4・・・るつぼ、5・・・ステージ、6・・・
真空槽、7・・・排気装置、8・・・薄膜、9・・・基
FIG. 1 is a diagram showing the relationship between spontaneous magnetization and heat treatment time of the M n -Al ferromagnetic thin film produced in Example 1 of the present invention, FIG. 2 is a diagram also showing the relationship between spontaneous magnetization and heat treatment humidity, and FIG. FIG. 3 is a schematic diagram of an electron beam evaporation apparatus, and FIG. 4 is a cross-sectional view of the M n -Al ferromagnetic thin film produced in Example 1 of the present invention. Explanation of symbols 1...Electron beam heating device, 2...Shutter, 3...
Vapor deposition source, 4... Crucible, 5... Stage, 6...
Vacuum chamber, 7... Exhaust device, 8... Thin film, 9... Substrate

Claims (2)

【特許請求の範囲】[Claims] 1.MgO単結晶基板の(100)面上に形成され、自
発磁化が450emu/ccより大きいことを特徴とし
たMn−Al強磁性体薄膜。
1. An Mn-Al ferromagnetic thin film formed on the (100) plane of an MgO single crystal substrate and characterized by having spontaneous magnetization greater than 450 emu/cc.
2.温度0〜350℃に保持されたMgO単結晶基板の
(100)面上に、まずMnを被着させ、次にMnとA
lを被着させ、被着後、被着時の基板温度より高くかつ
200〜500℃の範囲の温度で熱処理することを特徴
としたMn−Al強磁性体薄膜の製造方法。3.上記M
nとAlの被着は、Mnの被着とAlの被着とが交互に
行なわれることを特徴とした請求項2記載のMn−Al
強磁性体薄膜の製造方法。
2. First, Mn is deposited on the (100) plane of an MgO single crystal substrate maintained at a temperature of 0 to 350°C, and then Mn and A are deposited.
1. A method for producing a Mn--Al ferromagnetic thin film, the method comprising: depositing Mn--Al ferromagnetic thin film, and after deposition, heat-treating at a temperature higher than the substrate temperature at the time of deposition and in the range of 200 to 500C. 3. Above M
3. The Mn-Al according to claim 2, wherein the deposition of n and Al is performed alternately with deposition of Mn and deposition of Al.
A method for producing a ferromagnetic thin film.
JP24711590A 1990-09-19 1990-09-19 Mn-al ferromagnetic thin film and manufacture thereof Pending JPH04127508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24711590A JPH04127508A (en) 1990-09-19 1990-09-19 Mn-al ferromagnetic thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24711590A JPH04127508A (en) 1990-09-19 1990-09-19 Mn-al ferromagnetic thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04127508A true JPH04127508A (en) 1992-04-28

Family

ID=17158661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24711590A Pending JPH04127508A (en) 1990-09-19 1990-09-19 Mn-al ferromagnetic thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04127508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085076A (en) * 2015-10-27 2017-05-18 国立大学法人東北大学 Manganese based ferromagnetic thin film, method for manufacturing the same, and magnetic tunnel junction device with manganese based ferromagnetic thin film
JP2018188700A (en) * 2017-05-01 2018-11-29 国立大学法人東北大学 PRODUCTION METHOD OF Mn-BASED FERROMAGNETIC THIN FILM, AND Mn-BASED FERROMAGNETIC THIN FILM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085076A (en) * 2015-10-27 2017-05-18 国立大学法人東北大学 Manganese based ferromagnetic thin film, method for manufacturing the same, and magnetic tunnel junction device with manganese based ferromagnetic thin film
JP2018188700A (en) * 2017-05-01 2018-11-29 国立大学法人東北大学 PRODUCTION METHOD OF Mn-BASED FERROMAGNETIC THIN FILM, AND Mn-BASED FERROMAGNETIC THIN FILM

Similar Documents

Publication Publication Date Title
US5158933A (en) Phase separated composite materials
Kim et al. Magnetic properties of reactively sputtered Fe1− x O and Fe3O4 thin films
EP0410627A1 (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
Wane et al. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application
JPH04127508A (en) Mn-al ferromagnetic thin film and manufacture thereof
CN108831741B (en) Method for increasing interface magnetic anisotropy energy of ferromagnetic metal/oxide double-layer film
US5231294A (en) Manganese-aluminum and manganese-silicon magnetic films, and magnetic recording medium
US5041200A (en) Method of manufacturing crystalline thin-film of rare-earth compounds
Deng et al. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
Liew et al. Structural and ferromagnetic response of Fe3Si thin films on Si (0 0 1) to sputter-deposition rate and post-deposition annealing
US20030209189A1 (en) Magnetic material and method for preparation thereof
JP3302419B2 (en) Magnetic thin film and method of manufacturing the same
JP2735276B2 (en) Mn-Al ferromagnetic thin film and method for producing the same
Nakagawa et al. Preparation of soft magnetic and thermally stable Fe–Co–Ta: N/Ti multilayered films by sputter deposition
JP2871990B2 (en) Magnetoresistive element thin film
US6346175B1 (en) Modification of in-plate refractory metal texture by use of refractory metal/nitride layer
Svedberg CoCr/Pt multilayers with perpendicular anisotropy and texture-controlled coercivity
JP2595656B2 (en) Method for manufacturing perpendicular magnetic recording film
Shi et al. Preferential resputtering phenomenon on the surface of (100)-oriented Ni–Pt films: Effect of substrate bias during sputter deposition
Iwatsubo et al. Magnetic characteristics of ultrathin Fe films with Ar bombardment during and after deposition
JPH03256309A (en) Manufacture of perpendicular magnetic recording film
KR100190681B1 (en) Method for producing mn-al thin films
JPH04116163A (en) Production of silver single crystal thin film and artificial metal lattice